2209.00191v1 [cs.CG] 1 Sep 2022

arXiv

Spherical Graph Drawing by Multi-dimensional
Scaling

Jacob Miller, Vahan Huroyan, Stephen Kobourov
jacobmilleri@arizona.edu, vahanhuroyan@math.arizona.edu, and
kobourov@cs.arizona.edu

Department of Computer Science, University of Arizona

Abstract. We describe an efficient and scalable spherical graph embed-
ding method. The method uses a generalization of the Euclidean stress
function for Multi-Dimensional Scaling adapted to spherical space, where
geodesic pairwise distances are employed instead of Euclidean distances.
The resulting spherical stress function is optimized by means of stochas-
tic gradient descent. Quantitative and qualitative evaluations demon-
strate the scalability and effectiveness of the proposed method. We also
show that some graph families can be embedded with lower distortion
on the sphere, than in Euclidean and hyperbolic spaces.

Fig. 1: Applying spherical MDS to embed 30 cities from around the Earth (given
pairwise distances between the cities). The spherical MDS recovers the underly-
ing geometry.

1 Introduction

Node-link diagrams are typically created by embedding the vertices and edges of
a given graph in the Euclidean plane and different embedding spaces are rarely
considered. Multi-Dimensional Scaling (MDS), realized via stress minimization
or stress majorization, is one of the standard approaches to embedding graphs
in Euclidean space. The idea behind MDS is to place the vertices of the graph in
Euclidean space so that the distances between them are as close as possible to the
given graph theoretic distances. Due to the nature of Euclidean geometry, this
cannot always be done without some distortion (e.g., while K3 naturally lives in

jacobmiller1@arizona.edu
vahanhuroyan@math.arizona.edu
kobourov@cs.arizona.edu

2D, K4 does not, as there are no four equidistant points in the Euclidean plane).
Moreover, some graphs “live” naturally in manifolds other than the Euclidean
plane. For example 3-dimensional polytopes, or triangulations of 3-dimensional
objects can be better represented on the sphere, while trees and special lattices
are well-suited to hyperbolic spaces.

When visualizing graphs in Euclidean space, common techniques include
adapting off-the-shelf dimensionality reduction algorithms to the graph setting.
Such algorithms include the Multi-Dimensional Scaling (MDS) [39], Principal
Component Analysis (PCA) [11], t-distributed Stochastic Neighbor Embedding
(t-SNE) [26], and Uniform Manifold Approximation Projection (UMAP) [27].
The popularity of graph visualisation, and the fact that some of the underly-
ing datasets are easier to embed in non-Euclidean spaces, led to some visualiza-
tion techniques for spherical geometry [9,34] and hyperbolic geometry [20,28,37].
Most of the existing non-Euclidean graph visualization approaches, however, ei-
ther lack in accuracy or do not scale to larger graphs.

With this in mind, we propose and analyze a stochastic gradient descent
algorithm for spherical MDS. Specifically, we present a scalable technique to
compute graph layout directly on the sphere, adapting previous work for gen-
eral datasets [9] and applying stochastic gradient descent [35,42]. We provide
an evaluation of the technique by comparing its speed and faithfulness to the
exact gradient descent approach. We also investigate differences in graph lay-
outs between the consistent geometries (Euclidean, spherical, hyperbolic) by
first showing that dilation or resizing has a large effect on layouts in spherical
and hyperbolic geometry, and second by showing some structures can be better
represented in one geometry than the other two. All sourcecode, datasets and
experiments, as well a web based visualization tool are available on GitHub:
https://github.com/Mickey253/spherical-mds.

Note that the proposed method is not restricted to graphs, but is applicable
to any dataset specifying a set of objects and pairwise distances between them.

2 Background and Related Work

We review related work in non-Euclidean geometry and graph layout methods.

2.1 Multi-dimensional Scaling

Using graph-theoretic distances to determine a graph layout dates back to the
Kamada-Kawai algorithm [17]. A more general embedding approach from a given
set of distances is the multi-dimensional scaling (MDS) [39] which has extensively
been applied to graph layout; see [12,14,42]. Both the Kamda-Kawai and (metric)
MDS algorithms aim to minimize the stress function, which is the sum of residual
squares between the given and the embedded distances of each pair of datapoints.
Formally, given a graph G = (V, E) with the graph theoretic distances between

its n vertices (dij)?’j":l, where the vertices are labeled 1,2,...,n MDS aims to

https://github.com/Mickey253/spherical-mds

embed the graph in R? by minimizing the following stress function to find the
locations for its vertices:

o(X) =Y wi(|1Xi = X5 — dij)*. (1)
i<j
The resulting solution of X1, Xs,..., X, € R? represents the coordinates of the

embedded graph vertices.

Various forms of MDS have been analyzed. Metric MDS was first studied
by Shepard [39] (see equation in (3)), and the related non-metric MDS by
Kruskal [22]. Classical MDS is similar but uses an objective function called strain.

