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Abstract. Bayesian networks (BNs) are a probabilistic graphical model
widely used for representing expert knowledge and reasoning under un-
certainty. Traditionally, they are based on directed acyclic graphs that
capture dependencies between random variables. However, directed cy-
cles can naturally arise when cross-dependencies between random vari-
ables exist, e.g., for modeling feedback loops. Existing methods to deal
with such cross-dependencies usually rely on reductions to BNs without
cycles. These approaches are fragile to generalize, since their justifica-
tions are intermingled with additional knowledge about the application
context. In this paper, we present a foundational study regarding seman-
tics for cyclic BNs that are generic and conservatively extend the cycle-
free setting. First, we propose constraint-based semantics that specify
requirements for full joint distributions over a BN to be consistent with
the local conditional probabilities and independencies. Second, two kinds
of limit semantics that formalize infinite unfolding approaches are intro-
duced and shown to be computable by a Markov chain construction.

1 Introduction

A Bayesian network (BN) is a probabilistic graphical model representing a set of
random variables and their conditional dependencies. BNs are ubiquitous across
many fields where reasoning under uncertainties is of interest [10]. Specifically,
a BN is a directed acyclic graph with the random variables as nodes and edges
manifesting conditional dependencies, quantified by conditional probability ta-
bles (CPTs). The probability of any random variable can then be deduced by
the CPT entries along all its predecessors. Here, these probabilities are indepen-
dent of all variables that are no (direct or transitive) predecessors in the graph.
Acyclicity is hence crucial and commonly assumed to be rooted in some sort of
causality [23]. A classical use of BNs is in expert systems [22] where BNs ag-
gregate statistical data obtained by several independent studies. In the medical
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X

Y X=T X=F

F s1 1 − s1

T s2 1 − s2

Y

X Y=T Y=F

F t1 1 − t1

T t2 1 − t2

Fig. 1: A cyclic GBN with CPTs for X and Y

domain, e.g., they can capture the correlation of certain symptoms, diseases, and
human factors [11,15,26].

Imagine for instance an expert system for supporting diagnosis of Covid-
19, harvesting multiple clinical studies. One study might have investigated the
percentage of patients who have been diagnosed with fever also having Covid-
19, while another study in turn might have investigated among the Covid-19
patients whether they have fever, too. Clearly, both studies investigate the de-
pendency between fever and Covid-19, but under different conditions. Fever may
weaken the immune system and could increase the risk of a Covid-19 infection,
while Covid-19 itself has fever as a symptom. In case there is uniform knowledge
about “which symptom was first” in each of the constituent studies, then dy-
namic Bayesian networks (DBNs) [19] could be used as a model for the expert
system, breaking the interdependence of fever and Covid-19 through a prece-
dence relation. However, this implies either to rely only on studies where these
temporal dependencies are clearly identified or to introduce an artificial notion
of time that might lead to spurious results [18]. A naive encoding into the BN
framework always yields a graph structure that contains cycles, as is the case in
our small example shown in Fig. 1 whereX and Y stand for the random variables
of diagnosing Covid-19 and fever, respectively.

That cycles might be unavoidable has already been observed in seminal pa-
pers such as [22,15]. But acyclicity is crucial for computing the joint probability
distribution of a BN, and thereby is a prerequisite for, e.g., routine inference
tasks. Existing literature that considers cycles in BNs mainly recommends re-
ducing questions on the probability values to properties in acyclic BNs. For
instance, in [11] nodes are collapsed towards removing cycles, while [22] suggests
to condition on each value combination on a cycle, generating a decomposition
into tree-like BNs and then averaging over the results to replace cycles. Some-
times, application-specific methods that restructure the cyclic BN towards an
acyclic BN by introducing additional nodes [26,8] or by unrolling cycles up to a
bounded depth [17,2] have been reported to give satisfactory results. Other ap-
proaches either remove edges that have less influence or reverse edges on cycles
(see, e.g., [10]). However, such approaches are highly application dependent and
hinge on knowledge about the context of the statistical data used to construct
the BN. Furthermore, as already pointed out by [30], they usually reduce the
solution space of families of joint distributions to a single one, or introduce so-
lutions not consistent with the CPTs of the original cyclic BN. While obviously
many practitioners have stumbled on the problem how to treat cycles in BNs
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and on the foundational question “What is the meaning of a cyclic BN?”, there
is very little work on the foundations of Bayesian reasoning with cycles.

In this paper, we approach this question by presenting general semantics for
BNs with cycles, together with algorithms to compute families of joint distri-
butions for such BNs. First, we investigate how the two main constituents of
classical BNs, namely consistency with the CPTs and independencies induced
by the graph structure, influence the joint distributions in the presence of cycles.
This leads to constraints semantics for cyclic BNs that comprise all those joint
distributions respecting the constraints, being either a single uniquely defined
one, none, or infinitely many distributions. Second, we present semantics that
formalize unfolding approaches and depend on the choice of a cutset, a set of
random variables that break every cycle in a cyclic BN. Intuitively, such cutsets
form the seams along which feedback loops can be unraveled. These semantics
are defined in terms of the limit (or limit average) of a sequence of distribu-
tions at descending levels in the infinite unfolding of the BN. We show that
the same semantics can be defined using a Markov chain construction and sub-
sequent long-run frequency analysis, which enables both precise computation
of the semantics and deep insights in the semantics’ behavior. Among others,
an immediate result is that the family of distributions induced with respect to
the limit semantics is always non-empty. As we will argue, the limit semantics
have obvious relations to a manifold of approaches that have appeared in the
literature, yet they have not been spelled out and studied explicitly.

1.1 Notation

Let V be a set of Boolean random variables4 over the domain B = {F, T}. We
usually denote elements of V by X , Y, or Z. An assignment over V is a function
b : V → B which we may specify through set notation, e.g., b = {X=T, Y=F} for
b(X) = T and b(Y ) = F, or even more succinctly as XY . The set of all possible
assignments over V is denoted by Asg(V). We write bU for the restriction of b to a
subset U ⊆ V , e.g., b{X} = {X=T}, and may omit set braces, e.g., bX,Y = b{X,Y }.

A distribution over a set S is a function µ : S → [0, 1] where
∑

s∈S µ(s) = 1.
The set of all distributions over S is denoted by Dist(S). For |S| = n, µ will
occasionally be represented as a vector of size n for some fixed order on S. In
the following, we are mainly concerned with distributions over assignments, that
is distributions µ ∈ Dist(Asg(V)) for some set of random variables V . Each
such distribution µ induces a probability measure (also called µ) on 2Asg(V).
Thus, for a set of assignments φ ⊆ Asg(V), we have µ(φ) =

∑

b∈φ µ(b). We
are often interested in the probability of a partial assignment d ∈ Asg(U) on a
subset U ( V of variables, which is given as the probability of the set of all full

4 We use Boolean random variables for simplicity of representation, an extension of
the proposed semantics over random variables with arbitrary finite state spaces is
certainly possible.
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assignments b ∈ Asg(V) that agree with d on U . As a shorthand, we define

µ(d) := µ
(
{b ∈ Asg(V) : bU = d}

)
=

∑

b∈Asg(V)
s.t. bU=d

µ(b).

The special case µ(X=T) is called themarginal probability ofX . The restriction of
µ ∈ Dist(Asg(V)) to U , denoted µ|U ∈ Dist(Asg(U)), is given by µ|U (d) := µ(d).
For a set W disjoint from V and ν ∈ Dist(Asg(W)), the product distribution of
µ and ν is given by (µ ⊗ ν)(c) := µ(cV) · ν(cW) for every c ∈ Asg(V ∪W). µ is
called a Dirac distribution if µ(b) = 1 for some assignment b ∈ Asg(V) and thus
µ(c) = 0 for all other assignments c 6= b. A Dirac distribution derived from a
given assignment b is denoted by Dirac(b).

