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Abstract. Exploration is a critical component in reinforcement learning al-
gorithms. Exploration exploitation trade-off is still a fundamental dilemma in
reinforcement learning. The learning agent needs to learn how to deal with
a stochastic environment in order to maximize the accumulated long-term re-
ward. This paper proposes a robust exploration strategy (RES) based on the
temporal difference error. In RES, the exploration problem is modeled using
Beta probability distribution to control the exploration rate. Moreover, the most
promising action is selected during the exploration with a view to maximizing the
accumulated reward and avoiding un-rewardable wrong actions. RES has been
evaluated on the k-armed bandit problem. The simulation results show superior
performance without the need to tune parameters.
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1 Introduction

Reinforcement learning (RL) is a branch of machine learning where a learning agent tries
to map situations to actions with a view to maximizing the long-term reward. Without
prior knowledge, the learning agent must discover which actions are more rewardable.
Taking action at any state affects not only the immediately received reward but all
the subsequent rewards. Hence, it may prevent the learning agent from converging
to the global optimum. This reliance on the return feedback from the environment
necessitates the learning agent to explore the whole environment to take optimal actions
and maximize the long-term rewards. Therefore, RL algorithms count on exploration
to obtain sufficient informative feedback from the environment to exploit the most
rewardable actions.

The exploration-exploitation trade-off is still a fundamental problem. When learning
agents over-explore the environment, they cannot maximize the accumulated reward
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as exploratory actions may return minimum rewards. Moreover, exploiting uncertain
action-value functions may yield less reward and make the convergence suboptimal.
Thus, this problem is known as the exploration-exploitation dilemma, which has been
widely investigated by mathematicians and is still unresolved [1]. ε-greedy and softmax
exploration methods are widely used in the literature to balance exploration-exploitation.
These two straightforward algorithms perform well in some cases and thus are hard to
beat [2]. However, they require rigorous parameter tuning and may not hold in dynamic
environments.

The main contribution of this paper is proposing a robust exploration strategy (RES)
based on Temporal Difference (TD) error to effectively balance exploration-exploitation
with a view to maximizing the accumulated long-term reward. The well-known k-armed
bandit problem has been used to demonstrate the robustness of the proposed method.

The remainder of this paper is organized into five sections as follows. Related work
is given in Section 2. The used methodology is comprehensively discussed in Section 3,
followed by the evaluation results in Section 4. Finally, Section 5 concludes the paper
and highlights future work.

2 Related Work

Several approaches have been proposed to produce an efficient exploration algorithm in
order to balance the exploration-exploitation trade-off. However, the main two approaches
are the blind exploration approach, such as ε-greedy [1], and the value-based approach,
such as softmax [3].

In blind exploration approach [3], the learning agent solely explores the environment
based on randomly taken actions. It is a reward-free method to explore the environment
without any kind of information. Thus the action selection process during exploration
is uniform. In real life, ε-greedy is always the first choice for developers due to its
simplicity and near-optimal results despite the time-consuming process of tuning its
single parameter [4]. In this method, the parameter ε ∈ [0, 1] controls the exploration
rate as shown in Eq. 1. Although this method is widely adopted in RL, it has some
drawbacks. First is the aforementioned issue of tuning the parameter ε. Second, choosing
random action during the exploration may significantly degrade the learning agent
performance as taking random action at time t could affect all future rewards negatively.

at =

argmax
at∈At

Q(s, a) with probability (1− ε)

a random action with probability ε
(1)

In a value-based approach, the learning agent takes informative action based on
its estimation of the action-value functions. The exploration-exploitation trade-off is
achieved by assigning probabilities to the available actions at time step t based on
the current action-value functions. The predominant algorithm in this approach is
the softmax action selection algorithm [3]. Softmax method is usually modeled using
Boltzmann distribution as shown in Eq. 2, where the greedy action is always chosen
with the highest probability. In contrast, other possible actions are weighted according
to their corresponding action-value functions.
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π(a|s) = Pr{at = a|st = s} = e
Q(s,a)

τ∑n
1 e

Q(s,a)
τ

(2)

where τ is the temperature parameter, and it is used to control choosing the greedy
action. When τ is decreased, the greedy action probability increases, and when τ −→∞,
all possible actions will have the same probability, and hence the action will be selected
randomly, as in ε-greedy. Tuning the temperature parameter is not straightforward [3].
Moreover, as the probabilities are calculated based on the actual estimated values, the
action selection process is highly influenced by these values, which necessities re-tuning
the temperature parameter whenever the reward function has changed, even for the
same problem.

