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Abstract. Monte Carlo estimation in plays a crucial role in stochastic
reaction networks. However, reducing the statistical uncertainty of the
corresponding estimators requires sampling a large number of trajecto-
ries. We propose control variates based on the statistical moments of the
process to reduce the estimators’ variances. We develop an algorithm
that selects an efficient subset of infinitely many control variates. To this
end, the algorithm uses resampling and a redundancy-aware greedy se-
lection. We demonstrate the efficiency of our approach in several case
studies.
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1 Introduction

Stochastic reaction networks that are used to describe cellular processes are
often subject to inherent stochasticity. The dynamics of gene expression, for in-
stance, is influenced by single random events (e.g. transcription factor binding)
and hence, models that take this randomness into account must monitor discrete
molecular counts and reaction events that change these counts. Discrete-state
continuous-time Markov chains have successfully been used to describe networks
of chemical reactions over time that correspond to the basic events of such pro-
cesses. The time-evolution of the corresponding probability distribution is given
by the chemical master equation, which is a system of differential equations
with one equation for each possible molecular count. However, its numerical
solution is extremely challenging because of the enormous size of the underlying
state-space.

In contrast, analysis approaches based on sampling, such as the Stochastic
Simulation Algorithm (SSA) [23], can be applied independent of the size of
the model’s state-space. However, statistical approaches are costly since a large
number of simulation runs is necessary to reduce the statistical inaccuracy of
estimators. This problem is particularly severe if reactions occur on multiple
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time scales or if the event of interest is rare. A particularly popular technique to
speed up simulations is τ -leaping which applies multiple reactions in one step of
the simulation. However, such multi-step simulations rely on certain assumptions
about the number of reactions in a certain time interval. These assumptions
are typically only approximately fulfilled and therefore introduce approximation
errors on top of the statistical uncertainty of the considered point estimators.

Variance reduction techniques are an alternative to approaches that decrease
the computational costs of each SSA run. By reducing the variance of the esti-
mators, these methods need fewer runs to achieve high statistical accuracy.

In this work, we approach the variance reduction problem by considering a
(infinite) set of differential equations for the evolution of the statistical moments
of the molecular counts. Instead of applying a moment closure and performing
numerical integration [1,15], we use these equations to derive a combination of
moment constraints. Such moment constraints have already been used for for
parameter estimation [4] and for computing moment bounds using semi-definite
programming [14,18]. Here, we interpret these constraints as random variables
that are correlated with the estimators of interest usually given as functions of
population variables. These constraints can be used as (linear) control variates in
order to improve the final estimate and reduce its variance [28,43]. The method
is easy on an intuitive level: If a control variate is positively correlated with the
function to be estimated then we can use the estimate of the variate to adjust
the target estimate.

The incorporation of control variates into the SSA introduces additional sim-
ulation costs for the calculation of the constraint values. These values are inte-
grals over time, which we accumulate based on the piece-wise constant trajecto-
ries. This introduces a trade-off between the variance reduction that is achieved
by using control variates versus the increased simulation cost. This trade-off is
expressed as the product of the variance reduction ratio and the cost increase
ratio.

For a good trade-off, it is crucial to find an appropriate set of control variates.
Here we propose a class of constraints which is parameterized by a moment vector
and a weighting parameter, resulting in infinitely many choices.

In previous work [5], we have proposed an algorithm that learns a set of
control variates through refinement of an initial set. This initial set of control
variates is based on samples of the time-weighting λ. Each control variate is
then checked for effectiveness in isolation. Furthermore, the set is refined by
considering variables pairwise to determine redundancies.

In this work, we improve on the initial selection of control variates. This
initial set is build using a splitting approach akin to sequential Monte Carlo
methods: Over multiple rounds, new control variates are sampled based on their
performance in prior iterations. This way, we construct a set of candidate vari-
ates and select a subset using a greedy approach, which takes into account the
correlation between variates. A benefit of this algorithm is that it is less sensitive
to user input. In particular, no heuristic redundancy threshold has to be fixed,
making this approach more flexible.
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This approach applies to the Monte Carlo estimation of any quantity deal
with any property that can be expressed in terms of expected values such as
probabilities of complex path properties. Another advantage of our technique is
that increased efficiency is achieved without the price of an additional approx-
imation error as is the case for methods based on moment approximations or
multi-step simulations.