The classical MDS has a closed form solution while the metric MDS and
non-metric MDS rely on solving an optimization problems to minimize the corre-
sponding stress functions. Many approaches have been proposed to solve (metric)
MDS including stress majorization [13] and (stochastic) gradient descent [2].

When used for the purposes of visualization, the embedding space for MDS
is almost always 2 dimensional Euclidean, as that is the space of a flat sheet of
paper, or the flat screen of a computer monitor. The natural measure of distance
is then the Euclidean norm.

In this work we will focus on metric MDS, defined in (1) but instead of
embedding the graph in Euclidean space, we embed it directly on the sphere. The
MDS approach has already been applied to embed graphs on spherical [9] and
hyperbolic [28] spaces. Our contribution is to solve the proposed optimization
problem faster and be able to handle larger graphs, address the dilation/resizing
problem, as well as analyze the approach on wider range of graphs and provide
a working and easy to use implementation.

2.2 Non-Euclidean Geometry

Non-Euclidean geometries are a special case of Riemannian geometries, which
are spaces that are locally “smooth”: one can define an inner product on the
tangent space at each point. Spherical and hyperbolic non-Euclidean geometries
are similar to Euclidean geometry, except for one axiom.

Euclid’s Elements specify five axioms/postulates upon which all true state-
ments about geometry should be proved. The fifth axiom is significantly more
involved than the first four and mathematicians attempted for centuries to prove
it using only the first four. In 1892 Lobachevsky and Bolyai independently dis-
covered and published their formulation of hyperbolic geometry by inverting an
equivalent statement to Euclid’s fifth axiom, Playfair’s axiom: In a plane, given
a line and a point not on it, at most one line parallel to the given line can be
drawn through the point. Replace “at most one line” with “at least two distinct
lines” to get hyperbolic geometry. Replace “at most one line” with “there does
not exist a line” to arrive at spherical geometry.

Spherical geometry has benefits in the context of data visualization. In Eu-
clidean (or hyperbolic) layouts, one is forced to choose a “center” of the embed-
ding, intentionally or not, whereas on the sphere there is no notion of a center.

Fig.2: The Maps of Science dataset [5] laid out using our SMDS algorithm, from
three different perspectives. Each color represents a different field of science
(nodes are subfields), and their relationships exhibit a ring-like structure. Any
field can be placed in the center of the view.

A perceptual side effect of centered embeddings is that vertices near the center
seem more important, while vertices away from the center seem more peripheral.
This problem does not occur in spherical space, where simple rotation can place
any vertex in the center of the view (a feature that is very useful when visualizing
social networks, or networks of research fields); see Fig. 2. Additionally, many
spherical projections into Euclidean space, such as the stereographic projection,
provide a desirable focus+context effect.

Some focus+context type algorithms for visualizing large hierarchies by using
hyperbolic geometry are discussed in [24,25].

Distances in non-Euclidean geometries generalize the concept of a straight
line to that of a geodesic, defined as an arc of shortest length (not necessarily
unique) that contains both endpoints. The distance between two endpoints is
then the length of that curve.

A point on a sphere of radius R is uniquely represented by a pair of angles,
(¢, A), where 0 < ¢ < 7 is known as the latitude and 0 < A < 27 is the
longitude. Given two points (¢1, A1), (¢2, A2) on the sphere with radius R, the
geodesic distance is then derived by the spherical law of cosines:

0((d1, A1), (92, A2)) = R * arccos(sin ¢ sin ¢a + €os @1 cos g cos(A — A2)) (2)

where §(X;, X;) denotes the geodesic distance between points X; and X, as-
suming X is an n x 2 matrix whose rows correspond to spherical coordinates.
It is known that the surface of a sphere cannot be perfectly preserved in
any 2-dimensional Euclidean drawing, due to its curvature. One can preserve
various combintations of angles, areas, geodesics, or distances but not all of
these simultaneously. The orthographic projection, or the “view from space”
projects the sphere onto a tangent plane with point of perspective from outside
the sphere. While half of the sphere is obscured and shapes and area are distorted
near the boundary, geodesics through the origin are preserved and it gives the
impression of a 3-dimensional globe. The stereographic projection is similar but

Fig.3: A subdivided isocahedron graph embedded on the sphere, displayed with
the orthographic, stereographic, Mercator, and equal Earth projections.

instead with a point of projection looking through the sphere, and preserves
angles. The Mercator projection is a common cylindrical map projection with
heavy area distortion near the poles. The equal Earth projection preserves area
and gives the impression of a spherical shape. Examples are shown in Fig. 3. We
primarily use the orthographic and equal Earth projections in this paper.