In [5] and [2], the authors proposed two methods based on ε-greedy and softmax
algorithms, respectively. In both works, the authors used a method called Value-Difference
Based Exploration (VDBE), which is a state-dependent exploration probability method
to control the exploration-exploitation trade-off. Although the simulation results show
promising results, there is still a need to tune the sensitivity parameter σ , which is used
in both methods.

3 Methodology

In this section, the exploration-exploitation dilemma has been introduced, and the design
requirement has been presented. Moreover, the proposed method has been discussed
comprehensively.

3.1 Overview

In RL, the intelligent learning agent interacts with the environment E through a series
of state-action pairs with a view to maximizing the accumulative long-term reward. The
agent is modeled using the tuple (S,A,R), where S represents a set of states, A is the
action set, and R is the reward function, as illustrated in Fig. 1. In value-based RL
algorithms, the learning agent uses value functions to estimate the future reward of
taking action a in a given state s. Therefore, the action-value function for taking action
a given a state (s) and following policy π could be defined as in Eq. 3. At each time step
t, the learning agent in state s ∈ S takes an action a ∈ A, receives a reward rt+1 ∈ R,
and moves from state s to state s′

qπ(s, a)
.
= Eπ[Gt|St = s,At = a] = Eπ[Σ

∞
n=0γ

nRt+n+1|St = s,At = a], ∀s ∈ S (3)

where Eπ[Gt|St = s] is the expected discounted reward when the agent starts at state s
and follows the policy π and γ ∈ [0, 1] is the discount factor for the future reward R.

3.2 Q-Learning

Temporal difference (TD) algorithms are a combination of Monte Carlo methods and
Dynamic programming (DP) [6]. In TD learning, the agent learns directly from the
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Fig. 1: RL Model

environment without any prior knowledge, and thus it is called a model-free method.
Q-learning is a temporal difference algorithm widely used to predict the action-value
function qπ(s, a) without any prior knowledge using trials and errors [7]. In Q-learning,
the action-value function Q(st, at) is updated independently of the policy followed by
the agent to approximate the optimal action-value function q∗, which makes it applicable
for many problems. Q-learning is proven to converge to q∗; however, there is still a
requirement that all states still need to be visited and updated.

a
∗(i)
t = argmax

at∈A
Qt(st+1, at) (4)

Qt+1(st, at)← (1− α)Qt(st, at) + α[rt+1(st+1) + γmax
a∈A

Qt(st+1, a
∗
t )] (5)

where α ∈ [0, 1] is the learning step size where small values slow the learning, and higher
values could cause oscillations, and γ ∈ [0, 1] is the discount factor where small values
make the learning agent nearsighted by ignoring the future rewards.

3.3 The Proposed Method

In RL, the environment can be modeled as a Markov decision process (MDP), as
illustrated in Fig.1. The learning agent interacts with the environment at a series of
discrete-time steps t = 0, 1, 2, .., and receives a reward after each interaction. In order to
estimate the optimal policy π∗, the learning agent must balance between exploration and
exploitation. In TD algorithms, the value functions are updated using an error function
representing the difference between the predicted reward at a given state and the actually
received reward, as shown in Eq. 6, which represents the TD error in Q-learning.

δt
.
= rt+1 + γQ(st+1, at+1)−Q(st, at) (6)

Thus, the Q-learning updating algorithm could be described as in Eq. 7.

Qt+1(st, at)← Qt(st, at) + αδt (7)

When the Q function converges to the optimal value Q −→ Q∗, the TD error converges
to zero δt −→ 0. Therefore, the TD error could be used to estimate the exploration ratio.
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The learning agent should explore more when the TD error is high and less when it is
small. This approach seems reasonable. However, there are some limitations. The TD
error suffers from oscillations, which means that the learning agent could over-explore
the environment. Moreover, there is a need to pick the most promising action to perform
during the exploration phase. Therefore, the TD error could be used to evaluate the Q
values differences trend, which then will be used to choose the most promising action.
The TD error trend is exponentially smoothed using Eq. 8.

∆t+1 = ω∆t + (1− ω)δt (8)

RES uses a dynamic exploration rate θ. It has been evaluated using Beta probability
distribution as in Eq. 9.