This paper is structured as follows. In Section 2 we give a brief survey of
methods and tools related to efficient stochastic simulation and moment tech-
niques. In Section 3 we introduce the common stochastic semantics of stochastic
reaction networks. From these semantics we show in Section 4 how to derive
constraints on the moments of the transient distribution. The variance reduc-
tion technique of control variates is described in Section 5. We show the design of
an algorithm using moment constraints to reduce sample variance in Section 6.
The efficiency and other characteristics of this algorithm are evaluated on four
non-trivial case studies in Section 7. Finally, we discuss the findings and give
possibilities for further work in Section 8.

2 Related Work

Much research has been directed at the efficient analysis of stochastic stochastic
reaction networks. Usually research focuses on improving efficiency by making
certain approximations.

If the state-space is finite and small enough one can deal with the underlying
Markov chain directly. But there are also cases where the transient distribution
has an infinitely large support and one can still deal with explicit state proba-
bilities. To this end, one can fix a finite state-space, that should contain most
of the probability [31]. Refinements of the method work dynamically and adjust
the state-space according to the transient distributions [3,25,30].

On the other end of the spectrum there are mean-field approximations, which
model the mean densities faithfully in the system size limit [7]. In between there
are techniques such as moment closure [40], that not only consider the mean, but
also the variance and other higher order moments. These methods depend on
ad-hoc approximations of higher order moments to close the ODE system given
by the moment equations. Yet another class of methods approximate molecular
counts continuously and approximate the dynamics in such a continuous space,
e.g. the system size expansion [44] and the chemical Langevin equation [21].

While the moment closure method uses ad-hoc approximations for high or-
der moments to facilitate numerical integration, they can be avoided in some
contexts. For the equilibrium distribution, for example, the time-derivative of
all moments is equal to zero. This directly yields constraints that have been
used for parameter estimation at steady-state [4] and bounding moments of the
equilibrium distribution using semi-definite programming [17,18,27]. The latter
technique of bounding moments has been successfully adapted in the context of
transient analysis [14,37,38]. We adapt the constraints proposed in these works
to improve statistical estimations via stochastic simulation (cf. section 4).



4 M. Backenköhler et al.

While the above techniques give a deterministic output, stochastic simula-
tion generates single executions of the stochastic process [23]. This necessitates
accumulating large numbers of simulation runs to estimate quantities. This adds
a significant computational burden. Consequently, some effort has been directed
at lowering this cost. A prominent technique is τ -leaping [22], which in one step
performs multiple instead of only a single reaction. Another approach is to find
approximations that are specific to the problem at hand, such as approximations
based on time-scale separations [9,8].

Multilevel Monte Carlo methods have been applied in to time-inhomogeneous
SRNs [2]. In this techniques estimates are combined using estimates of different
approximation levels.

In the case of rare events, approaches based on importance sampling [20,36]
and importance splitting [26] have been adapted to the setting of reaction net-
works. Importance sampling relies on a suitable change of the underlying prob-
ability measure, which is often handcrafted for each model, continually refined
using the cross-entropy method [12,35], or derived from Gaussian approximations
of the process [19]. Importance splitting decomposes the state space into level
sets and estimates the rare event probability by a level-based splitting of sample
paths before reaching the set of interest. It requires to construct a model-specific
level function together with the corresponding splitting thresholds.

Recently, randomized quasi-Monte Carlo (RQMC) approaches have been
adapted to the application area of stochastic reaction networks [6] and improved
for the case of long simulation horizons with an extension to array-RQMC [34].
It is based on a tau-leaping approach where time is discretized and requires a
level/importance function or a costly multivariate sort.

3 Stochastic Reaction Networks

A stochastic reaction network (SRN) describes the interactions between a set of
species S1, . . . , SnS in a well-stirred reactor. Since we assume that all reactant
molecules are spatially uniformly distributed, we just keep track of the overall
amount of each molecule. Therefore the state-space is given by S ⊆ NnS . These
interactions are expressed a set of reactions with a certain inputs and outputs,
given by the vectors v−j and v+j for reaction j = 1, . . . , nR, respectively. Such
reactions are denoted as

nS∑
i=1

v−jiSi
cj−→

nS∑
i=1

v+jiSi . (1)

The reaction rate constant cj > 0 gives us information on the propensity of the
reaction. If just a constant is given, mass-action propensities are assumed. In a
stochastic setting for some state x ∈ S these are

αj(x) = cj

nS∏
i=1

(
xi
v−ji

)
. (2)
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The system’s behavior is described by a stochastic process {Xt}t≥0. The propen-
sity function gives the infinitesimal probability of a reaction occurring, given a
state x. That is, for a small time step δt > 0

Pr(Xt+δt = x+ vj | Xt = x) = αj(x)δt+ o(δt) . (3)

This induces a corresponding continuous-time Markov chain (CTMC) on S with
generator matrix1

Qx,y =

{∑
j:x+vj=y

αj(x) , if x 6= y

−
∑nR
j=1 αj(x) , otherwise.