Graph Notations. For a graph G = 〈V , E〉 with nodes V and directed edges
E ⊆ V × V , we may represent an edge (X,Y ) ∈ E as X → Y if E is clear from
context. Pre(X) := {Y ∈ V : Y → X} denotes the set of parents of a node X∈ V ,
and Post∗(X) := {Y ∈ V : X → · · · → Y } is the set of nodes reachable from
X . A node X is called initial if Pre(X) = ∅, and Init(G) is the set of all nodes
initial in G. A graph G is strongly connected if each node in V is reachable from
every other node. A set of nodes D is a strongly connected component (SCC) of
G if all nodes in D can reach each other and D is not contained in another SCC,
and a bottom SCC (BSCC) if no node in V \ D can be reached from D.

Markov Chains. A discrete-time Markov chain (DTMC) is a tupleM = 〈S,P〉
where S is a finite set of states and P : S × S → [0, 1] a function such that
P(s, ·) ∈ Dist(S) for all states s ∈ S. The underlying graph GM = 〈S, E〉 is
defined by E = {(s, t) ∈ S × S : P(s, t) > 0}. The transient distribution πι

n ∈
Dist(S) at step n is defined through the probability πι

n(s) to be in state s after
n steps if starting with initial state distribution ι. It satisfies (in matrix-vector
notation) πι

n = ι ·Pn. We are also interested in the long-run frequency of state
occupancies when n tends to infinity, defined as the Cesàro limit lrfι : S → [0, 1]:

lrfι(s) := lim
n→∞

1

n+ 1

n∑

i=0

πι
n(s). (LRF)

This limit always exists and corresponds to the long-run fraction of time spent
in each state [12]. The limit probability limn→∞ πι

n is arguably more intuitive as
a measure of the long-run behavior, but may not exist (due to periodicity). In
case of existence, it agrees with the Cesàro limit lrfι. If GM forms an SCC, the
limit is independent of the choice of ι and the superscript can be dropped. We
denote this limit by lrfM.

2 Generalized Bayesian Networks

We introduce generalized Bayesian networks (GBNs) as a BN model that does
not impose acyclicity and comes with a distribution over initial nodes.
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Definition 1 (Generalized BN). A GBN B is a tuple 〈G,P , ι〉 where
– G = 〈V , E〉 is a directed graph with nodes V and an edge relation E ⊆ V ×V,
– P is a function that maps all non-initial nodes X ∈ V\Init(G) paired with

each of their parent assignments b ∈ Asg(Pre(X)) to a distribution

P(X, b) : Asg
(
{X}

)
→ [0, 1],

– ι is a distribution over the assignments for the initial nodes Init(G), i.e.,
ι ∈ Dist

(
Asg(Init(G))

)
.

The distributions P(X, b) have the same role as the entries in a conditional
probability table (CPT) for X in classical BNs: they specify the probability for
X=T or X=F depending on the assignments of the predecessors of X . To this
end, for X ∈ V\Init(G) and b ∈ Asg(Pre(X)), we also write Pr(X=T | b) for
P(X, b)(X=T). In the literature, initial nodes are often assigned a marginal prob-
ability via a CPT as well, assuming independence of all initial nodes. Differently,
in our definition of GBNs, it is possible to specify an arbitrary distribution ι over
all initial nodes. If needed, P can be easily extended to initial nodes by setting
P(X,∅) := ι|{X} for all X ∈ Init(G). Hence, classical BNs arise as a special
instance of GBNs where the graph G is acyclic and initial nodes are pairwise
independent. In that case, the CPTs given by P are a compact representation of
a single unique full joint distribution distBN(B) over all random variables X∈ V .
For every assignment b ∈ Asg(V), we can compute distBN(B)(b) by the so-called
chain rule:

distBN(B)(b) := ι
(
bInit(G)

)
·
∏

X∈V\Init(G)

Pr
(
bX | bPre(X)

)
. (CR)

In light of the semantics introduced later on, we define the standard BN-semantics
of an acyclic GBN B as the set JBKBN := {distBN(B)}, and JBKBN := ∅ if B con-
tains cycles.

The distribution distBN(B) satisfies two crucial properties: First, it is con-
sistent with the CPT entries given by P and the distribution ι, and second, it
observes the independencies encoded in the graph G. In fact, those two properties
are sufficient to uniquely characterize distBN(B). We briefly review the notion of
independence and formally define CPT consistency later on in Section 3.

Independence. Any full joint probability distribution µ ∈ Dist(Asg(V)) may in-
duce a number of conditional independencies among the random variables in V .
For X , Y, and Z disjoint subsets of V , the random variables in X and Y are
independent under µ given Z if the conditional probability of each assignment
over the nodes in X given an assignment for Z is unaffected by further condi-
tioning on any assignment of Y. Formally, the set Indep(µ) contains the triple
(X ,Y,Z) iff for all a ∈ Asg(X ), b ∈ Asg(Y), and c ∈ Asg(Z), we have

µ(a | b, c) = µ(a | c) or µ(b, c) = 0.

We also write (X ⊥ Y | Z) for (X ,Y,Z) ∈ Indep(µ) and may omit the set
brackets of X , Y, and Z.
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d-separation. For classical BNs, the graph topology encodes independencies that
are necessarily satisfied by any full joint distribution regardless of the CPT
entries. Given two random variablesX and Y as well as a set of observed variables
Z, then X and Y are conditionally independent given Z if the corresponding
nodes in the graph are d-separated given Z [6]. To establish d-separation, all
simple undirected paths5 between X and Y need to be blocked given Z. Let W
denote such a simple path W0,W1, . . . ,Wk with W0 = X , Wk = Y, and either
Wi →Wi+1 or Wi ←Wi+1 for all i < k. Then W is blocked given Z if and only
if there exists an index i, 0 < i < k, such that one of the following two conditions
holds: (1) Wi is in Z and is situated in a chain or a fork in W, i.e.,

– Wi−1 →Wi → Wi+1 (forward chain)
– Wi−1 ←Wi ← Wi+1 (backward chain) and Wi ∈ Z,
– Wi−1 ←Wi → Wi+1 (fork)

(2) Wi is in a collider and neither Wi nor any descendant of Wi is in Z, i.e.,

– Wi−1 →Wi ← Wi+1 (collider) and Post∗(Wi) ∩ Z = ∅.

Two sets of nodes X and Y are d-separated given a third set Z if for each X∈ X
and Y ∈ Y, X and Y are d-separated given Z. Notably, the d-separation criterion
is applicable also in presence of cycles [28]. For a graph G = 〈V , E〉 of a GBN,
we define the set d -sep(G) as

d -sep(G) :=
{
(X ,Y,Z) ∈ (2V)3 : X and Y are d-separated given Z

}
.

For acyclic Bayesian networks it is well known that the independencies ev-
ident from the standard BN semantics’ distribution include the independencies
derived from the graph. That is, for acyclic GBNs B 6� = 〈G,P , ι〉 where all initial
nodes are pairwise independent under ι, we have

d -sep(G) ⊆ Indep
(
distBN(B 6�)

)
.

For an arbitrary initial distribution, the above relation does not necessarily
hold. However, we can still find a set of independencies that are necessarily
observed by the standard BN semantics and thus act as a similar lower bound.
We do so by assuming the worst case, namely that each initial node depends on
every other initial node under ι. Formally, given a graph G = 〈V , E〉, we define a
closure operation Close(·) as follows and compute the set d -sep

(
Close(G)

)
:

Close(G) :=
〈
V , E ∪ {(A,B) for A,B ∈ Init(G), A 6= B}

〉
.

Lemma 1. Let B 6� = 〈G,P , ι〉 be an acyclic GBN. Then

d-sep
(
Close(G)

)
⊆ Indep

(
distBN(B 6�)

)
.

As intuitively expected, the presence of cycles in G generally reduces the
number of graph independencies, though note that also in strongly connected
graphs independencies may exist. For example, if G is a four-node cycle with
nodes W, X , Y, and Z, then d -sep(G) =

{
(W ⊥ Y | X,Z), (X ⊥ Z |W,Y )

}
.

