
ar
X

iv
:2

11
1.

00
27

2v
3

 [
cs

.F
L

]
 3

0
M

ay
 2

02
2

A Framework for Transforming Specifications in

Reinforcement Learning

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan

University of Pennsylvania

Abstract. Reactive synthesis algorithms allow automatic construction
of policies to control an environment modeled as a Markov Decision Pro-
cess (MDP) that are optimal with respect to high-level temporal logic
specifications. However, they assume that the MDP model is known a pri-
ori. Reinforcement Learning (RL) algorithms, in contrast, are designed to
learn an optimal policy when the transition probabilities of the MDP are
unknown, but require the user to associate local rewards with transitions.
The appeal of high-level temporal logic specifications has motivated re-
search to develop RL algorithms for synthesis of policies from specifi-
cations. To understand the techniques, and nuanced variations in their
theoretical guarantees, in the growing body of resulting literature, we de-
velop a formal framework for defining transformations among RL tasks
with different forms of objectives. We define the notion of a sampling-
based reduction to transform a given MDP into another one which can
be simulated even when the transition probabilities of the original MDP
are unknown. We formalize the notions of preservation of optimal poli-
cies, convergence, and robustness of such reductions. We then use our
framework to restate known results, establish new results to fill in some
gaps, and identify open problems. In particular, we show that certain
kinds of reductions from LTL specifications to reward-based ones do not
exist, and prove the non-existence of RL algorithms with PAC-MDP
guarantees for safety specifications.

Keywords: Reinforcement learning · Reactive synthesis · Temporal logic.

1 Introduction

In reactive synthesis for probabilistic systems, the system is typically modeled
as a (finite-state) Markov Decision Process (MDP), and the desired behavior
of the system is given as a logical specification. For example, in robot motion
planning, the model captures the physical environment in which the robot is
operating and how the robot updates its position in response to the available
control commands; and the logical requirement can specify that the robot should
always avoid obstacles and eventually reach all of the specified targets. The
synthesis algorithm then needs to compute a control policy that maximizes the
probability that an infinite execution of the system under the policy satisfies
the logical specification. There is a well developed theory of reactive synthesis

http://arxiv.org/abs/2111.00272v3

2 R. Alur et al.

for MDPs with respect to temporal logic specifications, accompanied by tools
optimized with heuristics for improving scalability and practical applications (for
instance, see [5] for a survey).

Reactive synthesis algorithms assume that the transition probabilities in the
MDP modeling the environment are known a priori. In many practical settings,
these probabilities are not known, and the model needs to be learnt by explo-
ration. Reinforcement learning (RL) has emerged to be an effective paradigm for
synthesis of control policies in this scenario. The optimization criterion for policy
synthesis using RL is typically specified by associating a local reward with each
transition and aggregating the sequence of local rewards along an infinite exe-
cution using discounted-sum or limit-average operators. Since an RL algorithm
is learning from samples, it is expected to compute a sequence of approxima-
tions to the optimal policy with guaranteed convergence. Furthermore, ideally,
the algorithm should have a PAC (Probably Approximately Correct) guarantee
regarding the number of samples needed to ensure that the value of the policy
it computes is within a specified bound of that of an optimal policy with a prob-
ability greater than a specified threshold. RL algorithms with convergence and
efficient PAC guarantees are known for discounted-sum rewards [32, 31].

A key shortcoming of RL algorithms is that the user must manually encode
the desired behavior by associating rewards with system transitions. An appeal-
ing alternative is to instead have the user provide a high-level logical specification
encoding the task. First, it is more natural to specify the desired properties of
the global behavior, such as “always avoid obstacles and reach targets in this
specified order”, in a logical formalism such as temporal logic. Second, logical
specifications facilitate testing and verifiability since it can be checked indepen-
dently whether the synthesized policy satisfies the logical requirement. Finally,
we can assume that the learning algorithm knows the logical specification in ad-
vance, unlike the local rewards learnt during model exploration, thereby opening
up the possibility of design of specification-aware learning algorithms. For exam-
ple, the structure of a temporal-logic formula can be exploited for hierarchical
and compositional learning to reduce sample complexity in practice [19, 22].

This has motivated many researchers to design RL algorithms for logical
specifications [3, 7, 10, 17, 27, 16, 35, 12, 33, 20, 26, 18, 23]. The natural ap-
proach is to (1) translate the logical specification to an automaton that accepts
executions that satisfy the specification, (2) define an MDP that is the product
of the MDP being controlled and the specification automaton, (3) associate re-
wards with the transitions of the product MDP so that either discounted-sum or
limit-average aggregation (roughly) captures acceptance by the automaton, and
(4) apply an off-the-shelf RL algorithm such as Q-learning to synthesize the opti-
mal policy. While this approach is typical to most papers in this rapidly growing
body of research, and many of the proposed techniques have been shown to work
well empirically, there are many nuanced variations in terms of their theoreti-
cal guarantees. Instead of attempting to systematically survey the literature, we
classify it in following broad categories: some only consider finite executions with
a known time horizon [3]; some provide convergence guarantees only when the

Transforming Specifications in Reinforcement Learning 3

optimal policy satisfies the specification almost surely; some provide PAC guar-
antees only when certain properties regarding the transition probabilities of the
MDP are known [9, 4, 11]; some include a parameterized reduction [6, 12]—the
parameter being the discount factor, for instance, establishing correctness for
some value of the parameter without specifying how to compute it. The bottom
line is that there are no known RL algorithms with convergence and/or PAC
guarantees to synthesize a policy to maximize the satisfaction of a temporal
logic specification (or an impossibility result that such algorithms cannot exist).

In this paper, we propose a formal framework for defining transformations
among RL tasks. We define an RL task to consist of an MDP M together with a
specification φ for the desired policy. The MDP is given by its states, actions, a
function to reset the state to its initial state, and a step-function that allows sam-
pling of its transitions. Possible forms of specifications include transition-based
rewards to be aggregated as discounted-sum or limit-average, reward machines
[18], safety, reachability, and linear temporal logic formulas. We then define
sampling-based reduction to formalize transforming one RL task (M, φ) to an-
other (M̄, φ′). While the relationship between the transformed model M̄ and
the original model M is inspired by the classical definitions of simulation maps
over (probabilistic) transition systems, the main challenge is that the transition
probabilities of M̄ cannot be directly defined in terms of the unknown transi-
tion probabilities of M. Intuitively, the step-function to sample transitions of
M̄ should be definable in terms of the step-function of M used as a black-box,
and our formalization allows this.

The notion of reduction among RL tasks naturally leads to formalization of
preservation of optimal policies, convergence, and robustness (that is, policies
close to optimal in one get mapped to ones close to optimal in the other). We
use this framework to revisit existing results, fill in some gaps, and identify open
problems.

We begin with preliminaries in Section 2 followed by a discussion of various
kinds of specifications in Section 3. In Section 4, we show that it is not possible
to reduce all LTL specifications to (discounted-sum) reward machines (which are
reward functions with an internal state) when the underlying MDP M is kept
fixed. We then define the notion of sampling-based reduction and restate exist-
ing results using our framework. In Section 5, we introduce the notions of robust
specifications and robust reductions, and show that robust sampling-based reduc-
tions do not exit for transforming safety (as well as reachability) specifications
to discounted rewards. Finally, we present our result on non-existence of RL al-
gorithms with PAC-MDP guarantees for safety (and reachability) specifications
in Section 6.

Related Work

In Section 4.3, we discuss some existing work on reducing LTL specifications
to rewards. There is work on similar reductions for more complex lexicographic
ω-regular objectives [15] as well as in the context of stochastic games [14]. We
discuss existing PAC learning results for logical specifications in Section 6.1.

4 R. Alur et al.

Concurrent to our work, the authors of [34] show that PAC-MDP algorithms do
not exist for any non-finitary LTL objective.

Closely related to this work is the work on expressivity of discounted rewards
[1] which studies whether certain kinds of tasks can be encoded using discounted
rewards. There are a couple of key differences to our work. First, they do not
consider reductions that involve modifying the underlying MDP M. Second, the
tasks considered are based on explicit orderings among policies or trajectories
rather than succinct formal specifications.

2 Preliminaries

Markov Decision Process. A Markov Decision Process (MDP) is a tuple M =
(S,A, s0, P), where S is a finite set of states, s0 is the initial state,1 A is a finite
set of actions, and P : S × A× S → [0, 1] is the transition probability function,
with

∑

s′∈S P (s, a, s′) = 1 for all s ∈ S and a ∈ A.
An infinite run ζ ∈ (S×A)ω is a sequence ζ = s0a0s1a1 . . ., where si ∈ S and

ai ∈ A for all i ∈ N. Similarly, a finite run ζ ∈ (S ×A)∗ × S is a finite sequence
ζ = s0a0s1a1 . . . at−1st. For any run ζ of length at least j and any i ≤ j, we let ζi:j
denote the subsequence siaisi+1ai+1 . . . aj−1sj . We use Runs(S,A) = (S × A)ω

and Runsf (S,A) = (S × A)∗ × S to denote the set of infinite and finite runs,
respectively.