2.3 Graph Layout in non-Euclidean Geometry

Non-Euclidean graph visualization has been studied by Munzner, with an em-
phasis on trees and hierarchies [29,30,31,32], and the following link treevis.net,
provides several examples of hyperbolic and sphere based tree visualizations [38].
Spherical layouts have been investigated in an immersive setting such as vir-
tual reality [23,41]. Self-organizing maps have been developed for both spherical
and hyperbolic geometries [33]. Several other examples of spherical graph vi-
sualization include the Map of Science [5], the “Places and Spaces” [4], and
“Worldprocessor” [16] exhibitions. Some limitations of the existing algorithms
for hyperbolic graph visualization are discussed in [10].

Force-directed algorithms model the nodes and edges as a physical system,
and provide a layout by minimizing the total energy. These algorithms are popu-
lar in part due to their conceptual simplicity and quality layouts [18]. A general
technique for generalizing force-directed algorithms to non-Euclidean spaces is
described in [19]. However, it only works for small graphs as for larger ones it
is too computationally expensive and is unlikely to escape local minima.

There are several different approaches to embedding a graph on the sphere.
A simple idea is to generate a 2D Euclidean layout and project it onto the sphere
through a linear map [8,34], however, this embedding will not make full use of
spherical geometry. Another approach is to embed the graph in 3D Euclidean
space and modify it to force it on the surface of a sphere [7,34], but this is
quite mathematically involved and complicates the optimization. A more natural
method directly computes a 2D spherical embedding (in latitude and longitude)
such that the geodesic distances on the sphere and graph-theoretic distances
between pairs of vertices are closely matched [9]. We focus on this approach and
make it scalable by adopting stochastic gradient descent for the optimization
phase and by solving the dilation/resizing problem specified below.

treevis.net

Fig.4: A dodecahedron subdivision graph. Left: a small dilation factor forces the
layout on a small patch of the sphere. Middle: a correct dilation factor using our
heuristic discussed in Section 5.1, allows the graph to make use of the spherical
geometry. Right: a large dilation factor makes the distances unachievable.

In the graph drawing literature, the normalized stress of a layout is a stan-
dard quality measure [12,21,43]. This is perfectly acceptable in Euclidean space
where a layout is not meaningfully changed when the layout is resized. For
non-Euclidean graph layouts there is a possible issue of dilation or resizing. For-
mally, a dilation is a function on a metric space M, f : M — M that satisfies
d(f(z), fly)) = rd(z,y) for z,y € M, r > 0 € R and d(x,y) being the dis-
tance between x and y. In non-Euclidean spaces, such as the sphere, the size
of a layout can have drastic effects; see Fig. 4. At small dilation, a graph em-
bedded on the sphere takes only a small patch and the sphere patch behaves
like a piece of the Euclidean plane. At large dilation, a graph embedded on the
sphere wraps over itself. At some optimal dilation the embedded graph fits on
the sphere with low distortion. Choosing the size of the sphere is important to
accurately represent the data. We are unaware of any work regarding this prob-
lem in spherical embedding, and propose a heuristic and optimization scheme to
solve it in Section 5.1.

As stress is difficult to interpret between geometries, we use a more fair
comparison metric called distortion [28,37] defined later in Section 5.

3 Algorithm

Our spherical multi-dimensional scaling algorithm (SMDS) resembles that of
other stress based graph layout algorithms. That is, we first compute a graph-
theoretic distance matrix via an all-pairs-shortest-paths algorithm and then use
this distance matrix as an input to minimize the generalized stress function and
compute vertex coordinates on the sphere. This differs from standard Euclidean
MDS in that Euclidean distances between points are replaced by geodesic dis-
tances between the points on sphere. The corresponding stress function defined
on the sphere is

os(X) =Y wi(5(Xi, X;) — dij)” (3)

i<j

Fig.5: The Sierpinski3d [21] graph on the sphere (left) and in the plane (right).
While the Euclidean drawing on the right is aesthetically pleasing, it looks de-
ceptively like a 2D structure and implies a center. The sphere more accurately
captures the structure.

Where 6(X;, X;) denotes the geodesic distance between vertices ¢ and j, d;; is the
graph-theoretic distance between vertex 7 and j, and w;; is a weight, typically set
to di_j2. However, one can also give preferred weights based on the importance
of the points and based on the application. Another typical choice is binary
weights, where w;; is either 0 or 1. Unless otherwise specified, ¢ corresponds to
the geodesic distances on the unit sphere and Ji the geodesic distances on a
sphere with radius R.

We minimize equation (3) by stochastic gradient descent (SGD), which we ex-
perimentally show converges in fewer iterations while achieving lower distortion
than exact gradient descent for sufficiently large graphs. SGD is a minimiza-
tion approach in the gradient descent family of algorithms. Fully computing the
exact gradient can be too expensive and SGD instead repeatedly performs a
constant time approximation of the gradient, by considering only a single term
of the sum (or subset of terms for mini-batch stochastic), which allows it to make
more updates. As a result, SGD tends to converge in fewer iterations while more
consistently finding the global minimum [36].