(4)

Accordingly, the time-evolution of the process’ distribution, given an initial dis-
tribution π0, is given by the Kolmogorov forward equation, i.e. dπtdt = Qπt, where
πt(x) = Pr(Xt = x). For a single state, it is commonly referred to as the chemical
master equation (CME)

d

dt
πt(x) =

nR∑
j=1

(αj(x− vj)πt(x− vj)− αj(x)πt(x)) . (5)

A direct solution of (5) is usually not possible. If the state-space with non-
negligible probability is suitably small, a state space truncation could be per-
formed. That is, (5) is integrated on a possibly time-dependent subset Ŝt ⊆ S
[25,31,41]. Instead of directly analyzing (5), one often resorts to simulating tra-
jectories. A trajectory τ = x0t1x1t1 . . . tnxn over the interval [0, T ] is a sequence
of states xi and corresponding jump times ti, i = 1, . . . , n and tn = T . We can
sample trajectories of X by using stochastic simulation [23].

Consider the birth-death model below as an example.

Model 1 (Birth-death process) A single species A has a constant production
and a decay that is linear in the current amount of molecules. Therefore the model
consists of two mass-action reactions

∅ γ−→ A , A
δ−→ ∅ ,

where ∅ denotes no reactant or no product, respectively.

For Model 1 the change of probability mass in a single state x > 0 is described
by expanding (5) and

d

dt
πt(x) = γπt(x− 1) + δπt(x+ 1)− (γ + δ)πt(x) .

We can generate trajectories of this model by choosing either reaction, with a
probability that is proportional to its rate given the current state xi. The jump
time ti − ti+1 is determined by sampling from an exponential distribution with
rate γ + xiδ.

1 Assuming a fixed enumeration of the state space.
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4 Moment Constraints

The time-evolution of E (f(Xt)) for some function f can be directly derived from
(5) by computing the sum

∑
x∈S f(x) ddtπt(x), which yields

d

dt
E (f(Xt)) =

nR∑
j=1

E ((f(Xt + vj)− f(Xt))αj(Xt)) . (6)

While many choices of f are possible, for this work we will restrict ourselves
to monomial functions f(x) = xm, m ∈ NnS i.e. the non-central moments of
the process. The order |m| of a moment E (Xm) is the sum over the exponents,
i.e. |m| =

∑
imi. The integration of (6) with such functions f is well-known

in the context of moment approximations of SRN models. For most models the
arising ODE system is infinitely large, because the time-derivative of low order
moments usually depends on the values of higher order moments. To close this
system, moment closures, i.e. ad-hoc approximations of higher order moments
are applied [39]. The main drawback of this kind of analysis is that it is not
known whether the chosen closure gives an accurate approximation for the case
at hand. Here, such approximations are not necessary, since we will apply the
moment dynamics in the context of stochastic sampling instead of trying to
integrate (6).

Apart from integration strategies, setting (6) to zero has been used as a con-
straint for parameter estimation at steady-state [4] and bounding moments at
steady-state [13,18,27]. The extension of the latter has recently lead to the adap-
tion of these constraints to a transient setting [14,38]. These two transient con-
straint variants are analogously derived by multiplying (6) by a time-dependent,
differentiable weighting function w(t) and integrating:

Multiplying with w(t) and integrating on [t0, T ] yields [14,38]

w(T )E (f(XT ))− w(t0)E (f(Xt0))−
∫ T

t0

dw(t)

dt
E (f(Xt)) dt

=

nR∑
j=1

∫ T

t0

w(t)E ((f(Xt + vj)− f(Xt))αj(Xt)) dt

(7)

In the context of computing moment bounds via semi-definite programming
the choices w(t) = ts [38] and w(t) = eλ(T−t) [14] have been proposed. While
both choices proved to be effective in different case studies, relying solely on the
latter choice, i.e. w(t) = eλ(T−t) was sufficient. We can further forgo the time
inversion such that w(t) = eλt.