Let D(A) = {∆ : A → [0, 1] |
∑

a∈A∆(a) = 1} denote the set of all dis-
tributions over actions. A policy π : Runsf (S,A) → D(A) maps a finite run
ζ ∈ Runsf (S,A) to a distribution π(ζ) over actions. We denote by Π(S,A)
the set of all such policies. A policy π is positional if π(ζ) = π(ζ′) for all
ζ, ζ′ ∈ Runsf (S,A) with last(ζ) = last(ζ′) where last(ζ) denotes the last state
in the run ζ. A policy π is deterministic if, for all finite runs ζ ∈ Runsf (S,A),
there is an action a ∈ A with π(ζ)(a) = 1.

Given a finite run ζ = s0a0 . . . at−1st, the cylinder of ζ, denoted by Cyl(ζ), is
the set of all infinite runs starting with prefix ζ. Given an MDP M and a policy
π ∈ Π(S,A), we define the probability of the cylinder set by DM

π (Cyl(ζ)) =
∏t−1

i=0 π(ζ0:i)(ai)P (si, ai, si+1). It is known that DM
π can be uniquely extended

to a probability measure over the σ-algebra generated by all cylinder sets.

Simulator. In reinforcement learning, the standard assumption is that the set
of states S, the set of actions A, and the initial state s0 are known but the
transition probability function P is unknown. The learning algorithm has access
to a simulator S which can be used to sample runs of the system ζ ∼ DM

π using
any policy π. The simulator can also be the real system, such as a robot, that M
represents. Internally, the simulator stores the current state of the MDP which
is denoted by S.state. It makes the following functions available to the learning
algorithm.

1 A distribution η over initial states can be modeled by adding a new state s0 from
which taking any action leads to a state sampled from η.

Transforming Specifications in Reinforcement Learning 5

S.reset(): This function sets S.state to the initial state s0.

S.step(a): Given as input an action a, this function samples a state s′ ∈ S
according to the transition probability function P—i.e., the probability that
a state s′ is sampled is P (s, a, s′) where s = S.state. It then updates S.state
to the newly sampled state s′ and returns s′.

Simulation models without the reset() function have also been studied [25, 31].
In this paper, we allow resets, however, we believe that our results also apply to
settings in which resets are not allowed.

3 Task Specification

In this section, we present many different ways in which one can specify the
objective of the learning algorithm. We define a reinforcement learning task to
be a pair (M, φ) where M is an MDP and φ is a specification for M. In general,
a specification φ for M = (S,A, s0, P) defines a function JM

φ : Π(S,A) → R

and the reinforcement learning objective is to compute a policy π that maxi-
mizes JM

φ (π). Let J ∗(M, φ) = supπ J
M
φ (π) denote the maximum value of JM

φ .
We let Πopt(M, φ) denote the set of all optimal policies in M w.r.t. φ—i.e.,
Πopt(M, φ) = {π | JM

φ (π) = J ∗(M, φ)}. In many cases, it is sufficient to com-

pute an ε-optimal policy π̃ with JM
φ (π̃) ≥ J ∗(M, φ) − ε; we let Πε

opt(M, φ)
denote the set of all ε-optimal policies in M w.r.t. φ.

3.1 Rewards

The most common kind of specifications used in reinforcement learning is reward
functions that map transitions in M to real values. We first define the more gen-
eral reward machines and then define standard transition-based reward functions
as a special case.

Reward Machines. Reward Machines [18] extend simple transition-based reward
functions to history-dependent ones by using an automaton model. Formally, a
reward machine for an MDP M = (S,A, s0, P) is a tuple R = (U, u0, δu, δr),
where U is a finite set of states, u0 is the initial state, δu : U × S → U is the
state transition function, and δr : U → [S ×A× S → R] is the reward function.
Given an infinite run ζ = s0a0s1a1 . . ., we can construct an infinite sequence of
reward machine states ρR(ζ) = u0u1, . . . defined by ui+1 = δu(ui, si+1). Then,
we can assign either a discounted-sum or a limit-average reward to ζ:

– Discounted Sum. Given a discount factor γ ∈]0, 1[, the full specification is
φ = (R, γ) and we have

Rγ(ζ) =

∞
∑

i=0

γiδr(ui)(si, ai, si+1).

6 R. Alur et al.

Though less standard, one can use different discount factors in different states
of M, in which case we have γ : S →]0, 1[and

Rγ(ζ) =

∞
∑

i=0

(

i−1
∏

j=0

γ(sj)
)

δr(ui)(si, ai, si+1).

The value of a policy π is JM
φ (π) = Eζ∼DM

π
[Rγ(ζ)].

– Limit Average. The specification is just a reward machine φ = R. The t-step
average reward of the run ζ is

Rt
avg(ζ) =

1

t

t−1
∑

i=0

δr(ui)(si, ai, si+1).

The value of a policy π is JM
φ (π) = lim inft→∞ Eζ∼DM

π
[Rt

avg(ζ)].

A standard transition-based reward function R is simply a reward machine R
with a single state u0; in this case, we use R(s, a, s′) to denote δr(u0)(s, a, s

′).

3.2 Abstract Specifications

The above specifications are defined w.r.t. a given set of states S and actions A,
and can only be interpreted over MDPs with the same state and action spaces. In
this section, we look at abstract specifications, which are defined independently
of S and A. To achieve this, a common assumption is that there is a fixed
set of propositions P , and the simulator provides access to a labeling function
L : S → 2P denoting which propositions are true in any given state. Given a
run ζ = s0a0s1a1 . . ., we let L(ζ) denote the corresponding sequence of labels
L(ζ) = L(s0)L(s1) A labeled MDP is a tuple M = (S,A, s0, P, L). WLOG,
we only consider labeled MDPs in the rest of the paper.

Abstract Reward Machines. Reward machines can be adapted to the abstract
setting quite naturally. An abstract reward machine (ARM) is similar to a reward
machine except δu and δr are independent of S and A—i.e., δu : U × 2P → U
and δr : U → [2P → R]. Given current ARM state ui and next MDP state si+1,
the next ARM state is given by ui+1 = δu(ui, L(si+1)), and the reward is given
by δr(ui)(L(si+1)).

Languages. Formal languages can be used to specify qualitative properties about
runs of the system. A language specification φ = L ⊆ (2P)ω is a set of “desirable”
sequences of labels. The value of a policy π is the probability of generating a
sequence in L—i.e.,

JM
φ (π) = DM

π

(

{ζ ∈ Runs(S,A) | L(ζ) ∈ L}
)

.

Some common ways to define languages are as follows.

Transforming Specifications in Reinforcement Learning 7

– Reachability. Given an accepting set of propositionsX ∈ 2P , we haveLreach(X) =
{w ∈ (2P)ω | ∃i. wi ∩X 6= ∅}.

– Safety. Given a safe set of propositions X ∈ 2P , we have Lsafe(X) = {w ∈
(2P)ω | ∀i. wi ⊆ X}.

– Linear Temporal Logic. Linear Temporal Logic [29] over propositions P is
defined by the grammar

ϕ := b ∈ P | ϕ ∨ ϕ | ¬ϕ | © ϕ | ϕ U ϕ

where © denotes the “Next” operator and U denotes the “Until” operator.
We refer the reader to [30] for more details on the semantics of LTL specifi-
cations. We use ♦ and � to denote the derived “Eventually” and “Always”
operators, respectively. Given an LTL specification ϕ over propositions P ,
we have Lltl(ϕ) = {w ∈ (2P)ω | w |= ϕ}.

3.3 Learning Algorithms

A learning algorithm A is an iterative process that in each iteration (i) either
resets the simulator or takes a step in M, and (ii) outputs its current estimate
of an optimal policy π. A learning algorithm A induces a random sequence of
output policies {πn}∞n=1 where πn is the policy output in the nth iteration. We
consider two common kinds of learning algorithms. First, we consider algorithms
that converge in the limit almost surely.

Definition 1. A learning algorithm A is said to converge in the limit for a class
of specifications C if, for any RL task (M, φ) with φ ∈ C,

JM
φ (πn) → J ∗(M, φ) as n → ∞ almost surely.

Q-learning [32] is an example of a learning algorithm that converges in the
limit for discounted-sum rewards. There are variants of Q-learning for limit-
average rewards [2] which have been shown to converge in the limit under some
assumptions on the MDP M. The second kind of algorithms is Probably Approx-
imately Correct (PAC-MDP) [24] algorithms which are defined as follows.