To perform SGD on the stress function, we approximate the gradient by look-
ing at only a single pair of vertices. Note that this corresponds to one summand
of the full stress function. If we rewrite equation (3) as o5(X) = >_,_, fi,;(X)
then we can more simply write the full gradient in terms of f. Apply the chain
rule to see we will need to derive the partial gradient of the geodesic distance
function:

06(X;,X;) —cos¢;sing; —sing; cos ¢ cos(A; — Aj)

2 V= os? (5(X, X))
00(X;, X;) cosg;cospysin(A; — \j)
O\ B V/1—cos? (6(X;, X))

Unlike in Euclidean space, the gradient of the spherical distance function is

not symmetric, i.e., dggfj)fg) # —dgg;i"jj])'). Writing out the full gradient:

af 2wi,j(5(Xi, Xj) - dij) aé(g(;);xj), aé(gi;xj) k=1

(2% 85(X;:,X;) 96(X:, X, .

X, = 2wi’j(6(Xi,Xj)—dij) (E)d)j J), (8)\]- i) k=y (4)
0 otherwise

We can apply SGD to equation (3) by selecting pairs ¢,j in random order,
and updating X by X — 77?9};]: where 7 is the learning rate; see Algorithm 1.

We randomly initialize the placement of vertices uniformly on the sphere,
as other work has shown that SGD is consistent across initialization strate-

gies [1,28,42].

Algorithm 1 Stochastic gradient descent algorithm for spherical MDS

procedure STOCHASTIC GRADIENT DESCENT(d)
X <random initialization
while A(stress(X)) > e or max iterations is reached do
for (i,j) in random order do

X, +— X; — n‘f{i’? , according to (4)

X;+ X; — n%, according to (4)
end for !
end while
return X

end procedure

4 Evaluation

We first investigate the various parameters that effect SGD’s optimization, then
compare our results to exact gradient descent.

4.1 Hyper-parameters

There are several hyper-parameter choices to be made when using SGD. The
learning rate n (also known as step size, annealing rate) has a large effect on
the resulting embedding. If the learning rate is too large, the optimization will
“overstep” and either fluctuate around a minimum, or diverge. If the learning
rate is too small, the optimization may require many iterations to converge and
is more likely to converge to a local minimum. A better strategy is to employ
a learning rate schedule, where at early iterations the learning rate is large but
decreases over time to allow for convergence. This is known to converge to a

Average stress per iteration for learning rate schedules Average stress over benchmark graphs

— fixed —— Upper bound: 0.05

Piece-wise Upper bound: 0.1
0.09 —— Fractional —— Upper bound: 0.15
—— Fractional sqrt —— Upper bound: 0.2
—— Upper bound: 0.3

[10 20 30 40 50 60 0 10 20 30 40 50 60
Iteration Iteration

Fig. 6: (Left) Effect of the learning rate schedule on the optimization. The piece-
wise schedule adapted from [42] arrives at a minimum faster on average. (Right)
Effect of the upper bound on the learning rate on the optimization. An upper
bound of 0.1 behaves predictably. Values for both are averaged over all graphs
in our benchmark.

stationary point (could be a saddle) under certain conditions: Y g(t) = co and
> 9(t)* < oo [3].

We investigate a limited subset of possible learning rate schedules, a fixed
learning rate at 0.05, a piece-wise schedule similar to that of Zheng et al. [42], a
fractional decay of ©(t~!), and a slower fractional decay of ©(t~-?). The piece-
wise schedule begins with an exponential decay function, with large initial val-
ues and switches to ©(t~1) once below a threshold. There are a few changes we
needed to make to the piece-wise schedule. Firstly, while Zheng et al. [42] upper
bound their learning rate by 1, this upper bound is too large for SMDS. The up-
per bound for the Euclidean algorithm was derived from the geometric structure,
and a value of 1 reduces the stress between a single pair of vertices to 0. The
latitude and longitude of the sphere are angles and so do not have this property.
We instead need a relatively small upper bound, noting that large movements
of a pair vertices on the sphere that need to be moved apart can actually bring
them closer together (by wrapping around the sphere). We investigated values
in the range 0 to 1, and settled on 0.1 as it achieves low stress quickly while not
being so small as to fall into local minima; see Fig. 6.

Randomization is a to select pairs ¢,j in the stochastic optimization func-
tion. While SGD was originally done using sampling with replacement, random
reshuffling has been shown to converge in fewer total updates [15]. To use ran-
dom reshuffling in stress minimization, we enumerate all pairs i < j of vertices
in a ordered list and shuffle this list after every iteration. This ensures that the
order in which we visit pairs is random, but that each pair is visited before we
sample the same pair again.

A stopping condition is how the algorithm determines to terminate, either by
converging or by reaching a maximum number of iterations. We measure conver-
gence by tracking the change in the value of the optimization function between

iterations. In the figures and evaluation results below, we set the convergence
threshold to 1le~7 or a balance between speed and quality.