5 A path is simple if no node occurs twice in the path. “Undirected” in this context
means that edges in either direction can occur along the path.
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3 Constraints Semantics

For classical acyclic BNs there is exactly one distribution that agrees with all
CPTs and satisfies the independencies encoded in the graph. This distribution
can easily be constructed by means of the chain rule (CR). For cyclic GBNs,
applying the chain rule towards a full joint distribution is not possible in general,
as the result is usually not a valid probability distribution. Still, we can look for
distributions consistent with a GBN’s CPTs and the independencies derived
from its graph. Depending on the GBN, we will see that there may be none,
exactly one, or even infinitely many distributions fulfilling these constraints.

3.1 CPT-consistency

We first provide a formal definition of CPT consistency in terms of linear con-
straints on full joint distributions.

Definition 2 (Strong and weak CPT-consistency). Let B be a GBN with
nodes V and X ∈ V. Then µ is called strongly CPT-consistent for X in B (or
simply CPT-consistent) if for all c ∈ Asg(Pre(X))

µ(X=T, c) = µ(c) · Pr(X=T | c). (Cpt)

We say that µ is weakly CPT-consistent for X in B if

µ(X=T) =
∑

c∈Asg(Pre(X))

µ(c) · Pr(X=T | c). (wCpt)

Intuitively, the constraint (Cpt) is satisfied for µ if the conditional proba-
bility µ(X=T | c) equals the entry in the CPT for X under assignment c, i.e.,
µ(X=T | c) = Pr(X=T | c). In the weak case (wCpt), only the resulting marginal
probability of X needs to agree with the CPTs.

Definition 3 (Cpt and wCpt semantics). For a GBN B = 〈G,P , ι〉, the
CPT-semantics JBKCpt is the set of all distributions µ ∈ Dist(Asg(V)) where
µ|Init(G) = ι and µ is CPT-consistent for every node X ∈ V\Init(G). The weak
CPT-semantics JBKwCpt is defined analogously.

Clearly, we have JBKCpt ⊆ JBKwCpt for all B. The next example shows that
depending on the CPT values, the set JBKCpt may be empty, a singleton, or of
infinite cardinality.

Example 1. To find CPT-consistent distributions for the GBN from Fig. 1, we
construct a system of linear equations whose solutions form distributions µ ∈
Dist

(
Asg({X,Y })

)
, represented as vectors in the space [0, 1]4:











s1 0 s1−1 0

0 s2 0 s2−1

t1 t1−1 0 0

0 0 t2 t2−1

1 1 1 1











·








µXY

µXY

µXY

µXY








=











0

0

0

0

1
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where, e.g., µXY abbreviates µ(X=T, Y=F). The first line of the matrix states
the (Cpt) constraint for node X and the parent assignment c = {Y=F}:

0 = s1 · µXY + 0 · µXY + (s1−1) · µXY + 0 · µXY

µXY = (µXY + µXY ) · s1

µXY = µY · Pr(X=T | Y=F)

µ(X=T, c) = µ(c) · Pr(X=T | c).

Analogously, the following three rows encode the CPT constraints for X , Y,
and their remaining parent assignments. The last row ensures that solutions are
indeed probability distributions satisfying

∑

c µ(c) = 1.
The number of solutions for the system now depends on the CPT entries s1,

s2, t1, and t2. For s1 = t2 = 0 and s2 = t1 = 1, no solution exists as the first
four equations require µ(b) = 0 for all b ∈ Asg({X,Y }), while the last equation
ensures µXY + µXY + µXY + µXY = 1. For s1 = t1 = 0 and s2 = t2 = 1, all
distributions with µXY = 1 − µXY and µXY = µXY = 0 are solutions. Finally,
e.g., for s1 = t1 = 3/4 and s2 = t2 = 1/2, there is exactly one solution with
µXY = 1/10 and µ(b) = 3/10 for the other three assignments.

3.2 Independence-consistency

We extend Cpt semantics with a set of independencies that need to be observed
by all induced distributions.

Definition 4 (Cpt-I semantics). For a GBN B = 〈G,P , ι〉 and a set of inde-
pendencies I, the CPT-I semantics JBKCpt-I is defined as the set of all CPT-
consistent distributions µ for which I ⊆ Indep(µ) holds.

Technically, the distributions in JBKCpt-I have to fulfill the following polynomial
constraints in addition to the CPT-consistency constraints:

µ(b) · µ(bW) = µ(b{X}∪W) · µ(bU∪W) (Cpt-I)

for each independence (X⊥ U | W) ∈ I with variable X∈V and sets of variables
U ,W ⊆ V , and for each assignment b ∈ Asg({X} ∪ U ∪ W). Note that in case
µ(bW) > 0, (Cpt-I) is equivalent to the constraint µ(bX | bU∪W) = µ(bX | bW).

We can now formally state the alternative characterization of the standard
BN semantics as the unique CPT-consistent distribution that satisfies the d-
separation independencies of the graph. For each classical BN B with acyclic
graph G and I = d -sep(G), we have JBKBN = {distBN(B)} = JBKCpt-I . Thus, the
Cpt-I semantics provides a conservative extension of the standard BN semantics
to GBNs with cycles. However, in practice, its use is limited since there might be
no distribution that satisfies all constraints. In fact, the case where JBKCpt-I = ∅

is to be expected for most cyclic GBNs, given that the resulting constraint
systems tend to be heavily over-determined.

The next section introduces semantics that follow a more constructive ap-
proach. We will see later on in Section 5.1 that the families of distributions
induced by these semantics are always non-empty and usually singletons.
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X Y Z

Fig. 2: The graph of a strongly connected GBN

X0 Y0 Z0

X1 Y1 Z1

X2 Y2 Z2

...

(a) Unfolding along all nodes

Z0

X1 Y1 Z1

X2 Y2 Z2

...

(b) Unfolding along the Z nodes

Fig. 3: Two infinite unfoldings of the graph in Fig. 2

4 Limit and Limit Average Semantics

We first develop the basic ideas underling the semantics by following an example,
before giving a formal treatment in Section 4.2.

4.1 Intuition

Consider the GBN B whose graph G is depicted in Fig. 2. One way to get rid
of the cycles is to construct an infinite unfolding of B as shown in Fig. 3a. In
this new graph G∞, each level contains a full copy of the original nodes and
corresponds to some n ∈ N. For any edge X → Y in the original graph, we
add edges Xn → Yn+1 to G∞, such that each edge descends one level deeper.
Clearly any graph constructed in this way is acyclic, but this fact alone does
not aid in finding a matching distribution since we dearly bought it by giving
up finiteness. However, we can consider what happens when we plug in some
initial distribution µ0 over the nodes X0, Y0, and Z0. Looking only at the first
two levels, we then get a fully specified acyclic BN by using the CPTs given
by P for X1, Y1, and Z1. For this sub-BN, the standard BN semantics yields
a full joint distribution over the six nodes from X0 to Z1, which also induces
a distribution µ1 over the three nodes at level 1. This procedure can then be
repeated to construct a distribution µ2 over the nodes X2, Y2, and Z2, and,
more generally, to get a distribution µn+1 given a distribution µn. Recall that
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each of those distributions can be viewed as vector of size 23. Considering the
sequence µ0, µ1, µ2, . . . , the question naturally arises whether a limit exists, i.e.,
a distribution/vector µ such that

µ = lim
n→∞

µn.

Example 2. Consider the GBN from Fig. 1 with CPT entries s1 = t2 = 1 and
s2 = t1 = 0, which intuitively describe the contradictory dependencies “X iff not
Y ” and “Y iff X”. For any initial distribution µ0 = 〈e f g h〉, the construction
informally described above yields the following sequence of distributions µn:

µ0 =








e

f

g

h







, µ1 =








f

h

e

g







, µ2 =








h

g

f

e







, µ3 =








g

e

h

f







, µ4 =








e

f

g

h







, . . .

As µ4 = µ0, the sequence starts to cycle infinitely between the first four distribu-
tions. The series converges for e = f = g = h = 1/4 (in which case the sequence
is constant), but does not converge for any other initial distribution.