Definition 2. A learning algorithm A is said to be PAC-MDP for a class of
specifications C if, there is a function h such that for any p > 0, ε > 0,
and any RL task (M, φ) with M = (S,A, s0, P) and φ ∈ C, taking N =
h(|S|, |A|, |φ|, 1

p
, 1
ε
), with probability at least 1− p, we have

∣

∣

∣

{

n | πn /∈ Πε
opt(M, φ)

}
∣

∣

∣
≤ N.

We say a PAC-MDP algorithm is efficient if the sample complexity function
h is polynomial in |S|, |A|, 1

p
and 1

ε
. There are efficient PAC-MDP algorithms for

discounted-sum rewards [25, 31].

8 R. Alur et al.

4 Reductions

There has been a lot of research on RL algorithms for reward-based specifications.
The most common approach for language-based specifications is to transform the
given specification into a reward function and apply algorithms that maximize
the expected reward. In such cases, it is important to ensure that maximizing
the expected reward corresponds to maximizing the probability of satisfying the
specification. In this section, we study such reductions and formalize a general
notion of sampling-based reductions in the RL setting—i.e., the transition prob-
abilities are unknown and only a simulator of M is available.

4.1 Specification Translations

We first consider the simplest form of reduction, which involves translating the
given specification into another one. Given a specification φ for MDP M =
(S,A, s0, P, L) we want to construct another specification φ′ such that for any
π ∈ Πopt(M, φ′), we also have π ∈ Πopt(M, φ). This ensures that φ′ can be
used to compute a policy that maximizes the objective of φ. Note that since the
transition probabilities P are not known, the translation has to be independent
of P and furthermore the above optimality preservation criterion must hold for
all P .

Definition 3. An optimality preserving specification translation is a computable
function F that maps the tuple (S,A, s0, L, φ) to a specification φ′ such that
for all transition probability functions P , letting M = (S,A, s0, P, L), we have
Πopt(M, φ′) ⊆ Πopt(M, φ).

A first attempt at a reinforcement learning algorithm for language-based
specifications is to translate the given specification to a reward machine (either
discounted-sum or limit-average). However there are some limitations to this
approach. First, we show that it is not possible to reduce reachability and safety
objectives to reward machines with discounted rewards.

Theorem 1. Let P = {b} and φ = Lreach({b}). There exists S, A, s0, L such
that for any discounted-sum reward machine specification φ′ = (R, γ), there is
a transition probability function P such that for M = (S,A, s0, P, L), we have
Πopt(M, φ′) 6⊆ Πopt(M, φ).

The main idea behind the proof is that one can make the transition probabili-
ties small enough so that the expected time taken to reach the goal is large while
maintaining an optimal probability of 1 for eventually reaching the goal. Using
this idea, it is possible to define transition probabilities such that the expected
reward w.r.t. an optimal policy is smaller than the expected reward obtained by
a suboptimal policy.

Proof. Consider the MDP in Figure 1, which has states S = {s0, s1, s2, s3},
actions A = {a1, a2}, and labeling function L given by L(s1) = {b} (marked

Transforming Specifications in Reinforcement Learning 9

s0

s1

s3s2

a1 / p1

a1 / 1− p1

a2 / 1− p2

a1 / 1

a2 / p2
a1 / 1a1 / p3

a1 / 1− p3

Fig. 1: Counterexample for reducing reach specification to a discounted RM.

with double circles) and L(s0) = L(s2) = L(s3) = ∅. Each edge denotes a state
transition and is labeled by an action followed by the transition probability; the
latter are parameterized by p1, p2, and p3. At states s1, s2, and s3 the only action
available is a1.

2 There are only two deterministic policies π1 and π2 in M; π1

always chooses a1, whereas π2 first chooses a2 followed by a1 afterwards.

For the sake of contradiction, suppose there is a φ′ = (R, γ) that preserves
optimality w.r.t. φ for all values of p1, p2, and p3. WLOG, we assume that the
rewards are normalized—i.e. δr : U → [S × A × S → [0, 1]]. If p1 = p2 =
p3 = 1, then taking action a1 in s0 achieves reach probability of 1, whereas
taking action a2 in s0 leads to a reach probability of 0. Hence, we must have
that Rγ(s0a1(s1a1)

ω) ≥ Rγ(s0a2(s2a1)
ω) + ε for some ε > 0, as otherwise, π2

maximizes JM
φ′ but does not maximize JM

φ .

For any finite run ζ ∈ Runsf (S,A), let Rγ(ζ) denote the finite discounted-

sum reward of ζ. Let t be such that γt

1−γ
≤ ε

2 . Then, for any ζ ∈ Runs(S,A), we
have

Rγ(s0a1(s1a1)
ω) ≥ Rγ(s0a2(s2a1)

ω) + ε

≥ Rγ(s0a2(s2a1)
ts2) + ε

≥ Rγ(s0a2(s2a1)
ts2) +

γt

1− γ
+

ε

2
.

Since limp3→1 p
t
3 = 1, there exists p3 < 1 such that 1− pt3 ≤

ε
8 (1− γ). Let p1 < 1

be such that p1 ·Rγ(s0a1(s1a1)
ω) ≥ Rγ(s0a2(s2a1)

ts2)+
γt

1−γ
+ ε

4 and let p2 = 1.

2 This can be modeled by adding an additional dead state that is reached upon taking
action a2 in these states.

10 R. Alur et al.

Then, we have

JM
φ′ (π1) ≥ p1 · Rγ(s0a1(s1a1)

ω)

≥ Rγ(s0a2(s2a1)
ts2) +

γt

1− γ
+

ε

4

≥ pt3 ·
(

Rγ(s0a2(s2a1)
ts2) +

γt

1− γ

)

+
ε

4

≥ pt3 ·
(

Rγ(s0a2(s2a1)
ts2) +

γt

1− γ

)

+ (1 − pt3) ·
(1

1− γ

)

+
ε

8

> JM
φ′ (π2),

where the last inequality followed from the fact that when using π2, the system
stays in state s2 for at least t steps with probability pt3, and the reward of such

trajectories is bounded from above by Rγ(s0a2(s2a1)
ts2) +

γt

1−γ
, along with the

fact that the reward of all other trajectories is bounded by 1
1−γ

. This leads to a

contradiction since π1 maximizes JM
φ′ but JM

φ (π1) = p1 < 1 = JM
φ (π2). ⊓⊔

We do not use the fact that the reward machine is finite state in our proof;
therefore, the above result applies to general non-Markovian reward functions of
the form R : Runsf (S,A) → [0, 1] with γ-discounted reward defined by Rγ(ζ) =
∑∞

i=0 γ
iR(ζ0:i). The proof can be easily modified to show the result for safety

specifications as well.

u0 u1

any(X) / 1

¬any(X) / 0 ⊤ / 1

Fig. 2: ARM for φ = Lreach(X).

The main challenge in translating to discounted-sum rewards is the fact that
the rewards vanish over time and the overall reward depends primarily on the
first few steps. This issue can be partly overcome by using limit-average rewards.
In fact, we have the following theorem.

Theorem 2. There exists an optimality preserving specification translation from
reachability and safety specifications to abstract reward machines (with limit-
average aggregation).

Proof. An abstract reward machine for the specification φ = Lreach(X) is shown
in Figure 2. Each transition is labeled by a Boolean formula over P followed
by the reward. We use any(X) to denote

∨

b∈X b. It is easy to see that for any
MDP M and any policy π of M, we have JM

R (π) = JM
φ (π). An ARM for

Transforming Specifications in Reinforcement Learning 11

φ = Lsafe(P \ X) is obtained by replacing the reward value r by 1 − r on all
transitions. ⊓⊔

However, we can show that there does not exist an ARM for the specification
φ = Lltl(�♦b), which requires the proposition b to be true infinitely often. Intu-
itively, the result follows from the fact that, given any ARM, we can construct
an infinite word w ∈ (2P)ω in which b holds true rarely but infinitely often such
that w achieves a lower limit-average reward than another word w′ in which b
holds true more frequently.

Theorem 3. Let P = {b} and φ = Lltl(�♦b). For any ARM specification
φ′ = R with limit-average rewards, there exists an MDP M = (S,A, s0, P, L)
such that Πopt(M, φ′) 6⊆ Πopt(M, φ).

Proof. For the sake of contradiction, let φ′ = R = (U, u0, δu, δr) be an ARM that
preserves optimality w.r.t φ for all MDPs. The extended state transition function
δu : U × (2P)∗ → U is defined naturally. WLOG, we assume that all states in R
are reachable from the initial state and that the rewards are normalized3—i.e.,
δr : U → [2P → [0, 1]].

