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ABSTRACT

Classification margins are commonly used to estimate the generalization ability of machine learning
models. We present an empirical study of these margins in artificial neural networks. A global esti-
mate of margin size is usually used in the literature. In this work, we point out seldom considered
nuances regarding classification margins. Notably, we demonstrate that some types of training sam-
ples are modelled with consistently small margins while affecting generalization in different ways.
By showing a link with the minimum distance to a different-target sample and the remoteness of
samples from one another, we provide a plausible explanation for this observation. We support our
findings with an analysis of fully-connected networks trained on noise-corrupted MNIST data, as
well as convolutional networks trained on noise-corrupted CIFAR10 data.

1 Introduction

The study of artificial neural networks (ANNs) and their performance on unseen test data embodies many different
overlapping themes, such as capacity control [2], loss landscape geometry [3], information theoretical approaches
[4], and algorithmic stability [5]. Optimal classification margins remains a popular concept, showing both theoretical
support and empirical evidence of being related to generalization [6, 7]. Simply put, the classification margin of a
sample with regard to a specific model is the shortest distance the sample will need to move, in a given feature space,
in order to change the predicted output value. Hereafter, we refer to this concept as a margin. In the literature it is also
called ‘minimum distance to the boundary’ or ‘minimum adversarial perturbation’ [8], depending on context.

Large margins have long been used to indicate good generalization ability in classification models [9, 10]. The sup-
porting intuition is simple: With a larger margin, a sample can have more varied feature values (potentially due to
noise) while still being correctly classified. It is argued that overparameterized ANNs tend to find large margin solu-
tions [11, 12].

Recent studies of the relationship between margin and generalization typically measure the average margins over the
training set or some sampling thereof. In this work, we ask whether the margins of individual samples tend to reflect
this average behaviour. Specifically, we focus on ANN-based classification models and introduce controlled noise

This work is a preprint of a published paper by the same name [1], which it subsumes. This preprint is an extended ver-
sion: it contains additional empirical evidence (clean and input-corrupted CNN models) and additional discussion. The reduced,
authenticated version is available online at https://doi.org/10.1007/978-3-031-22321-1 6.

*Equal contribution.

ar
X

iv
:2

30
2.

06
92

5v
1 

 [
cs

.L
G

] 
 1

4 
Fe

b 
20

23

https://doi.org/10.1007/978-3-031-22321-1_6


THE MISSING MARGIN (A PREPRINT) - FEBRUARY 15, 2023

into the training process. Using different types of training sample corruption, we demonstrate a number of intricacies
related to input margins and their relation to generalization. Specifically, we contribute the following:

1. By using target and input noise, we point out local margin behaviour that is inconsistent with the global
average. We find that, while all margins have a strong tendency to increase, label- and input-corrupted sam-
ples maintain significantly smaller margins than uncorrupted samples. We also find that only on-manifold
corrupted samples (i.e. label corruption) noticeably affect the margins of clean samples.

2. We discuss the implications of these inconsistencies. Our findings suggest that using the average margins as
a metric is only fitting if the set of contributing samples has an equal level of diversity for all models being
compared.

3. We probe the underlying mechanisms that lead to these inconsistencies. We hypothesize that label-corrupted
samples have reduced margins because of their proximity to clean samples, and the input-corrupted samples
have smaller margins due to a lack of incentive to increase them.

Our choice of using noise is not arbitrary. Adding artificial noise to a training set and investigating the ability of
ANNs to generalize in spite of this corruption is a popular technique in empirical investigations of generalization.
A good example of success with such methods is the seminal paper by Zhang et al. [13], where it was shown that
overparameterized models can generalize in spite of having enough capacity to fit per-sample random noise such
as label corruption or randomized input features. Similar noise has been used extensively to experimentally probe
ANNs [14, 15, 16].

The rest of the paper is structured as follows: Section 2 describes related work on classification margins and generaliza-
tion. In Section 3 we define a margin and describe our exact method of measuring it. Following this, Section 4 presents
details on our experimental setup. The resulting margins, along with notable local inconsistencies, are presented and
discussed in Section 5. In the final section, we investigate the nature of these local inconsistencies, describing plausible
underlying mechanisms.