The example shows that the existence of the limit depends on the given initial
distribution. In case no limit exists because some distributions keep repeating
without ever converging, it is possible to determine the limit average (or Cesàro
limit) of the sequence:

µ̃ = lim
n→∞

1

n+ 1

n∑

i=0

µi.

The limit average has three nice properties: First, if the regular limit µ exists,
then the limit average µ̃ exists as well and is identical to µ. Second, in our use
case, µ̃ in fact always exists for any initial distribution µ0. And third, as we
will see in Section 5, the limit average corresponds to the long-run frequency of
certain Markov chains, which allows us both to explicitly compute and to derive
important properties of the limit distributions.

Example 3. Continuing Ex. 2, the limit average of the sequence µ0, µ1, µ2, . . . is
the uniform distribution µ̃ = 〈1/4 1/4 1/4 1/4〉, regardless of the choice of µ0.

Before we formally define the infinite unfolding of GBNs and the resulting
limit semantics, there is one more observation to be made. To ensure that the
unfolded graph G∞ is acyclic, we redirected every edge of the GBN B to point
one level deeper, resulting in the graph displayed in Fig. 3a. As can be seen
in Fig. 3b, we also get an acyclic unfolded graph by only redirecting the edges
originating in the Z nodes to the next level and keeping all other edges on the
same level. The relevant property is to pick a set of nodes such that for each
cycle in the original GBN B, at least one node in the cycle is contained in the
set. We call such sets the cutsets of B.
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Definition 5 (Cutset). Let B be an GBN with graph G = 〈V , E〉. A subset
C ⊆ V is a cutset for B if every cycle in G contains at least one node from C.

Example 4. The GBN in Fig. 2 has the following cutsets: {Y }, {Z}, {X,Y },
{X,Z}, {Y, Z}, and {X,Y, Z}. Note that {X} does not form a cutset as no
node from the cycle Y → Z → Y is contained.

So far we implicitly used the set V of all nodes for the unfolding, which always
trivially forms a cutset. The following definitions will be parameterized with a
cutset, as the choice of cutsets influences the resulting distributions as well as
the time complexity.

4.2 Formal Definition

Let Vn := {Xn : X∈ V} denote the set of nodes on the nth level of the unfolding
in G∞. For C ⊆ V a cutset of the GBN, the subset of cutset nodes on that level
is given by Cn := {Xn∈ Vn : X∈ C}. Then a distribution γn ∈ Dist(Asg(Cn)) for
the cutset nodes in Cn suffices to get a full distribution µn+1 ∈ Dist(Asg(Vn+1))
over all nodes on the next level, n+ 1: We look at the graph fragment Gn+1 of
G∞ given by the nodes Cn ∪ Vn+1 and their respective edges. In this fragment,
the cutset nodes are initial, so the cutset distribution γn can be combined with
the initial distribution ι to act as new initial distribution. For the nodes in
Vn+1, the corresponding CPTs as given by P can be used, i.e., Pn(Xn, ·) =
P(X, ·) for Xn ∈ Vn. Putting everything together, we obtain an acyclic GBN
Bn+1 = 〈Gn+1,Pn+1, ι ⊗ γn〉. However, GBNs constructed in this way for each
level n > 0 are all isomorphic and only differ in the given cutset distribution γ.
For simplicity and in light of later use, we thus define a single representative
GBN Dissect(B, C, γ) that represents a dissection of B along a given cutset C,
with ι⊗ γ as initial distribution.

Definition 6 (Dissected GBN). Let B = 〈G,P , ι〉 be a GBN with graph
G = 〈V , E〉 and C ⊆ V a cutset for B with distribution γ ∈ Dist(Asg(C)). Then,
the C-dissected GBN Dissect(B, C, γ) is the acyclic GBN 〈GC ,PC , ι ⊗ γ〉 with
graph GC = 〈V ∪ C′, EC〉 where

– C′ := {X ′ : X∈ C} extends V by fresh copies of all cutset nodes;
– incoming edges to nodes in C are redirected to their copies, i.e.,

EC :=
{
(X,Y ′) : (X,Y ) ∈ E , Y ∈ C

}
∪
{
(X,Y ) : (X,Y ) ∈ E , Y /∈ C

}
;

– the function PC uses the CPT entries given by P for the cutset nodes as
entries for their copies and the original entries for all other nodes, i.e., we
have PC(Y

′, a) = P(Y, a) for each node Y ′ ∈ C′ and parent assignment a ∈
Asg(Pre(Y ′)), and PC(X, b) = P(X, b) for X∈ V\C and b ∈ Asg(Pre(X)).

Fig. 4 shows two examples of dissections on the GBN of Fig. 2. As any dissected
GBN is acyclic by construction, the standard BN semantics yields a full joint
distribution over all nodes in V ∪ C′. We restrict this distribution to the nodes



12 C. Baier et al.

X Y Z

X ′ Y ′ Z′

(a) Cutset C = {X,Y, Z}

Z

X Y Z′

(b) Cutset C = {Z}

Fig. 4: Dissections of the GBN in Fig. 2 for two cutsets

in (V \ C) ∪ C′, as those are the ones on the “next level” of the unfolding, while
re-identifying the cutset node copies with the original nodes to get a distribution
over V . Formally, we define the distribution Next(B, C, γ) for each assignment
b ∈ Asg(V) as

Next(B, C, γ)(b) := distBN

(
Dissect(B, C, γ)

)
(b′)

where the assignment b′ ∈ Asg
(
(V\C) ∪ C′

)
is given by b′(X) = b(X) for all

X ∈ V\C and b′(Y ′) = b(Y ) for all Y ∈ C. In the unfolded GBN, this allows
us to get from a cutset distribution γn to the next level distribution µn+1 =
Next(B, C, γn). The next cutset distribution γn+1 is then given by restricting the
full distribution to the nodes in C, i.e., γn+1 = Next(B, C, γn)|C .

6 Vice versa, a
cutset distribution γ suffices to recover the full joint distribution over all nodes
V . Again using the standard BN semantics of the dissected GBN, we define the
distribution Extend(B, C, γ) ∈ Dist(Asg(V)) as

Extend(B, C, γ) := distBN

(
Dissect(B, C, γ)

)∣
∣
V
.

With these definitions at hand, we can formally define the limit and limit
average semantics described in the previous section.

Definition 7 (Limit and limit average semantics). Let B be a GBN over
nodes V with cutset C. The limit semantics of B w.r.t. C is the partial function

Lim(B, C, ·) : Dist
(
Asg(C)

)
⇀ Dist

(
Asg(V)

)

from initial cutset distributions γ0 to full distributions µ = Extend(B, C, γ) where

γ = lim
n→∞

γn and γn+1 = Next(B, C, γn)|C .

The set JBKLim-C is given by the image of Lim(B, C, ·), i.e.,

JBKLim-C := {Lim(B, C, γ0) : γ0 ∈ Dist(Asg(C)) s.t. Lim(B, C, γ0) is defined}.

The limit average semantics of B w.r.t. C is the partial function

LimAvg(B, C, ·) : Dist
(
Asg(C)

)
⇀ Dist

(
Asg(V)

)

6 Recall that we may view distributions as vectors which allows us to equate distribu-
tions over different but isomorphic domains.
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X=T

Y=T

X=T

Y=F

X=F

Y=T

X=F

Y=F

3/8
3/8

1/8
1/8

1/2 1/2

3/4

1/4
1

X=T

Y=T

X=T

Y=F

X=F

Y=T

X=F

Y=F

Fig. 5: A cutset Markov chain for a cutset C = {X,Y }

from γ0 to distributions µ = Extend(B, C, γ) where

γ = lim
n→∞

1

n+ 1

n∑

i=0

γn and γn+1 = Next(B, C, γn)|C .

The set JBKLimAvg-C is likewise given by the image of LimAvg(B, C, ·).