A cycle in R is a sequence C = u1ℓ1u2ℓ2 . . . ℓkuk+1 where ui ∈ U , ℓi ∈ 2P ,
ui+1 = δu(ui, ℓi) for all i, uk+1 = u1, and the states u1, . . . , uk are distinct.
A cycle is negative if ℓi = ∅ for all i, and positive if ℓi = {b} for all i. The

average reward of a cycle C is given by Ravg(C) = 1
k

∑k
i=1 δr(ui)(ℓi). For any

cycle C = u1ℓ1 . . . ℓkuk+1 we can construct a deterministic MDP MC with a
single action that first generates a sequence of labels σ such that δu(u0, σ) = u1,
and then repeatedly generates the sequence of labels ℓ1 . . . ℓk. The limit average
reward of the only policy π in MC is JMC

R
(π) = Ravg(C) since the cycle C

repeats indefinitely.

Now, given any positive cycle C+ and any negative cycle C−, we claim that
Ravg(C+) > Ravg(C−). To show this, consider an MDP M with two actions a1
and a2 such that taking action a1 in the initial state s0 leads to MC+

, and taking
action a2 in s0 leads to MC−

. The policy π1 that takes action a1 in s0 achieves a
satisfaction probability of JM

φ (π1) = 1, whereas the policy π2 taking action a2 in

s0 achieves JM
φ (π2) = 0. Since JM

R (π1) = Ravg(C+) and JM
R (π2) = Ravg(C−),

we must have that Ravg(C+) > Ravg(C−) to preserve optimality w.r.t. φ. Since
there are only finitely many cycles in R, there exists an ε > 0 such that for any
positive cycle C+ and any negative cycle C− we have Ravg(C+) ≥ Ravg(C−)+ ε.

Consider a bottom strongly connected component (SCC) of the graph of R.
We show that this component contains a negative cycle C− = u1ℓ1 . . . ℓkuk+1

along with a second cycle C = u′
1ℓ

′
1 . . . ℓ

′
k′u′

k′+1 such that u′
1 = u1 and ℓ′1 = {b}.

To construct C−, from any state in the bottom SCC of R, we can follow edges
labeled ℓ = ∅ until we repeat a state, and let this state be u1. Then, to construct
C, from u′

1 = u1, we can follow the edge labeled ℓ′1 = {b} to reach u′
2 = δ(u′

1, ℓ
′
1);

since we are in the bottom SCC, there exists a path from u′
2 back to u′

1. Now,

3 The rewards assigned by an ARM have to be independent of S.

12 R. Alur et al.

consider a sequence of the form Cm = Cm
−C, where m ∈ N. We have

Ravg(Cm) =
mkRavg(C−) + k′Ravg(C)

mk + k′

≤
mk

mk + k′
Ravg(C−) +

k′

mk + k′

≤ Ravg(C−) +
k′

mk + k′
.

Let m be such that k′

mk+k′ ≤ ε
2 and C+ be any positive cycle. Then, we have

Ravg(C+) ≥ Ravg(Cm)+ ε
2 ; therefore, there exists p < 1 such that p·Ravg(C+) ≥

Ravg(Cm) + ε
4 . Now, we can construct an MDP M in which (i) taking action a1

in initial state s0 leads to MC+
with probability p, and to a dead state (where

b does not hold) with probability 1− p, and (ii) taking action a2 in initial state
s0 leads to a deterministic single-action component that forces R to reach u1

(recall that WLOG, all states in R are assumed to be reachable from u0), and
then generates the sequence of labels in Cm indefinitely. Let π1 and π2 be policies
that select a1 and a2 in s0, respectively. Then, we have

JM
R (π1) ≥ p · Ravg(C+) ≥ Ravg(Cm) +

ε

4
= JM

R (π2) +
ε

4
.

However JM
φ (π1) = p < 1 = JM

φ (π2), which is a contradiction. ⊓⊔

Note that the above theorem claims only the non-existence of abstract reward
machines for the LTL specification �♦b, whereas Theorem 1 holds for arbitrary
reward machines and history dependent reward functions. We do not rule out
the possibility of a specification translation that constructs different ARMs (with
limit-average rewards) for the same LTL objective depending on S, A, s0 and L.
This leads to the following natural question.

Open Problem 1. Does there exist an optimality preserving specification trans-
lation from LTL specifications to reward machines with limit-average rewards?

4.2 Sampling-based Reduction

The previous section suggests that keeping the MDP M fixed might be insuffi-
cient for reducing LTL specifications to reward-based ones. In this section, we
formalize the notion of a sampling-based reduction where we are allowed to mod-
ify the MDP M in a way that makes it possible to simulate the modified MDP
M̄ using a simulator for M without the knowledge of the transition probabilities
of M.

Given an RL task (M, φ) we want to construct another RL task (M̄, φ′) and
a function f that maps policies in M̄ to policies in M such that for any policy
π̄ ∈ Πopt(M̄, φ′), we have f(π̄) ∈ Πopt(M, φ). Since it should be possible to
simulate M̄ without the knowledge of the transition probability function P of
M, we impose several constraints on M̄.

Transforming Specifications in Reinforcement Learning 13

Let M = (S,A, s0, P, L) and M̄ = (S̄, Ā, s̄0, P̄ , L̄). First, it must be the case
that S̄, Ā, s̄0, L̄ and f are independent of P . Second, since the simulator of
M̄ uses the simulator of M we can assume that at any time, the state of the
simulator of M̄ includes the state of the simulator of M. Formally, there is a
map β : S̄ → S such that for any s̄, β(s̄) is the state of M stored in s̄. Since it
is only possible to simulate M starting from s0 we must have β(s̄0) = s0. Next,
when taking a step in M̄, a step in M may or may not occur, but the probability
that a transition is sampled from M should be independent of P . Given these
desired properties, we are ready to define a step-wise sampling-based reduction.

Definition 4. A step-wise sampling-based reduction is a computable function F
that maps the tuple (S,A, s0, L, φ) to a tuple (S̄, Ā, s̄0, L̄, f, β, α, q1, q2, φ

′) where
f : Π(S̄, Ā) → Π(S,A), β : S̄ → S, α : S̄ × Ā → D(A), q1 : S̄ × Ā × S̄ → [0, 1],
q2 : S̄ × Ā×A× S̄ → [0, 1] and φ′ is a specification such that

– β(s̄0) = s0,

– q1(s̄, ā, s̄
′) = 0 if β(s̄) 6= β(s̄′) and,

– for any s̄ ∈ S̄, ā ∈ Ā, a ∈ A, and s′ ∈ S we have

∑

s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′) = 1−

∑

s̄′∈S̄

q1(s̄, ā, s̄
′). (1)

For any transition probability function P : S×A×S → [0, 1], the new transition
probability function P̄ : S̄ × Ā× S̄ → [0, 1] is defined by

P̄ (s̄, ā, s̄′) = q1(s̄, ā, s̄
′) + Ea∼α(s̄,ā)[q2(s̄, ā, a, s̄

′)P (β(s̄), a, β(s̄′))]. (2)

In Equation 2, q1(s̄, ā, s̄
′) denotes the probability with which M̄ steps to s̄′

without sampling a transition from M. In the event that a step in M does occur,
α(s̄, ā)(a) gives the probability of the action a taken in M and q2(s̄, ā, a, s̄

′) is
the (unnormalized) probability with which M̄ transitions to s̄′ given that action
a in M caused a transition to β(s̄′). It is easy to see that, for any P , P̄ defined
in Equation 2 is a valid transition probability function.

Lemma 1. Given a step-wise sampling-based reduction F , for any MDP M =
(S,A, s0, P, L) and specification φ, the function P̄ defined by F is a valid transi-
tion probability function.

14 R. Alur et al.

Proof. It is easy to see that P̄ (s̄, ā, s̄′) ≥ 0 for all s̄, s̄′ ∈ S̄ and ā ∈ Ā. Now for
any s̄ ∈ S̄ and ā ∈ Ā, letting

∑

s̄′ q1(s̄, ā, s̄
′) = p(s̄, ā), we have

∑

s̄′∈S̄

P (s̄, ā, s̄′) = p(s̄, ā) +
∑

s̄′∈S̄

Ea∼α(s̄,ā)[q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))]

= p(s̄, ā) + Ea∼α(s̄,ā)

[

∑

s̄′∈S̄

q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))

]

= p(s̄, ā) + Ea∼α(s̄,ā)

[

∑

s′∈S

∑

s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′)P (β(s̄), a, β(s̄′))

]

= p(s̄, ā) + Ea∼α(s̄,ā)

[

∑

s′∈S

P (β(s̄), a, s′)
∑

s̄′∈β−1(s′)

q2(s̄, ā, a, s̄
′))

]

= p(s̄, ā) + Ea∼α(s̄,ā)

[

∑

s′∈S

P (β(s̄), a, s′)(1− p(s̄, ā))
]

= 1,

where the penultimate step followed from Equation 1. ⊓⊔

Example 1. A simple example of a step-wise sampling-based reduction is the
product construction used to translate reward machines to regular reward func-
tions [18]. Let R = (U, u0, δu, δr). Then, we have S̄ = S × U , Ā = A, s̄0 =
(s0, u0), L̄(s, u) = L(s), β(s, u) = s, α(a)(a′) = 1(a′ = a), q1 = 0, and
q2((s, u), a, a

′, (s′, u′)) = 1(u′ = δu(u, s
′)). The specification φ′ is a reward func-

tion given by R((s, u), a, (s′, u′)) = δr(u)(s, a, s
′), and f(π̄) is a policy that keeps

track of the reward machine state and acts according to π̄.