2 Related Work

Research on margins extends back much earlier than the advent of powerful ANNs. For example, the effect of margins
on generalization performance in linear models such as Support Vector Machines (SVMs) are well-studied [2]. An
inherent issue with extending this work to modern ANNs is that their decision boundaries are highly non-linear, high
dimensional, and contain high curvature.

Finding the closest boundary point to a given sample is often considered intractable, as such, some works opt to rather
estimate the margin [17, 6] or define bounds on these margins [18]. Elsayed et al. [19] derive a linear approximation
of the shortest distance to the decision boundary. This is then formulated as a penalty term which is used during
training to ensure that each sample has at least a specific (chosen hyperparameter) distance to the decision boundary,
for both the input space and hidden layers. Networks trained using this loss function exhibit greater adversarial sample
robustness, and better generalization when trained on data with noisy labels than networks trained using conventional
loss functions. Similarly, Jiang et al. [6] further utilize the same approximation to predict the generalization of a large
number of Convolutional Neural Networks (CNNs), by training a linear regression models on the margin distributions
of the existing models. However, it is shown in [20] that this approximation likely considerably underestimates the
true distance to the decision boundary.

Several authors [21, 20, 22] use a simple linear interpolation between two samples of different classes to find a point
on the decision boundary which separates them. This is however unlikely to result in a distance that is near the true
minimum. In a similar approximate fashion, Somepalli et al. [23] take the average of the distance in five random
directions around an input sample, where each directional-distance is calculated separately using a simple bisection
method.

Karimi et al. [21] introduce ‘DeepDIG’, an approach based on an auto-encoder that finds samples near the decision
boundary that are visually similar to the original training samples. However, this method does not specifically attempt
to find the nearest point on the decision boundary. Finally, Youzefsadeh and O’Leary [20] formulate finding the shortest
distance to the decision boundary of a given sample as a constrained optimization problem. While this method is
highly accurate, it is computationally very expensive, especially for high-dimensional data, e.g. natural images such
as MNIST [24] and CIFAR10 [25].

Similar to Youzefsadeh and O’Leary [20], in this work we find actual points in feature space. We have two reasons
for this: (a) simplified approximations might lead to misconceptions of the role margins play in a model’s ability to
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generalize, and (b) finding actual points inherently considers the non-linear intricacies in the function mapping. In
Section 3 we describe our selected method in detail.

3 Formulating the Classification Margin

In the previous section, we have given an overview of different methods of calculating the classification margin. We
opt to use the most precise method, which formulates the margin calculation as a non-linear constrained minimization
problem.

Let f : X → R|N | denote a classification model with a set N = {0, 1, ..., n} of output classes. For an input sample
x we search for a point x̂ on the decision boundary between classes i and j, where i is argmax(f(x)), with i, j ∈
N, j 6= i, and x̂ is the nearest point to x on the decision boundary. Formally, for some distance function dist, we find
x̂ by solving the following constrained minimization problem (CMP):

min
x̂
dist(x, x̂) (1)

such that
f(x̂)[i] = f(x̂)[j] (2)

for the ith and jth output node, respectively. Finding a point that meets the condition defined in Eq. 2 exactly, is
virtually impossible. In practice, a threshold is used, so that a point is considered valid (on the decision boundary) if
|f(x̂)[i]− f(x̂)[j]| ≤ 10−3. In order to find the nearest point on the decision boundary for all j, we search over each
class j 6= i separately for each sample and choose the one with the smallest distance. As is convention for margin
measurements [20, 23], we use Euclidean distance* as metric, meaning the margin is given by:

dist(x, x̂) = |x− x̂|2 (3)

In order to solve each CMP, we make use of the augmented Lagrangian method [26], using the conservative convex
separable approximation quadratic (CCSAQ) optimizer [27] for each unconstrained optimization step, implemented
with the NLOpt (non-linear optimization) library [28] in Python.

While it is possible to extend the nearest boundary optimization to the hidden layers, it is difficult to compare models
with layers of varying dimensionality. Additionally, hidden layer margins can be manipulated and require some form
of normalization [6]. As such, we limit our analysis to input-space margins.

4 Experimental Setup

In order to investigate how sample corruption affects margin measurements, we train several networks of increasing
capacity to the point of interpolation (close to zero train error) on the widely used classification datasets MNIST [24]
and CIFAR10 [25]. ‘Toy problems’ such as these are used extensively to probe generalization [15, 23, 13]. We corrupt
the training data of some models using two types of noise, defined in Section 4.1, separately. Capacity and general-
ization are strongly linked. In the overparameterized regime we expect generalization to improve systematically with
an increase in capacity and a corresponding increase in average margins. This setup allows us to determine whether
expected behaviour is consistent across all samples.

4.1 Controlled Noise

We use two specific types of noise, inspired by Zhang et al. [13]: Label corruption and Gaussian input corruption.
These have been designed to represent two complications that are often found in real world data and could affect the
generalization of a model fitted to them. Label corruption represents noise that comes from mislabeled training data
(mislabeling is common in large real-world datasets and even in benchmark datasets [29]), inter-class overlap, and
general low separability of the underlying class manifolds.

Gaussian input corruption, on the other hand, represents extreme examples of out-of-distribution samples. These are
‘off-manifold’ samples displaying a high level of randomness. Such samples do not necessarily obscure the true un-
derlying data distribution, but still require a significant amount of capacity to fit the excessive complexity that needs
to be approximated when fitting samples with few common patterns.

Given a training sample (x, c) where x ∈ Rd and c ∈ N for a set of classes N , the corruption of a sample can be
defined as follows:

*In practice, we optimize for the squared Euclidean distance in order to reduce the computational cost of gradient calculations,
but report on the unsquared distance in all cases.
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• Label corruption: (x, c)→ (x, ĉ) where ĉ 6= c, ĉ ∈ N .

• Gaussian input corruption: (x, c)→ (g, c) where g ∈ Rd and each value in g is sampled from N(µx, σx).

Alternative labels are selected at random and N(µx, σx) is a normal distribution, with µx and σx the mean and standard
deviation of all the features in the original sample x. Henceforth, we will drop the ‘Gaussian’ when referring to
‘Gaussian input corruption’.

4.2 MNIST Models

For the MNIST dataset, we train three distinct sets of Multilayer Perceptrons (MLPs), with each set containing models
of identical depth and identically varied width:

• MNIST: A set of clean MNIST models. These serve as baselines, showing the level of generalization and
margin sizes to be expected should the models not have been trained on any corrupted data.

• MNISTlc (MNIST-label-corrupted): Models with the same capacities as the previous set, but where 20% of
the training set is label corrupted.

• MNISTgic (MNIST-Gaussian-input-corrupted): Models with the same capacities as the clean models, how-
ever, 20% of the training set is input corrupted.

All models for these tasks have the following hyperparameters in common. They use a 55 000/5 000 train-validation
split of the training data. They are all single hidden layer ReLU-activated MLPs with widths ranging from 100 to
10 000 hidden layer nodes, and a single bias node. Stochastic gradient descent (including momentum terms) is used
to minimize the cross-entropy loss on mini-batches of size 64 selected at random. The initial learning rate is set to
0.01 and then multiplied by 0.99 every 5 epochs. For each set, we train three random initializations. Note that we
train the MNISTlc models for 1 000 epochs and models from the other two sets for 100 epochs. This is because the
label-corrupted dataset required more epochs to interpolate.

The resulting generalization ability of all three sets are depicted in Fig. 1 (left). Note that, as expected for all three
tasks, with more capacity we see an improvement in validation set performance. Also note that only the label corruption
results in any significant reduction in validation performance, as also previously reported in [16].