By expanding the rate functions and f in (7) and substituting the exponential
weight function we can re-write (7) as

0 = eλTE (f(XT ))− E (f(Xt0)) +
∑
k

ck

∫ T

t0

eλtE (Xmk
t ) dt (8)
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with coefficients ck and vectors mk defined accordingly. Assuming the moments
remain finite on [0, T ], we can define the random variable

Z = eλT f(XT )− f(Xt0) +
∑
k

ck

∫ T

t0

eλtXmk
t dt (9)

with E (Z) = 0.

Note, that a realization of Z depends on the whole trajectory τ = x0t1x1t1 . . .
tnxn over [t0, T ]. Thus, for the integral terms in (9) we have to compute sums

1

λ

n∑
i=1

(
eλti+1 − eλti

)
xmki , (10)

over a given trajectory. This accumulation is best done during the simulation to
avoid storing the whole trajectory. Algorithm 1 specifies the stochastic simula-
tion of system trajectories while computing the values of integrals (10) alongside
the trajectory itself. The cost of a simulation using this algorithm is more ex-

Algorithm 1: SSA with accumulator updates

input : π0, T, P, n
output: trajectory τ

1 initialize accumulator map A for i = 1, . . . , n do
2 τ ← empty list, s← sample from π0, t← 0;
3 while t < T do
4 τ ← append(τ, (s, t));
5 k ← sample reaction i with probability ∝ αi(s);
6 δ ∼ Exp

(∑
i αi(s)

)
;

7 for (m,λ) ∈ keys(A) do

8 A[(m,λ)]← A[(m,λ)] + 1
λ

(
eλ(t+δ) − eλt

)
xm;

9 s← s+ vk;
10 t← t+ δ;

11 update means V̂ , Ẑ and covariances Σ̂ using A;
12 for (m,λ) ∈ keys(A) do
13 A[(m,λ)]← 0

14 return (Σ̂, V̂ , Ẑ);

pensive. For the method to be efficient, the variance reduction (Section 5) needs
to overcompensate for this increased cost of a simulation run.

For Model 1 the moment equation for f(x) = x becomes

d

dt
E (Xt) = γ − δE (Xt) .
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The corresponding constraint (8) with λ = 0 gives

0 = E (XT )− E (X0)− γT + δ

∫ T

0

E (Xt) dt .

In this instance the constraint leads to an explicit function of the moment over
time. If X0 = 0 w.p. 1, then (8) becomes

E (XT ) =
γ

δ

(
1− e−δT

)
(11)

when choosing λ = δ.

5 Control Variates

Now, we are interested in the estimation of some quantity E (V ) by stochastic
simulation. Let V1, . . . , Vn be independent samples of V . Then the sample mean
V̂n = 1

n

∑n
i=1 Vk is an estimate of E (V ). By the central limit theorem

√
nV̂n

d−→ N(E (V ) , σ2
V ) .

Now suppose, we know of a random variable Z with 0 = E (Z). The variable Z is
called a control variate. If a control variate Z is correlated with V , we can use it
to reduce the variance of V̂n [24,32,43,45]. For example, consider we are running
a set of simulations and consider a single constraint. If the estimated value of
this constraint is larger than zero and we estimate a positive correlation between
the constraint Z and V , we would, intuitively, like to decrease our estimate V̂n
accordingly. This results in an estimation of the mean of the random variable

Yβ = V − βZ

instead of V . The variance

σ2
Yβ

= σ2
V − 2βCov(V,Z) + β2σ2

Z .

The optimal choice β can be computed by considering the minimum of σ2
Yβ

.
Then

β∗ = Cov(V,Z)/σ2
Z .

Therefore σYβ∗ = σ2
Z(1− ρ2V Z), where ρV Z is the correlation of Z and V .

If we have multiple control variates, we can proceed in a similar fashion. Now,
let Z denote a vector of d control variates and let

Σ =

[
ΣZ ΣV Z
ΣZV σ2

V

]
be the covariance matrix of (Z, V ). As above, we estimate the mean of Yβ =
V − β>Z . The ideal choice of β is the result of an ordinary least squares re-
gression between V and Zi, i = 1, . . . , n. Specifically, β∗ = ΣZ

−1ΣZV . Then,
asymptotically the variance of this estimator is [43],

σ2
Ŷβ∗

= (1−R2
ZV )σ2

V̂
, R2

ZV = ΣZVΣ
−1
Z ΣZV /σ

2
V . (12)
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This is commonly known as the fraction of variance unexplained [16]. In practice,

however, β∗ is unknown and needs to be replaced by an estimate β̂. This leads
to an increase in the estimator’s variance. Under the assumption of Z and V
having a multivariate normal distribution [11,28], the variance of the estimator

is Ŷβ̂ = V̂ − β̂>Ẑ

σ2
Ŷβ̂

=
n− 2

n− 2− d
(1−R2

ZV )σ2
V̂
. (13)