Given an MDP M = (S,A, s0, P, L) and a specification φ, the reduction F
defines a unique triplet (M̄, φ′, f) with M̄ = (S̄, Ā, s̄0, P̄ , L̄), where S̄, Ā, s̄0, L̄, f
and φ′ are obtained by applying F to (S,A, s0, L, φ) and P̄ is defined by Equa-
tion 2. We let F(M, φ) denote the triplet (M̄, φ′, f). Given a simulator S of M,
we can construct a simulator S̄ of M̄ as follows.

S̄.reset(): This function internally sets the current state of the MDP to s̄0 and
calls the reset function of M.

S̄.step(ā): This function is outlined in Algorithm 1. We use s̄′ ∼ ∆(s̄′) to
denote that s̄′ is sampled from the distribution defined by ∆. It takes a step
without calling S.step with probability p. Otherwise, it samples an action
a according to α(s̄, ā), calls S.step(a) to get next state s′ of M and then
samples an s̄′ satisfying β(s̄′) = s′ based on q2. Equation 1 ensures that q2

1−p

defines a valid distribution over β−1(s′).

We call the reduction step-wise since at most one transition of M can occur
during a transition of M̄. Under this assumption, we justify the general form of
P̄ . Let s̄ and ā be fixed. Let XS̄ be a random variable denoting the next state
in M̄ and XA be a random variable denoting the action taking in M (it takes

Transforming Specifications in Reinforcement Learning 15

Algorithm 1 Step function of the simulator S̄ of M̄ given β, α, q1, q2 and a
simulator S of M.

function S̄.step(ā)
s̄← S̄.state
p←

∑
s̄
′ q1(s̄, ā, s̄

′)
x ∼ Uniform(0, 1)
if x ≤ p then

S̄.state← s̄′ ∼
q1(s̄, ā, s̄

′)

p
else

a ∼ α(s̄, ā)
s′ ← S.step(a)

S̄.state← s̄′ ∼
q2(s̄, ā, a, s̄

′)1(β(s̄′) = s′)

1− p
{Ensures β(s̄′) = s′}

return S̄.state

a dummy value ⊥ /∈ A when no step in M is taken). Then, for any s̄′ ∈ S̄, we
have

Pr[XS̄ = s̄′] = Pr[XS̄ = s̄′ ∧XA = ⊥] +
∑

a∈A

Pr[XS̄ = s̄′ ∧XA = a].

Now, we have

Pr[XS̄ = s̄′ ∧XA = a]

= Pr[XA = a] Pr[XS̄ = s̄′ | XA = a]

= Pr[XA = a] Pr[β(XS̄) = β(s̄′) | XA = a] Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)]

= P (β(s̄), a, β(s̄′)) · Pr[XA = a] Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)].

Taking q1(s̄, ā, s̄
′) = Pr[XS̄ = s̄′ ∧XA = ⊥], α(s̄, ā)(a) = Pr[XA = a]/Pr[XA 6=

⊥], and q2(s̄, ā, a, s̄
′) = Pr[XS̄ = s̄′ | XA = a, β(XS̄) = β(s̄′)] · Pr[XA 6= ⊥], we

obtain the form of P̄ in Definition 4. Note that Equation 1 holds since both sides
evaluate to Pr[XA 6= ⊥].

To be precise, it is also possible to reset the MDP M to s0 in the middle
of a run of M̄. This can be modeled by taking α(s̄, ā) to be a distribution
over A× {0, 1}, where (a, 0) represents taking action a in the current state β(s̄)
and (a, 1) represents taking action a in s0 after a reset. We would also have
q2 : S̄× Ā×A×{0, 1}× S̄ → [0, 1] and furthermore q1(s̄, ā, s̄

′) can be nonzero if
β(s̄′) = s0. For simplicity, we use Definition 4 without considering resets in M
during a step of M̄. However, the discussions in the rest of the paper apply to
the general case as well. Now we define the optimality preservation criterion for
sampling-based reductions.

Definition 5. A step-wise sampling-based reduction F is optimality preserving
if for any RL task (M, φ) letting (M̄, φ′, f) = F(M, φ) we have f(Πopt(M̄, φ′)) ⊆
Πopt(M, φ) where f(Π) = {f(π) | π ∈ Π} for a set of policies Π.

16 R. Alur et al.

It is easy to see that the reduction in Example 1 is optimality preserving for
both discounted-sum and limit-average rewards since JM̄

φ′ (π̄) = JM
φ (f(π̄)) for

any policy π̄ ∈ Π(S̄, Ā). Another interesting observation is that we can reduce
discounted-sum rewards with multiple discount factors γ : S →]0, 1[to the usual
case with a single discount factor.

Theorem 4. There is an optimality preserving step-wise sampling-based reduc-
tion F such that for any M = (S,A, s0, P) and φ = (R, γ), where R : S×A×S →
R and γ : S →]0, 1[, we have f(M, φ) = (M̄, φ′, f), where φ′ = (R′, γ′), with
R′ : S̄ × Ā× S̄ → R and γ′ ∈]0, 1[.

Proof. Let S̄ = S ⊔ {s⊥}, where s⊥ is a new sink state, Ā = A, and s̄0 = s0.
We set γ′ = γmax = maxs∈S γ(s), and define R′ by R′(s, a, s′) = γmax

γ(s) R(s, a, s′)

if s, s′ ∈ S and 0 otherwise. We define P̄ (s⊥, a, s⊥) = 1 for all a ∈ A. For any

s ∈ S, we have P̄ (s, a, s′) = γ(s)
γmax

P (s, a, s′) if s′ ∈ S and P̄ (s, a, s⊥) = 1 − γ(s)
γmax

.

Intuitively, M̄ transitions to the sink state s⊥ with probability 1− γ(s)
γmax

from any
state s on taking any action a which has the effect of reducing the discount factor
from γmax to γ(s) in state s since all future rewards are 0 after transitioning to s⊥.
Although we explicitly defined P̄ , note that it has the general form of Equation 2
and can be sampled from without knowing P . Now, we take φ′ = (R′, γ′), and
f(π̄) to be π̄ restricted to Runsf (S,A). It is easy to see that for any π̄ ∈ Π(S̄, A),

we have JM̄
φ′ (π̄) = JM

φ (f(π̄)); therefore, this reduction preserves optimality. ⊓⊔

4.3 Reductions from Temporal Logic Specifications

A number of strategies have been recently proposed for learning policies from
temporal specifications by reducing them to reward-based specifications. For in-
stance, [3] proposes a reduction from Signal Temporal Logic (STL) specifications
to rewards in the finite horizon setting—i.e., the specification ϕ is evaluated over
a fixed Tϕ-length prefix of the rollout ζ.

The authors of [16, 17] propose a reduction from LTL specifications to dis-
counted rewards which proceeds by first constructing a product of the MDP
M with a Limit Deterministic Büchi automaton (LDBA) Aϕ derived from the
LTL formula ϕ and then generates transition-based rewards in the product MDP.
The strategy is to assign a fixed positive reward of r when an accepting state in
Aϕ is reached and 0 otherwise. As shown in [12], this strategy does not always
preserve optimality if the discount factor γ is required to be strictly less that
one. Similar approaches are proposed in [35, 21, 8], though they do not provide
optimality preservation guarantees.

A recent paper [12] presents a step-wise sampling-based reduction from LTL
specifications to limit-average rewards. It first constructs an LDBA Aϕ from the
LTL formula ϕ and then considers a product M⊗Aϕ of the MDP M with Aϕ

in which the nondeterminism of Aϕ is handled by adding additional actions that
represent the choice of possible transitions in Aϕ that can be taken. Now, the
reduced MDP M̄ is obtained by adding an additional sink state s̄⊥ with the

Transforming Specifications in Reinforcement Learning 17

property that whenever an accepting state of Aϕ is reached in M̄, there is a
(1− λ) probability of transitioning to s̄⊥ during the next transition in M̄. They
show that for a large enough value of λ, any policy maximizing the probability of
reaching s̄⊥ in M̄ can be used to construct a policy that maximizes JM

Lltl(ϕ). As

shown before, this reachability property in M̄ can be translated to limit-average
rewards. The main drawback of this approach is that the lower bound on λ for
preserving optimality depends on the transition probability function P ; hence,
it is not possible to correctly pick the value of λ without the knowledge of P . A
heuristic used in practice is to assign a default large value to λ. Their result can
be summarized as follows.