We know that the limit average coincides with the regular limit if the lat-
ter exists, so for every initial cutset distribution γ0, we have Lim(B, C, γ0) =
LimAvg(B, C, γ0) if Lim(B, C, γ0) is defined. Thus, JBKLim-C ⊆ JBKLimAvg-C .

5 Markov Chain Semantics

While we gave some motivation for the limit and limit average semantics, their
definitions do not reveal an explicit way to compute their member distributions.
In this section we introduce the (cutset) Markov chain semantics which offers
explicit construction of distributions and is shown to coincide with the limit
average semantics. It further paves the way for proving several properties of
both limit semantics in Section 5.1.

At the core of the cutset Markov chain semantics lies the eponymous cut-
set Markov chain which captures how probability mass flows from one cutset
assignment to the others. To this end, the Dirac distributions corresponding to
each assignment are used as initial distributions in the dissected GBN. With the
Next function we then get a new distribution over all cutset assignments, and
the probabilities assigned by this distribution are used as transition probabilities
for the Markov chain.

Definition 8 (Cutset Markov chain). Let B be a GBN with cutset C. The
cutset Markov chain CMC(B, C) = 〈Asg(C),P〉 w.r.t. B and C is a DTMC where
the transition matrix P is given for all cutset assignments b, c ∈ Asg(C) by

P(b, c) := Next
(
B, C,Dirac(b)

)
(c).

Example 5. Fig. 5 shows the cutset Markov chain for the GBN from Fig. 1 with
CPT entries s1 = 1/4, s2 = 1, t1 = 1/2, t2 = 0, and cutset C = {X,Y }. Exem-
plarily, the edge at the bottom from assignment b = {X=F, Y=F} to assignment
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c = {X=F, Y=T} with label 3/8 is derived as follows:

P(b, c) = Next
(
B, C,Dirac(b)

)
(c) = distBN

(
Dissect(B, C,Dirac(b))

)
(c′)

=
∑

a∈Asg(VC)
s.t. c′⊆a

distBN

(
Dissect(B, C,Dirac(b))

)
(a)

=
∑

a∈Asg(VC)
s.t. c′⊆a

Dirac(b)(aX,Y ) · Pr(X
′=F | aY ) · Pr(Y

′=T | aX)

= Pr(X ′=F | Y=F) · Pr(Y ′=T | X=F) = (1− s1) · t1 = 3/8.

Note that in the second-to-last step, in the sum over all full assignments a which
agree with the partial assignment c′, only the assignment which also agrees with
b remains as for all other assignments we have Dirac(b)(aX,Y ) = 0.

Given a cutset Markov chain with transition matrix P and an initial cutset
distribution γ0, we can compute the uniquely defined long-run frequency distri-
bution lrfγ0 (see Section 1.1). Then the Markov chain semantics is given by the
extension of this distribution over the whole GBN.

Definition 9 (Markov chain semantics). Let B be a GBN over nodes V
with a cutset C ⊆ V and cutset Markov chain CMC(B, C) = 〈Asg(C),P〉. Then
the Markov chain semantics of B w.r.t. C is the function

MCS (B, C, ·) : Dist
(
Asg(C)

)
→ Dist

(
Asg(V)

)

from cutset distributions γ0 to full distributions µ = Extend(B, C, lrfγ0) where

lrfγ0 = lim
n→∞

1

n+1

n∑

i=0

γi and γi+1 = γi ·P.

The set JBKMC-C is defined as the image of MCS (B, C, ·).

In the following lemma, we give four equivalent characterizations of the long-
run frequency distributions of the cutset Markov chain.

Lemma 2. Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)),
and M = 〈Asg(C),P〉 the cutset Markov chain CMC(B, C). Then the following
statements are equivalent:

(a) γ = γ ·P.
(b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi ·P, we have

γ = lim
n→∞

1

n+1

n∑

i=0

γi.

(c) γ belongs to the convex hull of the long-run frequency distributions lrfD of
the bottom SCCs D of M.

(d) γ = Next(B, C, γ)|C.
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Following Lemma 2, we can equivalently define the cutset Markov chain se-
mantics as the set of extensions of all stationary distributions for P:

JBKMC-C :=
{
Extend(B, C, γ) : γ ∈ Dist

(
Asg(C)

)
s.t. γ = γ ·P

}
.

Example 6. Continuing Ex. 5, there is a unique stationary distribution γ with
γ = γ · P for the cutset Markov chain in Fig. 5: γ = 〈48/121 18/121 40/121 15/121〉.
As in this case the cutset C = {X,Y } equals the set of all nodes V , we have
Extend(B, C, γ) = γ and thus JBKMC-{X,Y } = {γ}.

As shown by Lemma 2, the behavior of the Next function is captured by
multiplication with the transition matrix P. Both the distributions in the limit
average semantics and the long-run frequency distributions of the cutset Markov
chain are defined in terms of a Cesàro limit, the former over the sequence of
distributions obtained by repeated application of Next , the latter by repeated
multiplication with P. Thus, both semantics are equivalent.

Theorem 1. Let B be a GBN. Then for any cutset C of B and initial distribution
γ0 ∈ Dist(Asg(C)), we have

MCS (B, C, γ0) = LimAvg(B, C, γ0).

We know that Lim(B, C, γ0) is not defined for all initial distributions γ0.
However, the set of all limits that do exist contains exactly the distributions
admitted by the Markov chain and limit average semantics.

Lemma 3. Let B be a GBN. Then for any cutset C of B, we have

JBKMC-C = JBKLimAvg-C = JBKLim-C .

5.1 Properties

By the equivalences established in Theorem 1 and Lemma 3, we gain profound
insights about the limit and limit average distributions by Markov chain analysis.
As every finite-state Markov chain has at least one stationary distribution, it
immediately follows that JBKMC-C—and thus JBKLimAvg-C and JBKLim-C—is always
non-empty. Further, if the cutset Markov chain is irreducible, i.e., the graph
is strongly connected, the stationary distribution is unique and JBKMC-C is a
singleton. The existence of the limit semantics for a given initial distribution γ0
hinges on the periodicity of the cutset Markov chain.

Example 7. We return to Example 2 and construct the cutset Markov chain
CMC(B, C) = 〈Asg(C),P〉 for the (implicitly used) cutset C = {X,Y }:

X=T

Y=T

X=T

Y=F

X=F

Y=T

X=F

Y=F

1

1

1

1
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The chain is strongly connected and has a period of length 4, which explains the
observed behavior that for any initial distribution γ0, we got the sequence

γ0, γ1, γ2, γ3, γ0, γ1, . . .

This sequence obviously converges only for initial distributions that are station-
ary, i.e., if we have γ0 = γ0 ·P.

The following lemma summarizes the implications that can be drawn from
close inspection of the cutset Markov chain.

Lemma 4 (Cardinality). Let B be a GBN with cutset C and cutset Markov
chain CMC(B, C) = 〈Asg(C),P〉. Further, let k > 0 denote the number of bottom
SCCs D1, . . . ,Dk of CMC(B, C). Then

1. the cardinality of the cutset Markov chain semantics is given by

∣
∣JBKMC-C

∣
∣ =

{

1 if k = 1,

∞ if k > 1;

2. Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;
3. Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if
Di is periodic for any 1 6 i 6 k.

A handy sufficient (albeit not necessary) criterion for both aperiodicity and
the existence of a single bottom SCC in the cutset Markov chain is the absence
of zero and one entries in the CPTs and the initial distribution of a GBN.

Definition 10 (Smooth GBNs). A GBN B = 〈G,P , ι〉 is called smooth iff
all CPT entries as given by P and all values in ι are in the open interval ]0, 1[.

Lemma 5. Let B be a smooth GBN and C a cutset of B. Then the graph of the
cutset Markov chain CMC(B, C) is a complete digraph.

Corollary 1. The limit semantics of a smooth GBN B is a singleton for every
cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).

As noted in [14], one rarely needs to assign a probability of zero (or, con-
versely, of one) in real-world applications; and doing so in cases where some
event is extremely unlikely but not impossible is a common modeling error. This
observation gives reason to expect that most GBNs encountered in practice are
smooth, and their semantics is thus, in a sense, well-behaved.