θt =
αt

αt + βt
(9)

where α and β are the Beta distribution levels. After each action, the TD error δt and
the exponentially smoothed trend ∆t are evaluated as described in Algorithm 1. This
process is modeled using Beta probability distribution to explore more when there is a
promising action to explore. After each action, the learning agent compare δt and ∆t. If
the TD error is less than or equal to the smoothed trend, this action is considered a
successful action, and the beta levels are updated using Eq. 10. Otherwise, it will be
unsuccessful, and the levels will be updated using Eq. 11

αt = λαt−1 + 1

βt = λβt−1

(10)

αt = λαt−1

βt = λβt−1 + 1
(11)

where λ ∈ [0, 1] is the longevity factor, which used to give more weight to recent
observations. Adopting this method has two advantages. First, the amount of exploration
will be decreased gradually for a static environment, which means over time, the learning
agent will exploit the greedy action more to maximize the overall reward. Second, in a
dynamic environment, this method is able to reflect the environment dynamicity into
more exploration to help the algorithm re-converge to the global optimum. Therefore,
higher values of λ give more weight to previous observations and fit dynamic environments,
while smaller values give more weight to current observations and fit static environments.

The second important thing is choosing a promising action during the exploration
instead of a random one. Randomly chosen action could be catastrophic in some
applications as the chosen action at time t may affect all the future rewards. Therefore,
in RES, more weight is given to actions with a high smoothed difference as they are
regarded as promising actions to discover. To achieve that, RES uses the Boltzmann
distribution [8] of the smoothed differences to calculate the weighted probabilities of the
available actions, as shown in Eq. 12.

P∆i
t
=

e∆
i
t

Σe∆t
: ∀i ∈ A (12)
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Algorithm 1: Updating Algorithm

Input: The exponentially smoothed trend: ∆i
t−1

Input: The exploration threshold: θt−1

Input: The beta distribution levels: α and β
Output: The updated values ∆i

t, P∆a
t
, θt

δit = [rit+1 + γQi(st+1, at+1)−Qi(st, at)]
∆i

t = ω.∆i
t−1 + (1− ω).δit

if |δit| ≤ |∆i
t| then

α = λα+ 1
β = λβ

else
α = λα
β = λβ + 1

P∆i
t
= e∆

i
t

Σe∆t
: ∀i ∈ A

θt =
α

α+β

The aforementioned parameters are updated whether it is an exploration or exploita-
tion cycle as shown in Algorithm 2. The uniform random number ρ ∈ [0, 1] is drawn for
each time step to choosing whether to explore or exploit. If it is an exploitation cycle,
then the action will be chosen greedily. Otherwise, it will be weighted randomly chosen
based on the Boltzmann distribution of the exponentially weighted TD errors.

4 Evaluation

The proposed method has been evaluated on the k-armed bandit problem, which is one
of the common RL problems to evaluate the explorations exploitation methods [5]. It has
been widely used to model different problems, such as economic [9] and routing problems
[10, 11]. The problem represents a bandit machine with multiple arms, pulling one of
which gives the player a variable reward. The reward is usually stochastic and drawn
from a pre-defined probability distribution. Hence, the learning agent (player) with no
prior knowledge has to learn from the pulled uncertain rewards the most rewardable
arm by exploring them, which leads to a loss in the gained rewards over time.

4.1 Experimental Setup

The proposed method has been evaluated over long run to prove that it converges to the
optimal solution and achieves the maximum reward. The bandit machine consists of 10
levers as described in [1]. At each lever pull, the learning agent gets a stochastic reward
drawn from a randomly defined Gaussian distribution N (10, 1), with mean Q∗(s, a) = 10
and standard deviation σ = 1. The learning agent can improve its selection policy within
2000 trials. Each experiment has been repeated 1000 times, and then the results have
averaged out and reported.

RES has been contrasted with ε-greedy [1], softmax action selection[3], and VDBE-
Softmax [2]. To ensure a fair comparison, the exploration rate of ε-greedy and softmax
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Algorithm 2: Exploration algorithm

Initialize Q values.
Initialize the differences probabilities:
P∆a

0
= 1

|A0|
: ∀a ∈ A

Initialize the exploration parameters:
α = 1, β = 1
θ0 = α

α+β

while TRUE do
ρ← rand(0..1)
if ρ ≥ θ then

at+1 ← argmax
at∈At

Qt(st, at)

Parameters updating using Algorithm 1
Qt+1(st, at)← (1− α)Qt(st, at) + α[rt+1(st+1) + γmax

a∈A
Qt(st+1, at)]

else
at+1 ← weighted rand(P∆t)
Parameters updating using Algorithm 1
Qt+1(st, at)← (1− α)Qt(st, at) + α[rt+1(st+1) + γmax

a∈A
Qt(st+1, at)]

have been optimized. At the same time, the optimized value of the VDBE method for
the k−armed bandit problem is adopted as reported in [5]. In RES, the longevity factor
is a decay factor for the single exponential smoothing of the Beta distribution levels. Its
value is set to 0.9 to slowly decrease the weight of old observations over time, which is
widely used in the literature [12].