Theorem 5 ([12]). There is a family of step-wise sampling-based reductions
{Fλ}λ∈]0,1[such that for any MDP M and LTL specification φ = Lltl(ϕ),
there exists a λM,φ ∈]0, 1[such that for all λ ≥ λM,φ, letting (M̄λ, φ

′
λ, fλ) =

Fλ(M, φ), we have fλ(Πopt(M̄λ, φ
′
λ)) ⊆ Πopt(M, φ) and φ′

λ = Rλ : S×A×S →
R is a limit-average reward specification.

The authors of [13] show that the above approach can be modified to get less
sparse rewards with similar guarantees using two discount factors γ1 < 1 and
γ2 = 1 (where γ2 = 1 is only used in steps at which the reward is zero).

Another approach [6] with an optimality preservation guarantee reduces LTL
specifications to discounted rewards with two discount factors γ1 < γ2 < 1 which
are applied in different states. This approach uses the product M× Aϕ as M̄
and assigns a reward of 1− γ1 to the accepting states (where discount factor γ1
is applied) and 0 to the remaining states (where discount factor γ2 is applied).
Applying Theorem 4 we get the following result as a corollary of the optimality
preservation guarantee of this approach.

Theorem 6 ([6]). There is a family of step-wise sampling-based reductions
{Fγ}γ∈]0,1[such that for any MDP M and LTL specification φ = Lltl(ϕ), there
exists γM,φ ∈]0, 1[such that for all γ ≥ γM,φ, letting (M̄γ , φ

′
γ , fγ) = Fγ(M, φ),

we have fγ(Πopt(M̄γ , φ
′
γ)) ⊆ Πopt(M, φ) and φ′

γ = (Rγ , γ) is a discounted-sum
reward specification.

Similar to [12], the optimality preservation guarantee only applies to large
enough γ, and the lower bound on γ depends on the transition probability func-
tion P .

To the best of our knowledge, it is unknown if there exists an optimality pre-
serving step-wise sampling-based reduction from LTL specifications to reward-
based specifications that is completely independent of P .

Open Problem 2. Does there exist an optimality preserving step-wise sampling-
based reduction F such that for any RL task (M, φ) where φ is an LTL specifica-
tion, letting (M̄, φ′, f) = F(M, φ), we have that φ′ is a reward-based specification
(either limit-average or discounted-sum)?

18 R. Alur et al.

5 Robustness

A key property of discounted reward specifications that is exploited by RL al-
gorithms is robustness. In this section, we discuss the concept of robustness for
specifications as well as reductions. We show that robust reductions from LTL
specifications to discounted rewards are not possible due to the fact that LTL
specifications are not robust.

5.1 Robust Specifications

A specification φ is said to be robust [28] if an optimal policy for φ in an es-
timate M′ of the MDP M achieves close to optimal performance in M. For-
mally, an MDP M = (S,A, s0, P, L) is said to be δ-close to another MDP
M′ = (S,A, s0, P

′, L) if their states, actions, initial states, and labeling functions
are identical and their transition probabilities differ by at most a δ amount—i.e.,

|P (s, a, s′)− P ′(s, a, s′)| ≤ δ

for all s, s′ ∈ S and a ∈ A.

Definition 6. A specification φ is robust if for any MDP M for which φ is a
valid specification and ε > 0, there exists a δM,ε > 0 such that if MDP M′ is
δM,ε-close to M, then an optimal policy in M′ is an ε-optimal policy in M—i.e.,
Πopt(M′, φ) ⊆ Πε

opt(M, φ).

s0 s1 s2

a1 / 1− p1

a1 / p1
a2 / p2

a2 / 1− p2

A / 1 A / 1

Fig. 3: Example showing non-robustness of Lsafe({b}).

The simulation lemma in [25] proves that discounted-sum rewards are robust.
On the other hand, [28] shows that language-based specifications, even safety
specifications, are not robust. Here, we give a slightly modified example to show
that the specification φ = Lsafe({b}) is not robust which also shows that limit-
average rewards are not robust.

Theorem 7 ([28]). There exists an MDP M and a safety specification φ such
that, for any δ > 0, there is an MDP Mδ that is δ-close to M which satisfies
Πopt(Mδ, φ) ∩Πε

opt(M, φ) = ∅ for all ε < 1.

Transforming Specifications in Reinforcement Learning 19

Proof. Consider the MDP M in Figure 3 with p1 = p2 = 1; the double circles
denote states where b holds. Then, an optimal policy for φ = Lsafe({b}) always
selects action a1 and achieves a satisfaction probability of 1. Now let Mδ denote
the same MDP with p1 = p2 = 1 − δ. Then, any optimal policy for φ in Mδ

must select a2 almost surely, which is not optimal for M. In fact, such a policy
achieves a satisfaction probability of 0 in M. Therefore, we have Πopt(Mδ, φ)∩
Πε

opt(M, φ) = ∅ for any δ > 0 and any ε < 1. ⊓⊔

5.2 Robust Reductions

In our discussion of reductions, we were interested in optimality preserving
sampling-based reductions mapping an RL task (M, φ) to another task (M̄, φ′).
However, in the learning setting, if we use a PAC-MDP algorithm to compute
a policy π̄ for (M̄, φ′), it might be the case that π̄ /∈ Πopt(M̄, φ′). Therefore,
we cannot conclude anything useful about the optimality of the corresponding
policy f(π̄) in M w.r.t. φ. Ideally, we would like to ensure that for any ε > 0
there is a ε′ > 0 such that an ε′-optimal policy for (M̄, φ′) corresponds to an
ε-optimal policy for (M, φ).

Definition 7. A step-wise sampling-based reduction F is robust if for any RL
task (M, φ) with (M̄, φ′, f) = F(M, φ) and any ε > 0, there is an ε′ > 0 such
that f(Πε′

opt(M̄, φ′)) ⊆ Πε
opt(M, φ).

Observe that for any optimal policy π̄ ∈ Πopt(M̄, φ′) for M̄ and φ′, we
have f(π̄) ∈

⋂

ε>0 Π
ε
opt(M, φ) = Πopt(M, φ); hence, a robust reduction is also

optimality preserving. Although a robust reduction is preferred when translating
LTL specifications to discounted-sum rewards, the following theorem shows that
such a reduction is not possible. This is primarily due to the fact that LTL
specifications are not robust whereas discounted-sum rewards are.

Theorem 8. Let P = {b} and φ = Lsafe({b}). Then, there does not exist a
robust step-wise sampling-based reduction F with the property that for any given
M, if (M̄, φ′, f) = F(M, φ), then φ′ is a robust specification and Πopt(M̄, φ′) 6=
∅.

Proof. Consider the MDP M = (S,A, s0, P, L) in Figure 3 with p1 = p2 = 1,
and consider any ε < 1. From Theorem 7, we know that for any δ > 0 there is
an MDP Mδ = (S,A, s0, Pδ, L) that is δ-close to M such that Πopt(Mδ, φ) ∩
Πε

opt(M, φ) = ∅. For the sake of contradiction, suppose that such a reduction
exists. Then, since M and Mδ represent the same input (S,A, s0, L, φ), the
reduction outputs the same tuple (S̄, Ā, s̄0, L̄, f, β, α, q1, q2, φ

′) in both cases.
Furthermore, from Equation 2 it follows, that the new transition probability
functions P̄ and P̄δ corresponding to P and Pδ differ by at most a δ amount—
i.e., |P̄ (s̄, ā, s̄′)− P̄δ(s̄, ā, s̄

′)| ≤ δ for all s̄, s̄′ ∈ S̄ and ā ∈ Ā. Let M̄ and M̄δ be
the MDPs corresponding to P̄ and P̄δ.

Let ε′ > 0 be such that f(Πε′

opt(M̄, φ′)) ⊆ Πε
opt(M, φ). Since the specification

φ′ is robust, there is a δ = δM̄,ε′ > 0 such that Πopt(M̄δ, φ
′) ⊆ Πε′

opt(M̄, φ′).

20 R. Alur et al.

Let π̄ ∈ Πopt(M̄δ, φ
′) be an optimal policy for M̄δ w.r.t. φ′. Now, since the

reduction is optimality preserving, we have f(π̄) ∈ Πopt(Mδ, φ). But then, we
also have f(π̄) ∈ Πε

opt(M, φ), which contradicts our assumption on Mδ. ⊓⊔

We observe that the above result holds when the reduction is only allowed
to take at most one step in M during a step in M̄ (and can be generalized to a
bounded number of steps). This leads to the following open problem.

Open Problem 3. Does there exist a robust sampling-based reduction F such
that for any RL task (M, φ), where φ is an LTL specification, letting (M̄, φ′, f) =
F(M, φ), we have that φ′ is a discounted reward specification (allowing M̄ to
take unbounded number of steps in M per transition)?

Note that even if such a reduction is possible, simulating M̄ would compu-
tationally hard since there might be no bound on the time it takes for a step in
M̄ to occur.

6 Reinforcement Learning from LTL Specifications

We formalized a notion of sampling-based reductions for MDPs with unknown
transition probabilities. Although reducing LTL specifications to discounted re-
wards is a natural approach towards obtaining learning algorithms for LTL spec-
ifications, we showed that step-wise sampling-based reductions are insufficient
to obtain learning algorithms with guarantees. This leads us to the natural ques-
tion of whether it is possible to design learning algorithms for LTL specifications
with guarantees. Unfortunately, it turns out that it is not possible to obtain PAC-
MDP algorithms for safety specifications.

Theorem 9. There does not exist a PAC-MDP algorithm for the class of safety
specifications.

Theorem 8 shows that it is not possible to obtain a PAC-MDP algorithm for
safety specifications by simply applying a step-wise sampling-based reduction fol-
lowed by a PAC-MDP algorithm for discounted reward specifications. Also, The-
orem 8 does not follow from Theorem 9 because, the definition of a robust reduc-
tion allows the maximum value of ε′ that satisfies f(Πε′

opt(M̄, φ′)) ⊆ Πε
opt(M̄, φ)

to depend on the transition probability function P of M. However the sam-
ple complexity function h of a PAC-MDP algorithm (Definition 2) should be
independent of P .

Intuitively, Theorem 9 follows from that fact that, when learning from sim-
ulation, it is highly likely that the learning algorithm will encounter identical
transitions when the underlying MDP is modified slightly. This makes it impos-
sible to infer an ε-optimal policy using a number of samples that is independent
of the transition probabilities since safety specifications are not robust.

Proof. Suppose there is a PAC-MDP algorithm A for the class of safety speci-
fications. Consider P = {b} and the family of MDPs shown in Figure 4 where

Transforming Specifications in Reinforcement Learning 21

s0

s1

s2

a1 / 1− p1

a1 / p1

A / 1

A / p2

a2 / 1

A / 1− p2

Fig. 4: A class of MDPs for showing no PAC-MDP algorithm exists for safety
specifications.

double circles denote states at which b holds. Let φ = Lsafe({b}) and 0 < ε < 1
2 .

For any δ > 0, we use M1
δ to denote the MDP with p1 = 1 and p2 = 1− δ, and

M2
δ to denote the MDP with p1 = 1 − δ and p2 = 1. Finally, let M denote the

MDP with p1 = p2 = 1. Now we have the following lemma.

Lemma 2. For any δ ∈]0, 1[, we have Πε
opt(M

1
δ, φ) ∩Πε

opt(M
2
δ, φ) = ∅.

Proof. Suppose π ∈ Πε
opt(M

1
δ, φ) is an ε-optimal policy for M1

δ w.r.t. φ. Let

xi = π((s0a1)
is0)(a1) denote the probability that π chooses a1 after i self-loops

in s0. Then J
M

1
δ

φ (π) = limt→∞

∏t
i=0 xi since choosing a2 in s0 leads to even-

tual violation of the safety specification. The policy π∗
1 that always chooses a1

achieves a value of J
M

1
δ

φ (π∗
1) = J ∗(M1

δ, φ) = 1. Since π ∈ Πε
opt(M

1
δ, φ) we

have limt→∞

∏t
i=0 xi ≥ 1 − ε. Therefore

∏t
i=0 xi ≥ 1 − ε for all t ∈ N since

zt =
∏t

i=0 xi is a non-increasing sequence.
Now let Et = Cyl((s0a1)

ts1) denote the set of all runs that reach s1 after
exactly t steps while staying in s0 until then. We have

D
M

2
δ

π (Et) = (1− p1)p
t−1
1

t−1
∏

i=0

xi ≥ δ(1− δ)t−1(1− ε).

Since {Et}∞t=1 are pairwise disjoint sets, letting E =
⋃∞

t=1 Et, we have

D
M

2
δ

π (E) =

∞
∑

t=1

D
M

2
δ

π (Et) ≥
∞
∑

t=1

δ(1− δ)t−1(1− ε) = 1− ε.

But we have that E ⊆ B = {ζ ∈ Runs(S,A) | L(ζ) /∈ Lsafe({b})} and

hence J
M

2
δ

φ (π) = 1 − D
M

2
δ

π (B) ≤ 1 − D
M

2
δ

π (E) ≤ ε. Any policy π∗
2 that picks

a2 in the first step achieves J
M

2
δ

φ (π∗
2) = J ∗(M2

δ, φ) = 1. Since ε < 1
2 , we have

22 R. Alur et al.

J
M

2
δ

φ (π) ≤ ε < 1
2 < 1 − ε = J ∗(M2

δ, φ) − ε which implies π /∈ Πε
opt(M

2
δ, φ).

Therefore Πε
opt(M

1
δ, φ) ∩Πε

opt(M
2
δ, φ) = ∅ for all δ ∈]0, 1[. ⊓⊔

Now let h be the sample complexity function of A as in Definition 2. We let
p = 0.1 and N = h(|S|, |A|, |φ|, 1

p
, 1
ε
). We let K = 2N + 1 and choose δ ∈]0, 1[

such that (1 − δ)K ≥ 0.9. Let {πn}∞n=1 denote the sequence of output policies
of A when run on M with the precision ε < 1

2 and p = 0.1. For j ∈ {1, 2}, let
Ej denote the event that at most N out of the first K policies {πn}Kn=1 are not

ε-optimal forMj
δ (when A is run on M). Then we have PrMA (E1)+PrMA (E2) ≤ 1

because E1 and E2 are disjoint events (due to Lemma 2).
For j ∈ {1, 2}, we let {πj

n}
∞
n=1 be the sequence of output policies of A when

run on Mj
δ with the same precision ε and p = 0.1. Let Fj denote the event that

at most N out of the first K policies {πj
n}

K
n=1 are not ε-optimal for Mj

δ (when

A is run on Mj
δ). Then PAC-MDP guarantee of A gives us that Pr

M
j

δ

A
(Fj) ≥ 0.9

for j ∈ {1, 2}. Now let Gj denote the event that the the first K samples from Mj
δ

correspond to the deterministic transitions in M—i.e., taking a1 in s0 leads to s0

and taking any action in s2 leads to s2. We have that Pr
M

j

δ

A
(Gj) ≥ (1−δ)K ≥ 0.9

for j ∈ {1, 2}.

Applying union bound, we get that Pr
M

j

δ

A
(Fj ∧Gj) ≥ 0.8 for j ∈ {1, 2}. The

probability of any execution (sequence of output policies, actions taken, resets
performed and transitions observed) of A on Mj

δ that satisfies the conditions
of Fj and Gj is less than or equal to the probability of obtaining the same
execution when A is run on M and furthermore such an execution also satisfies

the conditions of Ej . Therefore, we have PrMA (Ej) ≥ Pr
M

j

δ

A
(Fj ∧ Gj) ≥ 0.8 for

j ∈ {1, 2}. But this contradicts the fact that PrMA (E1) + PrMA (E2) ≤ 1. ⊓⊔

We can also conclude that PAC-MDP algorithms do not exist for limit-
average rewards since safety specifications can be encoded using limit-average
rewards. Our proof of Theorem 9 can be modified to show the result for reacha-
bility as well.

A concurrent work [34] characterizes the class of LTL specifications for which
PAC-MDP algorithms exist. An LTL formula ϕ is finitary if there exists a horizon
H such that infinite length words sharing the same prefix of length H are either
all accepted or all rejected by ϕ. Then, their result can be summarized as follows.

Theorem 10 ([34]). There exists a PAC-MDP algorithm for an LTL specifica-
tion φ = Lltl(ϕ) if and only if ϕ is finitary.

Next, to the best of our knowledge, it is unknown if there is a learning
algorithm that converges in the limit for the class of LTL specifications.

Open Problem 4. Does there exist a learning algorithm that converges in the
limit for the class of LTL specifications?