4.3 CIFAR10 Models

We also replicate the MNIST experiments using CNNs trained on the CIFAR10 dataset, with 10% corruption (where
applicable). We use a similar architecture to the ‘standard’ CNN used by Nakkiran et al. [15]. Each CNN consists of
four ReLU-activated convolutional layers, with [k, 2k, 4k, 8k] output channels respectively, where we choose various
values of k between 10 and 64 to create a group of models with varying capacity. Each model also includes max and

Figure 1: Validation error for MNIST models (left) and CIFAR10 models (right). Values are averaged over three
random seeds and shaded areas indicate standard deviation. Note that all models interpolated except for the smallest
two capacities for MNISTlc and CIFAR10lc. The maximum train error (across all models) was 0.0573.
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average pooling layers, and a final fully connected layer of 400 nodes. The three sets of CIFAR10 models CIFAR10,
CIFAR10lc, and CIFAR10gic, refer to clean, label-corrupted, and input-corrupted models, respectively.

All models are trained on a 45 000/5 000 train-validation split of the CIFAR10 dataset. These models are trained
for 500 epochs in order to minimize a cross-entropy loss function on mini-batches of 256 samples using the Adam
optimizer. The initial learning rate of 0.001 is multiplied by 0.99 every 10 epochs. Three initialization seeds are used.
From the relevant validation errors in Fig. 1 (right), we again observe that more capacity is accompanied by better
generalization performance.

4.4 Terminology

When describing margin behaviour, we refer to different subselections of margins based on the type of sample (clean
or corrupted) as well as the type of model. To prevent confusion, we always refer to these subselections using a name
constructed from the type of sample and then the type of model, separated by a colon, as shown in Table. 1. For
example, if we are referring to the margins for the uncorrupted samples with regard to a label-corrupted model we will
refer to them as the clean:label-corrupted margins.

Table 1: Sample corruption terminology.

clean samples corrupt samples overall samples
clean model clean:clean N/a overall:clean

label-
corrupted

model
clean:label-corrupted corrupt:label-corrupted overall:label-corrupted

input-
corrupted

model
clean:input-corrupted corrupt:input-corrupted overall:input-corrupted

5 Results

We calculate the margins for 10 000 randomly selected training samples, for all of the models defined in Section 4,
using the method described in Section 3. Only correctly classified samples are considered. This amounts to solving
11 capacities × 3 random seeds × 3 datasets × 9 class pairs × 10k samples = 8 910k individual CMPs for both the
MNIST and CIFAR10 models. In order to solve such a large number of CMPs we utilize 240 CPU cores split over
10 servers, by making use of GNU-Parallel [30]. Next, we investigate the central tendencies of the clean and corrupt
samples separately, as capacity increases (Section 5.1) and discuss possible implications of our observations (Section
5.2).

5.1 Local Inconsistencies

Fig. 2 shows the mean margins as a function of model capacity. We note that expected margins tend to increase along
with capacity, in all cases for all types of samples. This is consistent with what we expect when using margins as an
indicator of generalization.

However, we see that noise-corrupted and clean data demonstrate different tendencies: we see that margins for both
corrupt:label-corrupted and corrupt:input-corrupted samples tend to be significantly smaller than for the clean sam-
ples in the same models at the same capacity. Furthermore, we observe that the clean:clean and clean:input-corrupted
margins are similar, especially at higher capacities, while clean:label-corrupted margins are seen to be significantly
smaller.

It is interesting that the average margins, measured on CIFAR10, are smaller than the MNIST ones. The CIFAR10
features contain 3 072 dimensions and MNIST only 784. We expect Euclidean distance in higher dimensions to be
larger. We suspect that the reason for this contradiction is a large degree of inherent inter-class overlap in CIFAR10
that results in the observed small margins.

Another discrepancy between the MNIST and CIFAR10 results is that the corrupt:input-corrupted margins for CI-
FAR10 models are comparable to the corrupt:label-corrupted margins. For MNIST the corrupt:input-corrupted mar-
gins are significantly larger than the corrupt:label-corrupted margins. This observation is important to note when we
take a deeper look at the underlying mechanisms (in Section 6).