Clearly, a control variate is “good” if it is highly correlated with V . The
constraint in (11) is an example of the extreme case. When we use this constraint
as a control variate for the estimation of the mean at some time point t, it has
a correlation of ±1 since it describes the mean at that time precisely. Therefore
the variance is reduced to zero. We thus aim to pick control variates that are
highly correlated with V .

Consider, for example, the above case of the birth-death process. If we choose
(11) as a constraint, it would always yield the exact difference of the exact mean

to the sample mean and therefore have a perfect correlation. Clearly, β̂ reduces
to 1 and Ŷ1 = E (Xt).

standard LCV
estimate type
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Fig. 1. (left) The correlation structure of control variates Z0.4 and Z2.7 with the ob-
jective random variable M2 in Model 3. (right) Estimates using the same trajectories
with and without using the control variates.

6 Finding Efficient Control Variates

In this work, we propose a novel algorithm to synthesize an efficient set of control
variates. As we have seen in the previous section, effective control variates have a
high correlation with the target random variable. In the case of a single variate,
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the variance reduction is directly proportional to 1−ρ2, where ρ is the correlation.
In our case, infinitely many choices of Z are available. Our goal is to choose a
subset that satisfies two objectives: Firstly, every selected control variate should
reduce the estimator’s variance. Secondly, the subset should not be too large, i.e.
we want to avoid redundancies to achieve a good overall computational efficiency
of the variance reduction.

Accordingly, we define an efficiency value to estimate whether the reduction
in variance is compensating for the associated cost increase. A natural baseline of
any variance reduction is that it outweighs its associated additional costs. Let σ2

Y

be the variance of Y . The efficiency of the method is the ratio of the necessary
cost to achieve a similar reduction with the CV estimate YCV compared to the
standard estimate Y [29,33], i.e.

E =
c0σ

2
Y

c1σ2
YCV

. (14)

The cost ratio c0/c1 depends on both the specific implementation and the tech-
nical setup. The cost increase is mainly due to the computation of the integrals
in (10). The accumulation over the trajectory directly increases the cost of a
single simulation, which is the critical part of the estimation.

If the computation of a variate does not adequately compensate for its com-
putation with variance reduction, we do not want to include it. Balancing both
objectives is challenging because control variates often correlate with each other.
Such correlations expose redundancy between different variates. This also be-
comes clear, when considering that the overall variance reduction depends on
the coefficient of multiple correlation.

Here we follow a resampling paradigm: We start by building up a set of can-
didates using a particle splitting approach. After each splitting step, we generate
a small number of SSA samples to estimate correlations. Promising candidates
are chosen based on the improvement they provide and their time-weighting pa-
rameter λ is resampled (see Fig. 2). The main benefit of this bottom-up approach
is its lower dependence on the initial sampling distribution of λ. Moreover, the
procedure spends less time evaluating unpromising candidates. After generating
a set of control variates, the overall covariance matrix is estimated using stochas-
tic simulations. Using this information, we construct an efficient subset using a
greedy scheme, taking into account the redundancies between control variates.
We discuss Algorithm 2 in more detail below.

Initialization A tuple (mk, λk) of a moment vector mk and a time-weighting
parameter λk uniquely identifies a control variate k. The algorithm starts out
with an initial small set of control variates. That is, we use w(t) = eλkt and
f(x) = xmk in (7). For a given set of time-weighting parameters L, we use all
moments up to some fixed order nmax (line 2). For a fixed moment vector mk the
time-weighting parameter λk can lead to vastly different correlations ρkv with
the quantity of interest. The best choices of λ are usually not known beforehand.
Therefore, we sample an initial set of λ’s from a fixed distribution πλ (line 1).



Variance Reduction in SRNs using Control Variates 11

Fig. 2. An illustration of the resampling procedure for the time-weighting parameter λ
using Model 3. Areas giving higher correlations are resampled through multiple rounds.
The newly sampled values are given in blue. In each round only the new candidates
are evaluated.

Here, we use a standard normal distribution because its mean is the neutral
weighting of λ = 0 and extreme values are unlikely.

Resampling Promising candidates are chosen from all control variates based on
the estimated improvement ratio they provide, i.e.

γ̂kv = (1− ρ̂2kv)−1 (15)

following (13). Specifically, control variate k is chosen with probability propor-
tional to γ̂kv (line 8). The covariances of (only) the new variates are roughly
estimated using very few (e.g., d = 10) SSA samples. For the selected vari-
ates Icands, the time-weighting parameter is resampled using a step distribution.
There is some freedom in the specifics of this resampling procedure. In particular,
the number of splits nc and descendants ns for each candidate control the num-
ber of additional candidates. The algorithm performs nr rounds of resampling.
Figure 2 illustrates this part of the algorithm.

Covariance Estimation After sampling a set of candidates this way, we need to
select the most promising ones. For this, we are interested in covariances between
all control variates, as well. Since the resampling does not provide us with such
estimates, we evaluate all candidates together for a fixed number of simulations
(line 10).

Selection The selection part of the algorithm (line 12) proceeds in a greedy fash-
ion wrt. the potential estimated improvement γ̂iv given by any variate. However,
covariates often have high mutual correlations. For example, Zλ and Zλ+ε for a
small ε are typically highly correlated — often more with each other than with
the objective. We want to avoid this unnecessary computational overhead from
computing nearly redundant information and numerical problems due to the co-
variance matrix inversion (see (12)). As a solution, we normalize the estimated
improvement vector (γ̂iv)i by the product of the fractions of explained variances
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Algorithm 2: Estimate the mean of species i at time T

input : n, d, nmax, nλ, nc, ns, nr
output: estimate using linear control variates

1 L← {λi ∼ πλ | 1 ≤ i < nλ} ∪ {0}; // initialization

2 P ← {(m,λ)|1 ≤ |m| ≤ nmax, λ ∈ L};
3 Pall = ∅;
4 for i = 1, . . . , nr ; // resampling

5 do

6 (Σ̂, V̂ , Ẑ)← SSA(π0, T, P, d);
7 Pall ← Pall ∪ P ;
8 Icands ← {k ∼ γ̂kv/

∑
` γ̂`v | 1 ≤ k ≤ |Pall|, j = 1, . . . , nc};

9 P ←
⋃
k∈Icands

⋃ns
l=1{(mk, λ

′
k) | λ′k ∼ N(λk, 0.5)};

10 (Σ̂, V̂ , Ẑ)← SSA(π0, T, Pall, 5d); // covariance estimation

11 P ∗ = ∅;
12 while ∃i : (mi, λi) ∈ Pall \ P ∗ ∧ γ̂iv

∏|Pall|
j=1;(mj ,λj)/∈P∗ γ̂

−1
ij > ε; // selection

13 do

14 k ← arg maxi γ̂iv
∏|Pall|
j=1;(mj ,λj)/∈P∗ γ̂

−1
ij ;

15 P ∗ ← P ∗ ∪ {(mk, λk)};

16 (Σ̂, V̂ , Ẑ)← SSA(π0, T, P
∗, n); // estimation

17 return V̂ − (Σ̂−1
Z Σ̂ZV )

>
Ẑ

by the already selected covariates. Therefore we choose the most promising can-
didate given a selection P ∗ as

arg max
1≤i≤|Pall|

γ̂iv
∏

1≤j≤|Pall|
(mj ,λj)/∈P∗

γ̂−1ij (16)

in line 14. This selection is done, until some lower threshold ε is reached (line 12).

Estimation Finally, we simulate the model n times (line 16). The resulting in-
formation enables an LCV estimation (line 17).

7 Case Studies

The simulation is implemented in the Rust programming language2. The model
description is parsed from a high level specification. Rate functions are compiled
to stack programs for fast evaluation. To estimate the base-line cost c0, 1000
estimations were performed without considering any control variates.

We first consider two case studies that have already been used in previ-
ous work [5]. The first model is a simple dimerization process, albeit with an
countably infinite state-space. The second model is a switch model with a more

2 https://www.rust-lang.org

https://www.rust-lang.org
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complex bi-modal behavior. We now describe the models and the estimated
quantities in detail.

Model 2 (Dimerization) We first examine a simple dimerization model on
an unbounded state-space

∅ 10−→ M, 2M
0.1−−→ D

with initial condition X
(M)
0 = 0.

Despite the models simplicity, the moment equations are not closed for this
system due to the second reaction which is non-linear. Therefore a direct analysis
of the expected value would require a closure. For this model we will estimate

E(X
(M)
2 ).