Observe that algorithms that converge in the limit do not necessarily have
a bound on the number of samples needed to learn an ε-optimal policy; instead,

Transforming Specifications in Reinforcement Learning 23

they only guarantee that the values of the policies {JM
φ (πn)}∞n=1 converge to the

optimal value J ∗(M, φ) almost surely. Therefore, the rate of convergence can
be arbitrarily small and can depend on the transition probability function P .

6.1 Exisiting PAC Results

It has been shown that one can obtain PAC algorithms for learning from logical
specifications under some additional assumptions. For instance, some stochastic
model checking (SMC) algorithms [9, 4] have PAC guarantees with the sample
complexity function h depending on the smallest positive probability pmin of
M. A recent paper [11] proposes a PAC algorithm for LTL specifications under
the assumption that the structure of the MDP M (transitions with non-zero
probability) is known.

7 Concluding Remarks

We have established a formal framework for sampling-based reductions of RL
tasks. Given an RL task (an MDP and a specification), the goal is to generate
another RL task such that the transformation preserves optimal solutions and is
(optionally) robust. A key challenge is that the transformation must be defined
without the knowledge of the transition probabilities.

Our framework offers a unified view of the literature on RL from logical
specifications, in which an RL task with a logical specification is transformed to
one with a reward-based specification. We define optimality preserving as well
as robust sampling-based reductions for RL tasks. Specification translations are
special forms of sampling-based reductions in which the underlying MDP is not
altered. We show that specification translations from LTL to reward machines
with discounted-sum objectives do not preserve optimal solutions. This motivates
the need for transformations in which the underlying MDP may be altered. By
revisiting such transformations from existing literature within our framework, we
expose the nuances in their theoretical guarantees about optimality preservation.
Specifically, known transformations from LTL specifications to rewards are not
strictly optimality preserving sampling-based reductions since they depend on
parameters which are not available in the RL setting such as some information
about the transition probabilities of the MDP. We show that LTL specifications,
which are non-robust, cannot be robustly transformed to robust specifications,
such as discounted-sum rewards. We wrap up by proving that there are LTL
specifications that do not admit PAC-MDP learning algorithms.

Finally, we are left with multiple open problems. Notably, it is unknown
whether there exists a learning algorithm for LTL that converges in the limit
and does not depend on any unavailable information about the MDP. However,
existing algorithms for learning from LTL specifications have been demonstrated
to be effective in practice, even for continuous state MDPs. This shows that there
is a gap between the theory and practice suggesting that we need better mea-
sures for theoretical analysis of such algorithms; for instance, realistic MDPs

24 R. Alur et al.

may have additional structure that makes learning possible.

Acknowledgements. We would like to thank Michael Littman, Sheila McIl-
raith, Ufuk Topcu, Ashutosh Trivedi and the anonymous reviewers for their
feedback on an early version of this paper. This work was supported in part by
CRA/NSF Computing Innovations Fellow Award, DARPA Assured Autonomy
project under Contract No. FA8750-18-C-0090, NSF Awards CCF-1910769 and
CCF-1917852, ARO Award W911NF-20-1-0080 and ONR award N00014-20-1-
2115.

Bibliography

[1] Abel, D., Dabney, W., Harutyunyan, A., Ho, M.K., Littman, M., Precup,
D., Singh, S.: On the expressivity of markov reward. Advances in Neural
Information Processing Systems 34 (2021)

[2] Abounadi, J., Bertsekas, D., Borkar, V.S.: Learning algorithms for Markov
decision processes with average cost. SIAM Journal on Control and Opti-
mization 40(3), 681–698 (2001)

[3] Aksaray, D., Jones, A., Kong, Z., Schwager, M., Belta, C.: Q-learning for
robust satisfaction of signal temporal logic specifications. In: Conference on
Decision and Control (CDC). pp. 6565–6570. IEEE (2016)

[4] Ashok, P., Křet́ınskỳ, J., Weininger, M.: Pac statistical model checking for
markov decision processes and stochastic games. In: International Confer-
ence on Computer Aided Verification. pp. 497–519. Springer (2019)

[5] Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking prob-
abilistic systems. In: Handbook of Model Checking, pp. 963–999. Springer
(2018)

[6] Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from
linear temporal logic specifications using model-free reinforcement learn-
ing. In: 2020 IEEE International Conference on Robotics and Automation
(ICRA). pp. 10349–10355. IEEE (2020)

[7] Brafman, R., De Giacomo, G., Patrizi, F.: Ltlf/ldlf non-markovian rewards.
In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 32
(2018)

[8] Camacho, A., Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.:
LTL and beyond: Formal languages for reward function specification in re-
inforcement learning. In: International Joint Conference on Artificial Intel-
ligence. pp. 6065–6073 (7 2019)

[9] Daca, P., Henzinger, T.A., Křet́ınskỳ, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. ACM Transactions on Com-
putational Logic (TOCL) 18(2), 1–25 (2017)

[10] De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for re-
straining bolts: Reinforcement learning with ltlf/ldlf restraining specifica-
tions. In: Proceedings of the International Conference on Automated Plan-
ning and Scheduling. vol. 29, pp. 128–136 (2019)

[11] Fu, J., Topcu, U.: Probably approximately correct MDP learning and con-
trol with temporal logic constraints. In: Robotics: Science and Systems
(2014)

[12] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.:
Omega-regular objectives in model-free reinforcement learning. In: Tools
and Algorithms for the Construction and Analysis of Systems. pp. 395–412
(2019)

[13] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.:
Faithful and effective reward schemes for model-free reinforcement learning

26 R. Alur et al.

of omega-regular objectives. In: Hung, D.V., Sokolsky, O. (eds.) Automated
Technology for Verification and Analysis. pp. 108–124. Springer Interna-
tional Publishing, Cham (2020)

[14] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak,
D.: Model-free reinforcement learning for stochastic parity games. In: 31st
International Conference on Concurrency Theory (CONCUR 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2020)

[15] Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak,
D.: Model-free reinforcement learning for lexicographic omega-regular ob-
jectives. In: International Symposium on Formal Methods. pp. 142–159.
Springer (2021)

[16] Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.:
Reinforcement learning for temporal logic control synthesis with probabilis-
tic satisfaction guarantees. In: Conference on Decision and Control (CDC).
pp. 5338–5343 (2019)

[17] Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforce-
ment learning. arXiv preprint arXiv:1801.08099 (2018)

[18] Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward ma-
chines for high-level task specification and decomposition in reinforcement
learning. In: International Conference on Machine Learning. pp. 2107–2116.
PMLR (2018)

[19] Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward ma-
chines: Exploiting reward function structure in reinforcement learning.
arXiv preprint arXiv:2010.03950 (2020)

[20] Jiang, Y., Bharadwaj, S., Wu, B., Shah, R., Topcu, U., Stone, P.: Temporal-
logic-based reward shaping for continuing learning tasks (2020)

[21] Jothimurugan, K., Alur, R., Bastani, O.: A composable specification lan-
guage for reinforcement learning tasks. In: Advances in Neural Information
Processing Systems. vol. 32, pp. 13041–13051 (2019)

[22] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional rein-
forcement learning from logical specifications. In: Advances in Neural Infor-
mation Processing Systems (2021)

[23] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Specification-guided
learning of nash equilibria with high social welfare (2022)

[24] Kakade, S.M.: On the sample complexity of reinforcement learning. Univer-
sity of London, University College London (United Kingdom) (2003)

[25] Kearns, M., Singh, S.: Near-optimal reinforcement learning in polynomial
time. Machine learning 49(2), 209–232 (2002)

[26] Li, X., Vasile, C.I., Belta, C.: Reinforcement learning with temporal logic
rewards. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). pp. 3834–3839. IEEE (2017)

[27] Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.:
Environment-independent task specifications via GLTL (2017)

[28] Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.:
Environment-independent task specifications via GLTL. arXiv preprint
arXiv:1704.04341 (2017)

Transforming Specifications in Reinforcement Learning 27

[29] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on
Foundations of Computer Science. pp. 46–57. IEEE (1977)

[30] Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal
logics. Journal of the ACM (JACM) 32(3), 733–749 (1985)

[31] Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-
free reinforcement learning. In: Proceedings of the 23rd international con-
ference on Machine learning. pp. 881–888 (2006)

[32] Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3-4), 279–292
(1992)

[33] Xu, Z., Topcu, U.: Transfer of temporal logic formulas in reinforcement
learning. In: International Joint Conference on Artificial Intelligence. pp.
4010–4018 (7 2019)

[34] Yang, C., Littman, M., Carbin, M.: Reinforcement learning for general ltl
objectives is intractable. arXiv preprint arXiv:2111.12679 (2021)

[35] Yuan, L.Z., Hasanbeig, M., Abate, A., Kroening, D.: Modular deep re-
inforcement learning with temporal logic specifications. arXiv preprint
arXiv:1909.11591 (2019)

	A Framework for Transforming Specifications in Reinforcement Learning