5.2 Relation to Constraints Semantics

We take a closer look at how the cutset semantics relates to the CPT-consistency
semantics defined in Section 3. CPTs of nodes outside cutsets remain unaffected
in the dissected BNs from which the Markov chain semantics is computed. Since
there are cyclic GBNs for which no CPT-consistent distribution exists (cf. Ex-
ample 1) while Markov chain semantics always yields at least one solution due
to Lemma 4, it cannot be expected that cutset nodes are necessarily CPT-
consistent. However, they are always weakly CPT-consistent.



On the Foundations of Cycles in Bayesian Networks 17

Lemma 6. Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈
JBKMC-C. Then µ is strongly CPT-consistent for all nodes in V\C and weakly
CPT-consistent for the nodes in C.

The lemma shows a way to find fully CPT consistent distributions: Consider
there is a distribution µ ∈ JBKMC-C ∩ JBKMC-D for two disjoint cutsets C and D.
Then by Lemma 6 the nodes in V \ C and V \ D are CPT consistent, so in fact
µ is CPT consistent. In general, we get the following result.

Lemma 7. Let B be a GBN over nodes V and C1, . . . , Ck cutsets of B s.t. for
each node X∈ V there is an i ∈ {1, . . . , k} with X /∈ Ci. Then

⋂

06i6k

JBKMC-Ci
⊆ JBKCpt.

We take a look at which independencies are necessarily observed by the
distributions in JBKMC-C . Let γ ∈ Dist(Asg(C)) be the cutset distribution and
let G[C] denote the graph of Dissect(B, C, γ) restricted to the nodes in V such
that the cutset nodes in C are initial. Then by Lemma 1, the d-separation in-
dependencies of the closure of G[C] hold in all distributions µ ∈ JBKMC-C , i.e.,
d -sep

(
Close(G[C])

)
⊆ Indep(µ). The next lemma states that any Cpt-consistent

distribution that satisfies these independence constraints for some cutset C also
belongs to JBKMC-C .

Lemma 8. Let B be a GBN with cutset C and IC = Close(G[C]). Then we have

JBKCpt-IC
⊆ JBKMC-C .

Combining Lemma 7 and Lemma 8 yields the following equivalence.

Corollary 2. For a GBN B with cutsets C1, . . . , Ck as in Lemma 7 and the
independence set I =

⋃

06i6k Close(G[Ci]), we have

⋂

06i6k

JBKMC-Ci
= JBKCpt-I .

5.3 Overview

Fig. 6 gives an overview of the relations between all proposed semantics. Boxes
represent the set of distributions induced by the respective semantics and arrows
stand for set inclusion. For the non-trivial inclusions the arrows are annotated
with the respective lemma or theorem. As an example, Cpt→wCpt states that
JBKCpt ⊆ JBKwCpt holds for all GBNs B. The three semantics in the top row
parameterized with a cutset C and a distribution γ stand for the singleton set
containing the respective function applied to γ, i.e., JBKLim-C-γ = {Lim(B, C, γ)}.
⋂

C MC-C stands for the intersection of the Markov chain semantics for various
cutsets as in Lemma 7, and the incoming arrow from Cpt-IC holds for the set
of independencies IC as in Lemma 8.
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Lim-C-γ LimAvg-C-γ MC-C-γ

Lim-C LimAvg-C MC-C
⋂

C
MC-C

Cpt-IC Cpt

wCpt-IC wCpt

C.2

L.6

L.7

L.8
L.3 L.3

T.1Lim-C-γ LimAvg-C-γ MC-C-γ

Lim-C LimAvg-C MC-C
⋂

C
MC-C

Cpt-IC Cpt

wCpt-IC wCpt

Fig. 6: Relations between different variations of limit, limit average, and Markov
chain semantics (blue) as well as strong and weak CPT-consistency semantics
(yellow resp. orange)

6 Related Work

That cycles in a BN might be unavoidable when learning its structure is well
known for more than 30 years [15,22]. During the learning process of BNs, cy-
cles might even be favorable as demonstrated in the context of gene regulatory
networks where cyclic structures induce monotonic scores [32]. That work only
discusses learning algorithms, but does not deal with evaluating the joint dis-
tribution of the resulting cyclic BNs. In most applications, however, cycles have
been seen as a phenomenon to be avoided to ease the computation of the joint
distribution in BNs. By an example BN comprising a single isolated cycle, [30]
showed that reversing or removing edges to avoid cycles may reduce the solution
space from infinitely many joint distributions that are (weakly) consistent with
the CPTs to a single one. In this setting, our results on weak CPT-semantics
also provide that wCpt cannot express conditions on the relation of variables
like implications or mutual exclusion. This is rooted in the fact that the solution
space of weak CPT-semantics always contains at least one full joint distribu-
tion with pairwise independent variables. An example where reversing edges led
to satisfactory results has been considered in [3], investigating the impact of
reinforced defects by steel corrosion in concrete structures.

Unfolding cycles up to a bounded depth has been applied in the setting of
a robotic sensor system by [2]. In their use case, only cycles of length two may
appear, and only the nodes appearing on the cycles are implicitly used as cutset
for the unfolding. In [13], the set of all nodes is used for unfolding (correspond-
ing to a cutset C = V in our setting) and subsequent limit construction, but
restricted to cases where the limit exists.

There have been numerous variants of BNs that explicitly or implicitly ad-
dress cyclic dependencies. Dynamic Bayesian networks (DBNs) [19] extend BNs
by an explicit notion of discrete time steps that could break cycles through
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timed ordering of random variables. Cycles in BNs could be translated to the
DBN formalism by introducing a notion of time, e.g., following [13]. Our cutset
approach is orthogonal, choosing a time-abstract view on cycles and treating
them as stabilizing feedback loops. Learning DBNs requires “relatively large
time-series data” [32] and thus, may be computationally demanding. In [18] ac-
tivator random variables break cycles in DBNs to circumvent spurious results in
DBN reasoning when infinitesimal small time steps would be required.

Causal BNs [23] are BNs that impose a meaning on the direction of an
edge in terms of causal dependency. Several approaches have been proposed
to extend causal BNs for modeling feedback loops. In [25], an equilibrium se-
mantics is sketched that is similar to our Markov chain semantics, albeit based
on variable oderings rather than cutsets. Determining independence relations,
Markov properties, and joint distributions are central problems addressed for
cyclic causal BNs [2,5,20,24,29]. Markov properties and joint distributions for
extended versions of causal BNs have been considered recently, e.g., in directed
graphs with hyperedges (HEDGes) [5] and cyclic structural causal models (SCMs)
[2]. Besides others, they show that in presence of cycles, there might be multiple
solutions for a joint distribution or even no solution at all [7]. While we consider
all random variables to be observable, the latter approaches focus on models
with latent variables. Further, while our focus in this paper is not on causality,
our approach is surely also applicable to causal BNs with cycles.

Recursive relational Bayesian networks (RRBNs) [9] allow representing prob-
abilistic relational models where the random variables are given by relations over
varying domains. The resulting first-order dependencies can become quite com-
plex and may contain cycles, though semantics are given only for the acyclic
cases by the construction of corresponding standard BNs.

Bayesian attack graphs (BAGs) [16] are popular to model and reason about
security vulnerabilities in computer networks. Learned graphs and thus their
BN semantics frequently contain cycles, e.g., when using the tool MulVAL [21].
In [27], “handling cycles correctly” is identified as “a key challenge” in security
risk analysis. Resolution methods for cyclic patterns in BAGs [1,4,17,31] are
mainly based on context-specific security considerations, e.g., to break cycles by
removing edges. The semantic foundations for cyclic BNs laid in this paper do
not require graph manipulations and decouple the probability theoretic basis
from context-specific properties.