4.2 Evaluation

Our code is open source and written in Python. Experiments are performed on
an Intel®) Core™ i7-3770 CPU @ 3.40GHz x 8 with 32 GB of RAM with a 64
bit installation of Ubuntu 20.04.3 LTS.

We use a set of 40 graphs to evaluate our SMDS algorithm: 34 from the
SuiteSparse Matriz Collection [6] and the remaining 6 from skeletons of 3-
dimensional polytopes. We use the cube, dodecahedron, and isocahedron, and
subdivide them 4 times each to obtain cube_4, dodecahedron_4 and isocahe-
dron_4. We present spherical layouts of a subset of our benchmark graphs; see
Table 1. The remaining layouts can be found in the Appendix. We see that there
are several graphs particularly well suited to spherical layout: the 3D polytopes
and their subdivisions have much lower distortion on the sphere than in the
plane. 3-dimensional meshes and triangulations of surfaces such as dwt_307 and
delaunay_n10 also have lower error on the sphere.

The SGD optimization scheme performs better than exact GD on both time
to convergence and stress as the size of the data becomes large as we expect; see
Fig. 7.

5 Geometry Comparison

Here we discuss some possible drawbacks of graph embedding in spherical space
and compare graph embeddings between Euclidean, spherical and hyperbolic
spaces. Stress works well for producing layouts, but directly comparing stress
scores between geometries are difficult to interpret. Layouts are often uniformly
scaled so that stress is minimum before reporting (see [12,21]) which works fine
in Euclidean space, but becomes a problem in spherical and hyperbolic spaces.
In order to more fairly compare embedding error across geometries, we use the
distortion [28,37] metric, defined as

L o1 |0(Xs, X;5) — di
distortion(X) = (|‘2/‘) Z i, . (5)

i<j

5.1 Dilation of Distances

It is known that Euclidean MDS is invariant to dilation, that is if one multiplies
the given distances by a positive real number, the corresponding MDS solution is
the original MDS solution multiplied by the same scalar factor (up to rotation).
However, this is not true for spherical and hyperbolic spaces. Moreover, spherical
space is bounded, unlike Euclidean space. For example, on the 2D unit sphere
the maximum distance that can be achieved between two points is 7 (assuming
that between any two points we always take the shortest geodesic distance). Any

Table 1: Layouts
E-MDS SMDS E-MDS

/

"N ‘FE‘“\

can_73
can_96

rajat_11
besstk09

i
© ﬁ‘:
— [
g S
g g
o
S
~ <F
— I
3 4
b, e)
oD -~
Average time to convergence Average distortion
0.8
10001 —e— GD —o— oD
~e— SGD 071 —e— SGD
800 06
ﬁ 600 0.5
5
< 504
@]
E 4004 a 03
£ .34
02
200
0.1
o—o—o
0
0.0
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Number of data points Number of data points

Fig.7: How the SGD optimization scheme fairs compares to the exact GD in
terms of time (left) and error (right). The larger the size of the graph, the more
benefit is seen from the use of SGD.

graph with diameter (longest shortest path) longer than 7 cannot possibly be
embedded on the unit sphere with zero error. A reasonable solution is to dilate
the input distances so that all the given distances are less than or equal to 7.
That is, to multiply the distance matrix, d, by %"d. This heuristic appears to
work well in practice; see Fig. 9. For all of our experiments and layouts, we use
this heuristic. However, this has no guarantees of being optimal.

Scalar factor of cube graph Scalar factor of lattice graph Scalar factor of tree graph

— Euclidean MDS

— 5.
— Hyperbolic MDS

100 075 100 125 150 175 200 [1 2 3
scale factor scale factor scale factor

Fig. 8: Behavior of distortion on selected graphs with respect to dilation factor
in each geometry.

One possible approach to the dilation problem is to make the radius of the
sphere also a parameter to optimize. The problem would then become finding
the best radius so that the defined stress function is as small as possible. This
can be captured by reformulating Eq. (3) to also optimize the radius:

N
arg R,X1 ,Inl)?nesé ijZZI (R(J)]) ()

Here 6g(X;, X;) corresponds to the geodesic distance on the sphere with radius
R between points X; and X;. We derive the gradient for R and update it along
with the vertex positions at each update step.

To the best of our knowledge none of the existing algorithms for spherical
embedding consider this dilation/resizing problem. However, we believe that it
is a crucial parameter while embedding/drawing a graph on the sphere.

Cube Dodecahedron can_96

aaaaaaaaaaa

Fig.9: Effect of dilation on distortion. Our proposed heuristic (orange line) is
often very close to the minimum (of the blue curve).