5
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Figure 2: Mean margins for MNIST models (left) and CIFAR10 models (right).

Next, we look at the distributions of margins underlying the means in Fig. 2. These results are shown in Fig. 3. We
construct histograms of the margins measured at each capacity. These histograms share a common set of bins on the
horizontal axes.

We see that most of these distributions are right-skewed distributions with a long tail containing relatively large mar-
gins. This indicates that the mean might be a slightly overestimated measure of the central tendency of margins. The
margins for the CIFAR10lc (right-middle) set show similar trends to that of the MNISTlc set (left-middle), but the
distributions are even more right-skewed, indicating that their central tendencies are even smaller than the means in
Fig. 2 (right) suggest.

We also see that the corrupt:input-corrupted margin distributions of the MNISTgic set (left-bottom) are normally
distributed with a relatively low variance, compared to the other distributions. This suggests that all models are con-
structing similar decision boundaries around corrupt:input-corrupted samples. There is not much diversity in how
far samples tend to be from their nearest boundary. The corrupt:label-corrupted margins for the MNISTlc set (left-
middle), on the other hand, show much higher diversity. The shape of the distribution changes drastically as capacity
increases. At the critically small capacities we see a distribution resembling the corrupt:input-corrupted margin dis-
tributions and at higher capacities some corrupt:label-corrupted samples obtain almost outlying small margins.

5.2 Discussion

We notice a few key inconsistencies regarding the use of a global average margin as an indicator of the extent to which
a model separates samples by means of a decision boundary:

1. Samples that are on-manifold, but problematic in terms of their class separability (of which label-corrupted
samples are extreme examples) have much lower margins than the global mean would suggest.

2. Samples that are off-manifold and remote (of which the input-corrupted samples are extreme examples) also
have much smaller margins, even though these samples do not affect the generalization ability of the model
significantly.

3. In general, the margin distributions are not normally distributed. A mean might be skewed by the fact that the
margin distributions have long tails containing extremely large margins values.

Given these inconsistencies, we can ask whether the global average margin metrics, which are often used to predict or
promote generalization, are sound. It seems that the corrupted margins tend to increase in proportion with the clean
margins (see Fig. 2). Assuming the models to be compared fitted exactly the same training samples, this implies that
an average margin will only work if the two models for which margins are being compared contain an approximately
equal number of samples with these distinct locally inconsistent margin behaviours. If a small set of samples are
averaged over, this could become a problem. If the models to be compared have varying training set performance or
were not trained on exactly the same training set this could become an even more significant problem.

It can also be argued that margin-based generalization predictors are more sensitive to off-manifold noise than to
on-manifold noise. That is because the small corrupt:label-corrupted margins rightly indicate the poor generaliza-
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Figure 3: Margin distributions for MNIST models (left) and CIFAR10 models (right) trained on clean (top), label-
corrupted (middle) and input-corrupted (bottom) train sets. Within each plot, from top to bottom, distributions are
ordered by ascending model size. The relevant capacity metric is shown on the right. Green and red distributions are
constructed from clean and corrupted samples, respectively.

tion of label-corrupted models. However, the small corrupt:input-corrupted margins erroneously also indicate poor
generalization.
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6 A Deeper Look

Now that we have discussed the observed inconsistencies and their possible implications, we explore the origin of these
inconsistencies further. We do this by posing three concrete questions based on the results in the previous section. After
each question, we propose possible answers, producing additional measurements where these can shed light on the
underlying phenomena.

(1) Why are the overall:label-corrupted margins so small? We note that label corruption is expected to result in
many samples that have different targets while being close to each other in the input space. One can think of a sample’s
minimum distance to another sample with a different target as its absolute maximum possible margin since a boundary
needs to be drawn between them, assuming both have been correctly classified during training. We propose that this is
the main factor contributing to the small overall:label-corrupted margins.

To test this hypothesis, we randomly select 10 000 training samples from the data that the models in the MNISTlc and
CIFAR10lc sets are trained on. We then measure the ‘maximum margin’ as the minimum Euclidean distance between
each sample (x1, c1) and its nearest neighbour (x2, c2) (selected from the entire train set) so that:

min
x2

|x1 − x2|2, c1 6= c2 (4)

We do this before and after the data is label corrupted. We then construct a scatter plot of these 10 000 training samples
with the distance as measured with the original targets on the horizontal axis and the potentially corrupted targets on
the vertical axis. The resulting scatter plots are shown in Fig. 4. All samples below the provided identity function line
had their max margin reduced due to label corruption. Note that, as expected, the presence of label corruption causes
many samples, corrupted and clean, to have drastically reduced upper bounds to their margins.

Figure 4: Maximum margins before vs. after label corruption for MNISTlc (left) and CIFAR10lc (right). Green points
represent clean samples and red points represent corrupt samples. The dashed line indicates y = x.

If our hypothesis is true then the smallest margins should correspond to the clean:label-corrupted and corrupt:label-
corrupted samples that are the closest to each other in the input space. We confirm this by constructing a Eu-
clidean distance matrix comparing the 1 000 clean:label-corrupted samples with the smallest margins and the 1 000
corrupt:label-corrupted samples with the smallest margins for one of the biggest models from the MNISTlc set. This
is presented in Fig. 5.

Note that it is the samples that are relatively close to each other that tend to have the smallest margins. From these re-
sults we conclude that a significant factor leading to the small margins observed in label-corrupted models, is the prox-
imity (in the input space) of samples with different targets. This also accounts for the observation that corrupt:label-
corrupted margins tend to be smaller than clean:label-corrupted margins. There are more clean:label-corrupted sam-
ples than corrupt:label-corrupted samples. Therefore, fewer clean samples are moved closer to a different target
sample. The result is that fewer clean:label-corrupted margins are reduced.

We performed the same analysis on one of the largest CIFAR10lc models in Fig. 6. Note that the phenomenon is less
clear here, but this is to be expected when considering the relatively few samples that have had their maximum margins
reduced significantly in the CIFAR10 case, see Fig. 4 (right).
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Figure 5: Euclidean distance between 1 000 clean:label-corrupted and 1 000 corrupt:label-corrupted samples with
the smallest margins for a 1 × 10 000 model MNISTlc. Entries in the dissimilarity matrix are ordered by corruption
status first, then by margin size. See the corresponding margins in the axis plots for the exact margins. Red curves refer
to corrupted margins and green curves refer to clean margins.

(2) Why are the corrupt:input-corrupted margins smaller than the clean:input-corrupted margins? To determine
whether a similar phenomenon is reducing the corrupt:input-corrupted margins we generate a similar scatter plot to
Fig. 4 but for the MNISTgic and CIFAR10gic sets. This is seen in Fig. 7. In contrast to the overall:label-corrupted
samples we see that virtually all overall:input-corrupted samples have either increased or unchanged maximum mar-
gins. Strikingly, the corrupt:input-corrupted samples, for the MNISTgic set, have extremely high maximum margins.

This is an apparent contradiction. If the proximity of different-target samples reduces the average margin and
corrupt:input-corrupted samples are extremely distant, at least in the MNISTgic case, from any other sample (mini-
mum of 10 in Fig. 7), why are corrupt:input-corrupted margins small? And why are clean:input-corrupted margins
slightly smaller than clean:clean margins, when they have slightly larger maximum margins?

Regrettably, we do not have as strong an argument for the inconsistency regarding input-corrupted samples as we do for
label corruption. We speculate that the relatively small corrupt:input-corrupted margins are a result of the remoteness
of these samples. They are so far off manifold and far from each other that there is little incentive to increase their
respective margins beyond a certain model-specific maximum. The previously-mentioned lack of variance in margins
we observe for corrupt:input-corrupted margins in Fig. 3 supports this notion.