7 Conclusion

This paper has developed a foundational perspective on the semantics of cycles in
Bayesian networks. Constraint-based semantics provide a conservative extension
of the standard BN semantics to the cyclic setting. While conceptually impor-
tant, their practical use is limited by the fact that for many GBNs, the induced
constraint system is unsatisfiable. On the other hand, the two introduced limit
semantics echo in an abstract and formal way what practitioners have been devis-
ing across a manifold of domain-specific situations. In this abstract perspective,
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cutsets are the ingredients that enable a controlled decoupling of dependencies.
The appropriate choice of cutsets is where, in our view, domain-specific knowl-
edge is confined to enter the picture. Utilizing the constructively defined Markov
chain semantics, we established key results relating and demarcating the differ-
ent semantic notions and showed that for the ubiquitous class of smooth GBNs
a unique full joint distribution always exists.
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A Appendix

The appendix contains the proofs omitted from the body of the submission “On
the Foundations of Cycles in Bayesian Networks” due to space constraints.

Lemma 1. Let B 6� = 〈G,P , ι〉 be an acyclic GBN. Then

d-sep
(
Close(G)

)
⊆ Indep

(
distBN(B 6�)

)
.

Proof. The idea is to show that the dependencies of every possible BN structure
for the initial distribution ι are covered by the closure operation. Let the graph
G⋆ι = 〈Init(G), E⋆〉 be a DAG that is an I-map for ι, i.e., d -sep(G⋆ι ) ⊆ Indep(ι).
Then ι factorizes according to G⋆ι , that is for every assignment b ∈ Asg(Init(G)),
we have

ι(b) =
∏

X∈Init(G)

ι
(
bX | bPreG⋆

ι (X)

)
.

Now consider the BN B⋆
6� with graph G⋆ = 〈V , E ∪ E⋆〉 where we add the edges

of G⋆ι to G. The CPTs for the nodes in V \ Init(G) are given by P whereas the
new CPTs (according to the structure in G⋆ι ) for the nodes in Init(G) are derived
from ι. Then for every assignment c ∈ Asg(V):

distBN(B
⋆
6�)(c) =

∏

X∈V

Pr
(
cX | cPre(X)

)

=
∏

X∈Init(G)

ι
(
cX | cPreG⋆

ι (X)

)
·
∏

X∈V\Init(G)

Pr
(
cX | cPre(X)

)

= ι
(
cInit(G)

)
·
∏

X∈V\Init(G)

Pr
(
cX | cPre(X)

)

= distBN(B 6�)(c).

As B⋆
6� is a regular BN without an initial distribution, we have d -sep(G⋆) ⊆

Indep(distBN(B
⋆
6�)).

We proceed to show d -sep(Close(G)) ⊆ d -sep(G⋆). Let (X ⊥ Y | Z) ∈
d -sep(Close(G)). Then each path from X to Y in Close(G) is blocked by the
nodes in Z. As Close(G) contains all possible edges between the nodes Init(G)
but G⋆ only a subset thereof, it is clear that each path in G⋆ also exists in
Close(G). Thus, there cannot be an unblocked path from X to Y given Z in G⋆

either, so (X ⊥ Y | Z) ∈ d -sep(G⋆). Altogether, we have

d -sep
(
Close(G)

)
⊆ d -sep(G⋆) ⊆ Indep

(
distBN(B

⋆
6�)

)
= Indep

(
distBN(B 6�)

)
.

⊓⊔

Lemma 2. Let B be a GBN with cutset C, cutset distribution γ ∈ Dist(Asg(C)),
and M = 〈Asg(C),P〉 the cutset Markov chain CMC(B, C). Then the following
statements are equivalent:

(a) γ = γ ·P.
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(b) There exists γ0 ∈ Dist(Asg(C)) such that for γi+1 = γi ·P, we have

γ = lim
n→∞

1

n+1

n∑

i=0

γi.

(c) γ belongs to the convex hull of the long-run frequency distributions lrfD of
the bottom SCCs D of M.

(d) γ = Next(B, C, γ)|C.

Proof. (a) =⇒ (b): If we have γ = γ · P, then statement (b) is obtained by
considering γ0 = γ, as then γi = γ for all i.

(b) =⇒ (c): The proof of the implication relies on the following standard facts
about finite-state Markov chains. Given a BSCC D and an arbitrary distribution
ν0 ∈ Dist(Asg(D)), the distribution lrfD agrees with the Cesàro limit of the
sequence (νi)i>0 where νi+1 = νi · PD and PD denotes the restriction of P to
assignments on D. That is,

lrfD = lim
n→∞

1

n+1

n∑

i=0

νi.

Vice versa, for γ0 ∈ Dist(Asg(C)) and γi+1 = γi ·P, then the Cesàro limit γ
of the sequence (γi)i>0 has the form

γ =
∑

D

λ(D) · lrfD

whereD ranges over all BSCCs ofM, λ(D) is the probability for reachingD inM
with the initial distribution γ0, and all vectors lrfD are padded with zero entries
to range over the whole state space. In particular, γ is a convex combination
of the distributions lrfD as 0 6 λ(D) 6 1 and

∑

D λ(D) = 1 (because every
finite-state Markov chain almost surely reaches a BSCC).

(c) =⇒ (a): Suppose γ =
∑

D λ(D) · lrfD where 0 6 λ(D) 6 1,
∑

D λ(D) = 1,
and each lrfD is padded appropriately as before. Then:

γ ·P =
∑

D

λ(D) · lrfD ·P =
∑

D

λ(D) · lrfD = γ

where we use the fact that lrfD = lrfD ·P.
(a) ⇐⇒ (d): Because γ can be represented as convex combination of Dirac

distributions as γ =
∑

c∈Asg(C) γ(c) · Dirac(c), we know:

Next(B, C, γ) =
∑

c∈Asg(C)

γ(c) · Next
(
B, C,Dirac(c)

)
.

As P(c, b) = Next
(
B, C,Dirac(c)

)
(b) for any assignment b ∈ Asg(C), and assum-

ing γ = γ ·P, we get

Next(B, C, γ)(b) =
∑

c∈Asg(C)

γ(c) ·P(c, b) = (γ ·P)(b) = γ(b).

Conversely, assuming Next(B, C, γ)|C = γ, we yield γ = γ ·P. ⊓⊔
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Lemma 3. Let B be a GBN. Then for any cutset C of B, we have

JBKMC-C = JBKLimAvg-C = JBKLim-C .

Proof. We have JBKMC-C = JBKLimAvg-C by Theorem 1 and know JBKLim-C ⊆
JBKLimAvg-C , so it remains to show JBKMC-C ⊆ JBKLim-C . Let µ ∈ JBKMC-C . Then
there exists a cutset distribution γ s.t. µ = Extend(B, C, γ). We need to show
there exists an initial distribution γ0 ∈ Dist(Asg(C)) such that γ = limn→∞ γi
where γi+1 = Next(B, C, γi)|C . Let us choose γ0 = γ. Then we know γ0 =
Next(B, C, γ0)|C by Lemma 2, so γi = γ0 for all i ∈ N. Thus, γ = limi→∞ γi and
therefore µ ∈ JBKLim-C . ⊓⊔

Lemma 4 (Cardinality). Let B be a GBN with cutset C and cutset Markov
chain CMC(B, C) = 〈Asg(C),P〉. Further, let k > 0 denote the number of bottom
SCCs D1, . . . ,Dk of CMC(B, C). Then

1. the cardinality of the cutset Markov chain semantics is given by

∣
∣JBKMC-C

∣
∣ =

{

1 if k = 1,

∞ if k > 1;

2. Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)) if all Di are aperiodic;

3. Lim(B, C, γ) is only defined for stationary distributions γ with γ = γ · P if
Di is periodic for any 1 6 i 6 k.

Proof. (1.) By Lemma 2, every cutset distribution with γ = γ · P is a convex
combination of the steady-state distributions for the BSCCs. Thus, for k = 1
a unique distribution γ exists, whereas for k > 1, there are infinitely many
real-valued distributions in the convex hull.