5.2 Choosing Between Geometries

E-MDS SMDS HMDS
cube 021494 | 011287 | 0.28334

isocahedron 0.23256 0.03905 0.2612

dodecahedron 0.21762 0.04262 0.48258 Distortion comparison across graphs

dwt_72 012862 | 0.14406 | 0.20609

can_73 021831 | 020114 | 0.35937 e —— = Euclidean
lesmis 022548 | 0.25536 0.1959 Spherical
can_96 0.19802 0.11498 0.41292 isocahed | — = hyperbolic
rajatll 0.18752 | 020923 | 025801 | |, 0 ' \ss—

can_144 0.11089 | 0.07133 | 0.28803

can_161 018532 | 0.16809 | 0.26348 LUARER =

dwt_162 0.09281 | 0.08898 | 0.32336 can 73 ——

cube_4 020793 | 005715 | 0.54074

Jazz 0.24723 | 0.25819 | 0.23984 [CEulEy sy

dwt_221 0.08002 | 0.08593 | 0.50755 can_96

visbrazil 0.17988 | 0.20071 | 0.21925 L —

orid1_dual 0.17266 | 0.18365 | 0.47681 rajatil

grid17 0.10002 0.09049 0.28645 can_144 {m———

dwt_307 021835 | 0.11481 | 0.82275 can 161 [—

dwt_361 0.07689 | 0.08097 | 0.51507 -

netscience 0.17617 0.13067 0.38224 0.0 01 02 03 04 05
block_400 0.27969 | 0.27782 | 0.25253 Distortion

Fig. 10: The left subfigure shows a subset of results from the direct comparison
for distortion in Euclidean, spherical and hyperbolic space. The right subfigure
plots the first 10 rows. We note that 3D polytopes and meshes (the can graphs)
are particularly well suited to the sphere, the LesMis graph is a complex network
which is best embedded into hyperbolic space, and Euclidean space is better for
the remaining ones.

One reason to consider embedding graphs on different manifolds (Euclidean,
hyperbolic, spherical) is to be able to preserve and visualize important properties
of the given graph. Some graphs achieve lower distortion on the sphere, others
in hyperbolic space. In this section we investigate how spherical graph layouts
differ from other consistent geometries. We choose a selection of graphs from the
sparse matrix collection, and lay them each out using the Euclidean, spherical,
and hyperbolic variants of MDS and measure the distortion. We repeat the layout
5 times each, and report the average distortion for each graph in each geometry.
We make use of [42] for the Euclidean MDS implementation and [28] for the
hyperbolic MDS (HMDS) implementation.

The hypothesis we test here is that some graphs have a dramatically lower
distortion in a particular geometry. For instance, rectangular lattices can be
embedded with constant error in Euclidean space [40], regular 3D polytopes
can be thought of as tesselations of the sphere, and trees have been described
as “discrete hyperbolic spaces” [20]. The results are summarized in Fig. 10 with
additional data in Appendix B. We observe that spherical geometry is in fact able
to embed polytopes and 3D meshes with lower distortion. Further, hyperbolic
geometry is able to embed networks with “small-world” properties such as lesmis
and block_400 with lower distortion. In graphs with 2D structure, Euclidean
space is the clear winner.

Sampled from 2d spherical space Sampled from 2d Euclidean space sampled from 2d hyperbolic space

10t
of — wi] -

o125

Embedding space

yyyyy

%0 00
Number of data points

Fig.11: Results from sampling data uniformly at random from each consistent
geometry: as expected SMDS, MDS and HMDS perform dramatically better on
data that comes from the geometry it embeds in.

In Fig. 11 we go beyond graphs to verify the different nature of the three
geometries. We sample points randomly from each space, and use these points
to define the distance matrices. We expect the corresponding geometry’s MDS
to embed the data with much lower distortion and this is indeed the effect we
see.

6 Conclusions and Future Work

We described an efficient method for embedding graphs in spherical space. The
method generalizes beyond graphs to embedding high-dimensional data. We
studied (quantitatively and qualitatively) the difference between spherical em-
beddings of graphs and embeddings in Euclidean and hyperbolic spaces. We dis-
cussed the issue of dilation and proposed an approach that seems to work well
in practice. Furthermore, we compared how structures are preserved in different
geometries. The algorithm is implemented and fully functional and we provide
the source code, experimental data and results, and a web based visualization
tool on GitHub: https://github.com/Mickey253/spherical-mds.

While our proposed algorithm is much faster than exact gradient descent
(5 seconds for a 1000-vertex graph), it still requires an all-pairs-shortest-paths
computation as a preprocessing step, which cannot be done faster than quadratic
time in the number of vertices. This is a bottleneck computation for any graph-
distance based approach and coming up with a strategy (e.g., sampling a subset
of distances) is a problem whose solution can impact many existing algorithms.
Another direction for future work is to quickly determine the best embedding
space for a given graph. That is given a graph, decide the best manifold to embed
it in: Euclidean, spherical or hyperbolic. We considered stress and distortion
measures here, but exploring other graph drawing aesthetics across different
geometries seems to be a worthwhile direction to explore.