With regards to the CIFAR10gic maximum margins, Fig. 7 (right), we observe that the corrupt:input-corrupted sam-
ples do not undergo such a drastic increase in maximum margin after input corruption. Consequently, we deduce
that they are not as remote (and off manifold) as their MNIST counterparts. This deduction is consistent with two
observations we made earlier:

9
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Figure 6: Euclidean distance between 1 000 clean:label-corrupted and 1 000 corrupt:label-corrupted samples with
the smallest margins for a k = 64 model CIFAR10lc. Entries in the dissimilarity matrix are ordered by corruption
status first, then by margin size. See the corresponding margins in the axis plots for the exact margins. Red curves refer
to corrupted margins and green curves refer to clean margins.

• (See Fig. 1): CIFAR10gic models achieve a noticeably worse generalization ability than CIFAR10 models.
This is in contrast to the effect of input corruption in the MNIST models.

• (See Fig. 2): For the CIFAR10 models, corrupt:input-corrupted margins are similar to corrupt:label-
corrupted margins, again in contrast to corresponding MNIST models.

(3) Why are clean:input-corrupted margins smaller than clean:clean margins? Without the corrupt:input-
corrupted samples in close proximity to the clean:input-corrupted samples we might expect them to have similar
margins to clean:clean, across all capacities. However, we see that they tend to be slightly smaller. We hypothesize
that this is a result of the capacity it requires to fit corrupt:input-corrupted samples. It is known that these samples
are fitted later and require more capacity than clean samples [31, 16], and that margins tend to increase with capacity.
It is then reasonable to conclude that the lack of clean:input-corrupted margin size is a result of the lack of available
capacity. This idea is supported by Fig. 2 (left), where we observe that the difference between average clean:clean
margins and average clean:input-corrupted margins decreases with added capacity, and disappears completely when
models become large enough.

What is the takeaway? To summarize, there seems to be two main mechanisms contributing to the observed local
inconsistencies in margin behaviour.

10
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Figure 7: Maximum margins before vs. after corruption for MNISTgic (left) and CIFAR10gic (right). Green points
represent clean samples and red points represent corrupt samples. The dashed line indicates y = x.

1. Samples that are very close to different-target samples will inevitably have reduced margins. This kind of
reduced margin is indicative of poor generalization because it is very likely to pertain to in-distribution and
on-manifold regions of feature space that are difficult to model.

2. Samples that are extremely remote, being very distant from any other sample, will also obtain reduced mar-
gins, due to a lack of incentive to increase them. This kind of reduced margin is not indicative of poor
generalization because it is likely to pertain to out-of-distribution and off-manifold regions of feature space.

7 Conclusion

In this work we show that some training samples are consistently modeled with small margins while affecting general-
ization in different ways. Specifically, we find that samples representing on-manifold corruption (e.g. label corruption)
and off-manifold corruption (e.g. Gaussian input corruption) both have margins that are smaller than those of uncor-
rupted training samples, though only the presence of the former significantly affects generalization.

This is a novel observation of a phenomenon that will require consideration if margins are used in methods to predict
generalization of ANNs. We use label and Gaussian input corruption as tools but hypothesize that similar behaviour
is possible in natural datasets that contain significant inter-class overlap in the input space, or a large portion of
off-manifold samples, respectively. We conclude that a global average margin will be more useful in predicting gen-
eralization if it considers these local inconsistencies, or contains an equal proportion of these kinds of samples for all
models being compared.

In addition to providing a precise comparison of the way in which different types of margins change with increased
capacity, we explore some of the possible reasons for the behaviour observed. Specifically, we find that the reduced
margins accompanying label corruption (i.e. on-manifold corruption) are a result of the maximum margin (closest
sample of a different class) being reduced by label corruption, for a large portion of the train set. For input corruption
(i.e. off-manifold corruption), we speculate that the reduced margins come from a lack of incentive to increase these
margins, since the input-corrupted samples are remote from other training samples.

These are hypotheses that we will be investigating further in future work. We also plan to extend this work to hidden
layers, as hidden layer margins have been shown to similarly relate to generalization behaviour [7, 6]. Additionally,
a more concrete understanding of the influence (or lack thereof) off-manifold samples have on the margins of on-
manifold samples will be useful.
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