4.2 Simulation Results

In the first experiment, the simulation was run for a high number of iterations to ensure
that all methods are converged as some methods show high performance at the beginning;
however, over time, they perform poorly. Fig. 2 shows the average reward of the four
exploration methods. Both softmax and VDBE-Softmax perform well at the beginning
as both use the Q function to choose actions during exploration. ε-greedy performs
poorly at the beginning but shows good performance over time. The reason behind this
behavior is that randomly chosen actions during exploration need more time to build the
Q table, which makes even the exploitation actions inefficient. However, the performance
enhances significantly when the learning agent gets more evidence from the environment
over time.

On the other hand, RES shows superior performance over the long run. As it depends
on the exponentially smoothed trend of the TD error, it needs a few exploration steps to
estimate ∆t. Once it gets a few exploration outcomes from the environment, it tends to
explore the most promising actions based on its observations. Unlike other exploration
methods, the convergence in RES is achieved separately. The most promising Q function
converges faster than others as it will be excessively chosen, as shown clearly in Fig. 3,
which illustrates the smoothed trend of the TD error over time. Evidently, ∆1 converges
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Fig. 2: The reward over time

faster to zero than others, although all other values converge over time but considerably
slower than ∆1. The reason behind this behavior is that ∆1 is the most promising action
to take. This could be obviously seen in Fig. 4, which shows the Q values for all actions
over time. The most rewardable action is action one; hence, RES explored this action
more at the beginning, making it converge faster than other actions. Moreover, the high
oscillations of this action value confirm that RES always exploits this action to gain
maximum rewards.
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Fig. 3: The exponential smoothed differences over time

In the second experiment, the adaptability of RES is evaluated for a dynamic
environment, where the action-value functions may get changed during the simulation.
When the environment changes, the optimal action given a state s may become the
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worst. In light of that, the learning agent should act intelligently and explore the
environment to re-converge to the global optimum again. After 50% of the iterations,
the Gaussian distribution of the reward function has been changed randomly using
the distribution N (rand(1, 15), rand(1, 5)). Fig. 5 and 6 show the average static and
dynamic environment rewards, respectively. For a static environment, as illustrated
in Fig. 5, RES performs steadily and achieves the highest average reward over time.
Moreover, when the environment has changed, as shown in Fig. 6, RES shows high
adaptability to re-converge to the new global optimum. Once the change happens, it
will be reflected by a change in the TD error and the exponential smoothed trend of the
TD error. The former increase the exploration rate, while the latter makes the algorithm
chooses the newest promising action.

0 250 500 750 1000 1250 1500 1750 2000

Iteration

10.0

10.2

10.4

10.6

10.8

11.0

Av
er

ag
e 

Re
wa

rd

RES
greedy

Softmax
VDBE Softmax

Fig. 5: The reward over time for static environment



10 M. S. Hajar et al.

0 250 500 750 1000 1250 1500 1750 2000

Iteration

10.0

10.5

11.0

11.5

12.0

Av
er

ag
e 

Re
wa

rd

RES
greedy

Softmax
VDBE Softmax

Fig. 6: The reward over time for dynamic environment

5 Conclusion and Future Work

Balancing the exploration-exploitation trade-off in reinforcement learning is still an
open area of research. The dilemma lies between exploring the environment to obtain
more informative data, which could be un-rewardable, or selecting actions that the
learning agent can expect their reward. Our proposed action selection strategy, RES,
presents a robust promising solution without the parameter tuning overhead. RES is an
adaptive exploration strategy based on the exponentially smoothed trend of the temporal
difference error and Beta probability distribution. This novel approach demonstrates
outstanding performance on the well-known k-armed bandit problem. In the future, it
will be evaluated on other temporal difference algorithms, such as SARSA. Moreover,
it will be deployed on a more complicated problem to study its behavior, such as
reinforcement learning-based routing protocols.
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