References

1. Borsig, K., Brandes, U., Pasztor, B.: Stochastic gradient descent works really well
for stress minimization. In: Graph Drawing and Network Visualization - 28th In-
ternational Symposium. vol. 12590, pp. 18-25. Springer (2020)

https://github.com/Mickey253/spherical-mds

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Pro-

ceedings of COMPSTAT 2010, pp. 177-186. Springer (2010)

Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of the
trade, pp. 421-436. Springer (2012)

Borner, K.: (2012), http://scimaps.org/home.html

Borner, K., Klavans, R., Patek, M., Zoss, A.M., Biberstine, J.R., Light, R.P., Lar-
iviere, V., Boyack, K.W.: Design and update of a classification system: The ucsd
map of science. PLOS ONE 7(7), 1-10 (07 2012)

Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1:1-1:25 (2011)

De Leeuw, J., Mair, P.: Multidimensional scaling using majorization: SMACOF in
R. Journal of statistical software 31, 1-30 (2009)

Du, F., Cao, N., Lin, Y., Xu, P., Tong, H.: iSphere: Focus+context sphere visu-
alization for interactive large graph exploration. In: Proceedings of the 2017 CHI
Conference on Human Factors in Computing. pp. 2916-2927. ACM (2017)

Elbaz, A.E., Keller, Y., Kimmel, R.: Texture mapping via spherical multi-
dimensional scaling. In: Scale Space and PDE Methods in Computer Vision. Lec-
ture Notes in Computer Science, vol. 3459, pp. 443-455. Springer (2005)
Eppstein, D.: Limitations on realistic hyperbolic graph drawing. In: Purchase,
H.C., Rutter, I. (eds.) Graph Drawing and Network Visualization - 29th Inter-
national Symposium, GD 2021, Tiibingen, Germany, September 14-17, 2021, Re-
vised Selected Papers. Lecture Notes in Computer Science, vol. 12868, pp. 343-357.
Springer (2021)

Frey, D., Pimentel, R.: Principal component analysis and factor analysis (1978)
Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE
Trans. Vis. Comput. Graph. 19(6), 927-940 (2013)

Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In:
International Symposium on Graph Drawing. pp. 239-250. Springer (2004)
Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization.
In: Graph Drawing, 12th International Symposium. Lecture Notes in Computer
Science, vol. 3383, pp. 239-250. Springer (2004)

Giirbilizbalaban, M., Ozdaglar, A., Parrilo, P.A.: Why random reshuffling beats
stochastic gradient descent. Mathematical Programming 186(1), 49-84 (2021)
Giinther, I.: (2007), https://world-processor.com

Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7-15 (1989)

Kobourov, S.: Force-directed drawing algorithms. In: Handbook on Graph Drawing
and Visualization, pp. 383-408. Chapman and Hall/CRC (2013)

Kobourov, S., Wampler, K.: Non-Euclidean spring embedders. IEEE Trans. Vis.
Comput. Graph. 11(6), 757-767 (2005)

Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A., Bogund, M.: Hyperbolic
geometry of complex networks. Physical Review E 82(3), 036106 (2010)

Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-sne. Comput. Graph. Forum 36(3), 283-294 (2017)

Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1-27 (1964)

Kwon, O., Muelder, C., Lee, K., Ma, K.: A study of layout, rendering, and interac-
tion methods for immersive graph visualization. IEEE Trans. Vis. Comput. Graph.
22(7), 1802-1815 (2016)

Lamping, J., Rao, R.: The hyperbolic browser: A focus + context technique for
visualizing large hierarchies. J. Vis. Lang. Comput. 7(1), 33-55 (1996)

http://scimaps.org/home.html
https://world-processor.com

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In: Human Factors in Computing Sys-
tems, CHI "95 Conference Proceedings. pp. 401-408. ACM /Addison-Wesley (1995)
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(11) (2008)

Mclnnes, L., Healy, J.: UMAP: uniform manifold approximation and projection
for dimension reduction. CoRR abs/1802.03426 (2018)

Miller, J., Kobourov, S., Huroyan, V.: Browser based hyperbolic visualization of
graphs. In: IEEE Pacific Visualization Symposium PacificVis. IEEE Computer
Society (2022)

Munzner, T.: H3: laying out large directed graphs in 3d hyperbolic space. In: IEEE
Symposium on Information Visualization. pp. 2-10. IEEE Computer Society (1997)
Munzner, T.: Exploring large graphs in 3d hyperbolic space. IEEE Computer
Graphics and Applications 18(4), 18-23 (1998)

Munzner, T.: Interactive visualization of large graphs and networks. Ph.D. thesis,
Stanford University (2000)

Munzner, T., Burchard, P.: Visualizing the structure of the world wide web in
3d hyperbolic space. In: Procedings of the 1995 Symposium on Virtual Reality
Modeling Language. pp. 33-38. ACM (1995)