The following models is bimodal, i.e. they each posses two stable regimes
among which they can switch stochastically. We choose the initial conditions
such that the process will move towards either attracting region with equal
probability.

Model 3 (Distributive Modification) This model was introduced in [10]. It
consists of the reactions

X + Y
.001−−→ B + Y , B + Y

.001−−→ 2Y ,

Y + X
.001−−→ B + X , B + X

.001−−→ 2X

with initial conditions XX
0 = XY

0 = X
(B)
0 = 100.

The expected value of interest here is E(X
(X)
50 ).

We applied the presented algorithm for an estimation using n = 10,000 sim-
ulations. Initially nλ = 10 samples for the time-weighting parameter were drawn
from a standard normal distribution (πλ = N(0, 1)). Constraints correspond-
ing to each first-order moment, i.e. the process’ expectations were generated
(nmax = 1). The covariance estimation during resampling used d = 10 samples.

We evaluated the algorithm both with and without resampling for these first
two case studies. The algorithm without resampling leaves out lines 4–9 from
Alg. 2. The evaluation without resampling provides a good point of comparison
to our previous heuristics performance on these cases. In the case of dimerization
we observe a variance reduction of ≈ 27.67 compared to a best case reduction of
≈ 28.75 in our previous work. This close performance however has to balance very
different slowdown factors: With our new heuristic the slowdown is a factor of
≈ 1.34 while in the previous case it was ≈ 1.95. Therefore the new method clearly
outperforms in terms of efficiency (≈ 20.5 (new) versus ≈ 14.86 (old)). This is
mainly due to the higher number of covariates used by the simple threshold
heuristic. In contrast the new method takes into account redundancies between
covariances while still retaining good performance. This becomes apparent when
comparing the average number of used variates (≈ 3.34 (old) versus ≈ 1.98
(new)).
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The variance reduction factor for the distributive modification model is sim-
ilar at ≈ 2.63 (old) versus ≈ 2.66 (new). Noticeably, the new method uses on
average fewer CVs (≈ 2.74) than the previous heuristic with the best efficiency
(≈ 3.23). The overall efficiency of the new algorithm with 1.72 is slightly lower
than the previous best value of 1.77, due to a higher slowdown. It is however
important to note, that the trade-off differs significantly between different heuris-
tics used in the previous algorithm. Furthermore, the lower average number of
control variates would reduce the slowdown factor further, if more trajectories
are generated.

1 2 3 4 5
|P * |

1.0

1.5

2.0

2.5

3.0

3.5

Distributive Modification (X(X)
50 )

Fig. 3. The variance reduction factor σ2
Y /σ

2
YLCV

over different numbers of selected
covariates with and without the resampling procedure.

In Figure 3 we contrast the variance improvement ratio with and without the
resampling algorithm. For the dimerization model, we see a clear improvement
of variance reduction. This improvement is due to the fact that the strongest
correlations are present for λ ≈ 2.5 (cf. Figure 2). This region of the time-
weighting parameter space is less likely to be sampled by the initial samples
from the standard normal distribution. Therefore the resampling procedure is
especially beneficial if the better parameters λ are farther from the origin. In case
of the distributive modification case study, we see a slight improvement. Here,
the best parameters λ are close to zero and thereby more likely to be sampled by
a standard normal. Still, the resampling improves covariate performance for the
most frequent cases of 2–4 covariates being selected (the case of 5 covariates has
only a few instances). Note, that the additional cost incurred by the resampling
procedure is comparatively small, because at most 4 candidates are evaluated in
each iteration.

Next, we turn to the estimation of probabilities. In particular, we consider
the event of a species being below a threshold ` at time t (species M for the
dimerization and X for the distributive modification). In Figure 4 we summarize
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the results of this study for varying levels `. In both case studies we observe that
control variates are efficient for probabilities not close to either zero or one.
In this case control variates are able to reduce the variance of the estimated
probabilities whilst maintaining a beneficial reduction-slowdown trade-off. This
region is larger for the distributive modification model because of its bimodal
behavior. If the probability to be estimated is close to either one or zero, the event
occurs too rarely or too often, respectively, to adequately explain variance using
linear correlations. We note, that the worst case efficiency is close to one. This
is due to the algorithm throwing out all covariate candidates leaving us with a
standard estimation. Only the initial covariate evaluation and resampling causes
a slowdown, driving efficiency slightly below one. Naturally this cost decreases
with more samples n.