(2.) A Markov chain is aperiodic if all its BSCCs are aperiodic. Aperiodicity
suffices for the limit limn→∞ γn with γn+1 = γn ·P to exist for every γ0. Then
limn→∞ γ′

n with γ′
n+1 = Next(B, C, γ′

n)|C exists as well by Lemma 2.

(3.) Assume some BSCC D is periodic with a period of p. Then, for any γ0 ∈
Dist(Asg(C)), γn+1 = γn · P, and νn = γn|D, we have νp·n = νn. Now consider
γ0 and γ1 = γ0 · P. If γ0 = γ1, then γ0 = γn for all n ∈ N and γ0 = limn→∞ γn
holds. Otherwise, if γ0 6= γ1, the following non-convergent sequence exists:

ν0, ν1, . . . , νp, νp+1, . . . , ν2p, ν2p+1, . . .

Then limn→∞ γn cannot converge either, so Lim(B, C, γ0) is undefined. ⊓⊔

Lemma 5. Let B be a smooth GBN and C a cutset of B. Then the graph of the
cutset Markov chain CMC(B, C) is a complete digraph.

Proof. The graph of CMC(B, C) = 〈Asg(C),P〉 is a complete digraph iff each
entry in P is positive. Thus, for each two assignments b, c ∈ Asg(C), we need to
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show P(b, c) > 0. Let Bb = Dissect(B, C,Dirac(b)). Then from Definition 8, we
have

P(b, c) = Next(Dirac(b),B, C)(c)

= distBN(Bb)(c
′).

The probability distBN(Bb)(c
′) is given by the sum over all full assignments

v ∈ Asg(V) that agree with c′ on the assignment of the cutset node copies C′.
Further, the sum can be partitioned into those v that agree with assignment b
on C and those that do not:

distBN(Bb)(c
′) =

∑

v∈Asg(V)
s.t. c′⊂v, b⊂v

distBN(Bb)(v) +
∑

v∈Asg(V)
s.t. c⊂v, b6⊂v

distBN(Bb)(v).

By the definition of the standard BN-semantics, we have

distBN(Bb)(v) = ι
(
vInit(G)

)
·Dirac(b)(vC) ·

∏

X∈V\C

Pr
(
vX | vPre(X)

)
.

Now consider the second sum in the previous equation where b 6⊂ v. For those
assignments, Dirac(b)(vC) = 0 and thus the whole sum equals zero. For the
first sum, we have vC = b, so Dirac(b)(vC) = 1 and we only need to consider
the product with X ∈ V \ C and the initial distribution over Init(G). By the
construction of Bb, the CPTs of all X ∈ V \C are the original CPTs from B, thus
their entries all fall within the open interval ]0, 1[ by the smoothness assumption
of B. The same holds for the value ι

(
vInit(G)

)
. Thus, the whole product resides

in ]0, 1[ as well. Finally, note that the sum is non-empty as C′ and C are disjoint,
so there exists at least one v ∈ Asg(V) with c ⊂ v and b ⊂ v. As a non-empty
sum over values in ]0, 1[ is necessarily positive, we have distBN(Bb)(c

′) > 0 and
the claim follows. ⊓⊔

Corollary 1. The limit semantics of a smooth GBN B is a singleton for every
cutset C of B and Lim(B, C, γ0) is defined for all γ0 ∈ Dist(Asg(C)).

Proof. Follows from Lemma 4 and Lemma 5 because every complete graph forms
a single bottom SCC and is necessarily aperiodic. ⊓⊔

Lemma 6. Let B be a GBN over nodes V, C ⊆ V a cutset for B, and µ ∈
JBKMC-C. Then µ is strongly CPT-consistent for all nodes in V\C and weakly
CPT-consistent for the nodes in C.

Proof. By definition, µ = Extend(B, C, γ) for some γ ∈ Dist(Asg(C)) with
γ = γ · P. As Extend(B, C, γ) is the standard BN semantics for the acyclic
BN Dissect(B, C, γ) without the copies of the cutset nodes, CPT-consistency for
the nodes in V \ C follows directly from the CPT-consistency of the standard
semantics for acyclic BNs.
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It remains to prove weak CPT-consistency for the cutset nodes. Let δ =
distBN(Dissect(B, C, γ)) ∈ Dist(Asg(V ∪ C′)). Thus, µ = δ|V and γ = δ|C . Then
for each assignment b ∈ Asg(C), we have

µ(b) = γ(b) = (γ ·P)(b) = δ(b′)

where b′ ∈ Asg(C′) is given by b′(Y ′) = b(Y ) for all Y ∈ C. In particular, for each
Y ∈ C:

µ(Y=T) = δ(Y ′=T)

Let D = Asg(Pre(Y )) where Pre(·) refers to the original scGBN. For c ∈
Asg(C), we write Dc for the set of all assignments d ∈ D that comply with c in
the sense that if Z ∈ C ∩ Pre(Y ) then c(Z) = d(Z). In this case, c and d can be
combined to an assignment for C∪Pre(Y ). Similarly, if d ∈ D, then the notation
Asgd(C) is used for the set of assignments c ∈ Asg(C) that comply with d. Then:

δ(Y ′=T) =
∑

c∈Asg(C)

δ(Y ′=T | c) · µ(c)

=
∑

c∈Asg(C)

∑

d∈Dc

δ(Y ′=T | c, d)
︸ ︷︷ ︸

Pr(Y=T|d)

· δ(d | c)
︸ ︷︷ ︸

µ(d|c)

· δ(c)
︸︷︷︸

µ(c)

=
∑

d∈D

Pr(Y=T | d) ·
∑

c∈Asg
d
(C)

µ(d | c) · µ(c)

=
∑

d∈D

Pr(Y=T | d) · µ(d).

Putting everything together, we obtain:

µ(Y=T) = δ(Y ′=T) =
∑

d∈D

Pr(Y=T | d) · µ(d).

Thus, µ is weakly CPT-consistent for Y ∈ C. ⊓⊔

Lemma 7. Let B be a GBN over nodes V and C1, . . . , Ck cutsets of B s.t. for
each node X∈ V there is an i ∈ {1, . . . , k} with X /∈ Ci. Then

⋂

06i6k

JBKMC-Ci
⊆ JBKCpt.

Proof. We need to show CPT-consistency for every node under µ ∈
⋂

iJBKMC-Ci
.

Let X∈ V . Then we choose a cutset Ci s.t. X /∈ Ci and CPT consistency follows
from Lemma 6. ⊓⊔

Lemma 8. Let B be a GBN with cutset C and IC = d-sep
(
Close(Close(G)[C])

)
.

Then we have

JBKCpt-IC
⊆ JBKMC-C .
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Proof. Let µ ∈ JBKCpt-IC
and γ = µ|C . The task is to show that γ satisfies the

fixed point equation γ = γ ·P.
The standard BN semantics δ = distBN(Dissect(B, C, γ)) of the dissected BN

is the unique distribution over Asg(V ∪ C′) that

– is CPT-consistent w.r.t. the conditional probability tables in Dissect(B, C, γ),
– agrees with γ when restricted to the assignments for C, and
– satisfies the conditional independencies in IC .

Consider the distribution µ̃ ∈ Dist
(
Asg(V∪C′)

)
defined as follows for b ∈ Asg(V)

and c′ ∈ Asg(C′):

µ̃(b, c′) := µ(b) ·
∏

Y∈C

Pr
(
Y=c′(Y ′) | bPre(Y )

)
.

Then, µ̃ satisfies the above three constraints. Hence, µ̃ = δ.
For c ∈ Asg(C), let c′ ∈ Asg(C′) denote the corresponding assignment with

c′(Y ′) = c(Y ) for Y ∈ C.

(γ ·P)(c) = δ(c′) = µ̃(c′)

=
∑

d∈Asg(Pre(C))

µ(d) ·
∏

Y∈C

Pr(Y=c′(Y ′) | d)
︸ ︷︷ ︸

Pr(Y=c(Y )|d)

= µ(c) = γ(c).

Hence, γ = γ ·P and µ ∈ JBKMC-C . ⊓⊔
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