Ontrup, J., Ritter, H.J.: Hyperbolic self-organizing maps for semantic navigation.
In: Advances in Neural Information Processing Systems 14. pp. 1417-1424. MIT
Press (2001)

Perry, S., Yin, M.S., Gray, K., Kobourov, S.: Drawing graphs on the sphere. In:
AVI ’20: International Conference on Advanced Visual Interfaces. pp. 17:1-17:9.
ACM (2020)

Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics pp. 400407 (1951)

Ruder, S.: An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747 (2016)

Sala, F., Sa, C.D., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embed-
dings. In: Proceedings of the 35th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 80, pp. 4457-4466. PMLR (2018)
Schulz, H.J.: Treevis.net: A tree visualization reference. IEEE Computer Graphics
and Applications 31(6), 11-15 (2011)

Shepard, R.N.: The analysis of proximities: multidimensional scaling with an un-
known distance function. i. Psychometrika 27(2), 125-140 (1962)

Verbeek, K., Suri, S.: Metric embedding, hyperbolic space, and social networks.
Comput. Geom. 59, 1-12 (2016)

Yang, Y., Jenny, B., Dwyer, T., Marriott, K., Chen, H., Cordeil, M.: Maps and
globes in virtual reality. Comput. Graph. Forum 37(3), 427-438 (2018)

Zheng, J.X., Pawar, S., Goodman, D.F.M.: Graph drawing by stochastic gradient
descent. IEEE Trans. Vis. Comput. Graph. 25(9), 2738-2748 (2019)

Zhu, M., Chen, W., Hu, Y., Hou, Y., Liu, L., Zhang, K.: DRGraph: An efficient
graph layout algorithm for large-scale graphs by dimensionality reduction. IEEE
Trans. Vis. Comput. Graph. 27(2), 1666-1676 (2021)

Appendix
A Additional Layouts
We present additional layouts on the Euclidean plane and

on the sphere.

Table 2: Layouts
E-MDS SMDS E-MDS SMDS

block_2000
sierpinski3d

CA-GrQc
EVA

3elt
us_powergrid

B Further geometry comparison

E-MDS SMDS HMDS
cube 0.21494 0.11287 0.28334
isocahedron 0.23256 0.03905 0.2612
dodecahedron 0.21762 0.04262 0.48258
dwt_72 0.12862 0.14406 0.20609
can_73 0.21831 0.20114 0.35937
lesmis 0.22548 0.25536 0.1959
can_96 0.19802 0.11498 0.41292
rajatll 0.18752 0.20923 0.25801
can_l144 0.11089 0.07133 0.28803
can_161 0.18532 0.16809 0.26348
dwt_162 0.09281 0.08898 0.32336
cube_4 0.20793 0.05715 0.54074
Jazz 0.24723 0.25819 0.23984
dwt_221 0.08002 0.08593 0.50755
visbrazil 0.17988 0.20071 0.21925
grid1_dual 0.17266 0.18365 0.47681
grid17 0.10002 0.09049 0.28645
dwt_307 0.21835 0.11481 0.82275
dwt_361 0.07689 0.08097 0.51507
netscience 0.17617 0.19067 0.38224
block_400 0.27969 0.27782 0.25253
dwt_419 0.08344 0.07366 0.2256
oscil_dcop_01 0.11012 0.13286 0.39312
can_445 0.20679 0.23389 0.5722
isocahedron_4 0.22784 0.1209 0.38979
dodecahedron_4 0.2085 0.05359 0.49488
494_bus 0.19466 0.21864 0.92698
dwt_918 0.10219 0.11721 0.3245
price_1000 0.23836 0.26118 0.52257
dwt_1005 0.10518 0.08336 0.79854
cage8 0.26613 0.27013 0.38178
delaunay_nl0 0.20124 0.13944 0.6588
bcsstk09 0.09826 0.13765 1.48744
fpga 0.22892 0.25561 0.45647
block_2000 0.29948 0.30314 0.27941
sierpinski3d 0.19641 0.2416 0.70151
CA-GrQc 0.27457 0.28748 0.48946
EVA 0.2416 0.26602 0.49428
3elt 0.14142 0.15756 0.85245
us_powergrid 0.17774 0.19339 0.78793

Fig. 12: Average distortion values on each graph for each geometry.

Table 3: Layouts

SMDS

SMDS

E-MDS

UOIPAYEIOSI

.

K B

CL™ P

[enp-pus

19€73Mp (N Gyy_ueo

E-MDS

aqno

UOIPIYBIIPOP

Pr

1%

SIIIS9|

[1ZeIgsiA

10€73Mp 90UAIISIOU 10-doop[19s0

Table 4: Layouts

SMDS

SMDS

E-MDS

816-3Mp

OTu Aeune[op

FUOIPSEIIPOP

E-MDS

Snqy6¥

0001 @oud

go3e0

PP ues

cOT mp

F UOIPATLDOSI

	Spherical Graph Drawing by Multi-dimensional Scaling