Control variates based on test functions restricted to intervals did not lead
to an improvement (data not shown).

slowdown variance reduction efficiency

1.0

1.5

2.0

2.5
Dimerization

2 4 6 8 10 12
threshold 

0.0

0.5

1.0

Pr
(X

(M
)

2
)

1.0

1.5

2.0

Distributive Modification

0 100 200 300
threshold 

0.4

0.6

0.8

1.0

Pr
(X

(X
)

50
)

Fig. 4. The methods efficiency for the estimation of threshold probabilities. For each
threshold ` at least 200 estimations were performed.

Finally, with the lac operon model we consider a larger case study. This
model consists of 11 species and 25 partly non-linear reactions.
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Model 4 (Lac operon) This is a well-known model of genetic regulation with
positive feedback [42]. Its reactions are

∅
k1−−⇀↽−−
k19

MR , MR
k2−→ MR + R , 2R

k3−⇀↽−
k4

R2 , R2 + O
k5−⇀↽−
k6

R2O ,

2I + R2
k7−⇀↽−
k8

I2R2 , 2I + R2O
k9−−⇀↽−−
k10

I2R2 + O , O
k11−−→ O + MY ,

MY
k13−−→ MY + Y , Y + Iex

k14−−⇀↽−−
k15

YIex , YIex
k16−−→ Y + I , Iex

k17−−⇀↽−−
k18

I ,

MY
k20−−→ ∅ , R

k21−−→ ∅ , R2
k22−−→ ∅ , Y

k23−−→ ∅ ,

YIex
k24−−→ I , I2R2

k25−−→ 2I , R2O
k12−−→ R2O + MY .

Initially, X
(O)
0 = 1 and X(Iex) = 48,177 while all other abundancies are zero.

The parameters are k1 = 0.111, k2 = 15.0, k3 = 103.8, k4 = 0.001, k5 = 1992.7,
k6 = 2.4, k7 = k9 = 1.293× 10−7 k8 = 12, k10 = 9963.2, k11 = 0.5, k12 = 0.01,
k13 = 30.0, k14 = 0.249, k15 = 0.1, k16 = 6.0× 104, k17 = k18 = 0.92, k19 =
k20 = 0.462, k21 = k22 = k23 = k24 = k25 = 0.2.

We estimate the abundancy of LacY after one time unit, i.e. E(X
(Y )
1 ). It is

encoded by Y and facilitates the lactose import via reactions 14 and 16. A typical
simulation of the system up to time-horizon T = 1 takes well above one minute
of computational time. Therefore we reduce the number of used trajectories to
n = 1000. The other settings remain as above.

Despite the high dimensionality, we observe a good efficiency value of E ≈
4.85. The slowdown caused by the method is approximately 1.98. A big part of
this slowdown is due to the initial search of covariates. Initially 10 covariates are
generated for each first order moment, i.e. each of the 11 species. The number
of additionally resampled covariates is similar to previous case studies. Thus the
main cost of the initial resampling and selection is due to the first iteration of
the resampling loop and the simulation loop of the selection procedure. This
part naturally has still potential for optimization: Not all known covariates need
to be reconsidered at the selection stage. Instead, unpromising candidates could
be discarded prior to that stage.

Still, the high variance reduction by a factor of approx. 9.64−1 more than
compensates for this increase in computational cost, leading to the good over-
all efficiency. This shows that, even for more complex models, the method is
applicable and can extremely beneficial for Monte Carlo estimation.

8 Conclusion

In the context of Monte Carlo simulation, variance reduction techniques offer an
elegant way of improving the performance without introducing approximation
errors in addition to the statistical uncertainty.

For stochastic reaction networks, we show that it is possible to exploit con-
straints derived from the statistical moment equations for the construction of
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control variates. We propose a robust method to select an appropriate subset
from the large set of all possible variates. In particular, we improve an initial
subset by selecting particularly effective variates and removing redundant vari-
ates. By resampling the time-weighting parameter λ we ensure that appropriate
values are flexibly explored. In the worst case, all variates are dropped and the
performance approaches the standard SSA. In most cases, however, a suitable
subset is found together with the corresponding choices of λ.

We analyze the performance of the method when estimating event probabili-
ties and not only average molecule counts. Our largest case study has 11 species
and 24 reactions.

In the future, we will further explore the algorithmic design space. For ex-
ample, the resampling distribution could be adjusted using decaying standard
deviations. Furthermore, we will look at different test functions weighting the
state space more flexibly.
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