Skip to main content

Hardware Implementation of Masked SKINNY SBox with Application to AEAD

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2022)

Abstract

Hardware masking is an important countermeasure for cryptographic schemes. In this paper, we study the hardware implementations of the SKINNY SBox using first-order Boolean masking. We implement the SKINNY 8-bit SBox using a wide range of masking schemes, and show the different security goals achieved by each implementation using formal verification. We develop and adapt a practical unit testing framework based on the Sasebo-GII FPGA board, and identify an issue with all the considered masking schemes. Based on the explanations in literature to similar observations, we propose a new implementation of the SBox that can be verified/validated using TVLA even in high SNR environments. We provide a full implementation of two of the Romulus AEAD modes, which can be configured with any of the SBox implementations proposed. We provide synthesis results using ASIC.

This work was done while the first author was working in Nanyang Technological University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthe, G., Belaïd, S., Cassiers, G., Fouque, P.-A., Grégoire, B., Standaert, F.-X.: maskVerif: automated verification of higher-order masking in presence of physical Defaults. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11735, pp. 300–318. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29959-0_15

    Chapter  Google Scholar 

  2. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y., Zucchini, R.: Strong non-interference and type-directed higher-order masking. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 116–129 (2016)

    Google Scholar 

  3. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19

    Chapter  Google Scholar 

  4. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_2

    Chapter  MATH  Google Scholar 

  5. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_5

    Chapter  Google Scholar 

  6. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more efficient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_17

    Chapter  Google Scholar 

  7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  8. Caforio, A., Collins, D., Glamočanin, O., Banik, S.: Improving first-order threshold implementations of skinny. In: Adhikari, A., Küsters, R., Preneel, B. (eds.) Progress in Cryptology - INDOCRYPT 2021, pp. 246–267. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  9. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.X.: Hardware private circuits: From trivial composition to full verification. IEEE Trans. Comput. 70(10), 1677–1690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cassiers, G., Standaert, F.X.: Trivially and efficiently composing masked gadgets with probe isolating non-interference. IEEE Trans. Inform. Forensics Security 15, 2542–2555 (2020)

    Article  Google Scholar 

  11. De Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 123–148 (2018)

    Google Scholar 

  12. De Cnudde, T., et al.: Masking AES with \(d+1\) shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_10

    Chapter  Google Scholar 

  13. Faust, S., Grosso, V., Pozo, S., Paglialonga, C., Standaert, F.X.: Composable masking schemes in the presence of physical defaults & the robust probing model (2018)

    Google Scholar 

  14. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P., et al.: A testing methodology for side-channel resistance validation. In: NIST non-invasive attack testing workshop, vol. 7, pp. 115–136 (2011)

    Google Scholar 

  15. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked hardware implementations with arbitrary protection order. Cryptology ePrint Archive (2016)

    Google Scholar 

  16. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  17. Iwata, T., Khairallah, M., Minematsu, K., Peyrin, T.: Romulus v1.3. Finalist in the NIST lightweight cryptography project (2019)

    Google Scholar 

  18. Jean, J.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/ (2016)

  19. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

    Chapter  Google Scholar 

  20. Jiang, H., Marek-Sadowska, M., Nassif, S.R.: Benefits and costs of power-gating technique. In: 2005 International Conference on Computer Design, pp. 559–566. IEEE (2005)

    Google Scholar 

  21. Kaps, J.P., Diehl, W., Tempelmeier, M., Homsirikamol, E., Gaj, K.: Hardware api for lightweight cryptography, pp. 1–26 (2019). https://cryptography.gmu.edu/athena/index.php

  22. Knichel, D., Sasdrich, P., Moradi, A.: SILVER – statistical independence and leakage verification. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 787–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_26

    Chapter  Google Scholar 

  23. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  24. Levi, I., Bellizia, D., Standaert, F.X.: Reducing a masked implementation’s effective security order with setup manipulations: And an explanation based on externally-amplified couplings. IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 293–317 (2019)

    Google Scholar 

  25. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with the \(\chi ^2\)-test. In: IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 209–237 (2018)

    Google Scholar 

  26. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37

    Chapter  Google Scholar 

  27. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25

    Chapter  Google Scholar 

  28. Standaert, F.-X.: How (Not) to use Welch’s T-test in side-channel security evaluations. In: Bilgin, B., Fischer, J.-B. (eds.) CARDIS 2018. LNCS, vol. 11389, pp. 65–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15462-2_5

    Chapter  Google Scholar 

Download references

Acknowledgement

We would like to thank Nele Mentens and the anonymous reviewers for their detailed comments and helpful suggestions. The first author was supported in this work by a joint Wallenberg Artificial Intelligence, Autonomous Systems and Software Program-Nanyang Technological University (WASP-NTU) grant. The second author acknowledges the support from the Singapore National Research Foundation (“SOCure” grant NRF2018NCR-NCR002-0001 – www.green-ic.org/socure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivam Bhasin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khairallah, M., Bhasin, S. (2022). Hardware Implementation of Masked SKINNY SBox with Application to AEAD. In: Batina, L., Picek, S., Mondal, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2022. Lecture Notes in Computer Science, vol 13783. Springer, Cham. https://doi.org/10.1007/978-3-031-22829-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22829-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22828-5

  • Online ISBN: 978-3-031-22829-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics