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Abstract

We consider the problem of fair allocation of indivisible items among n agents with additive valuations,
when agents have equal entitlements to the goods, and there are no transfers. Best-of-Both-Worlds
(BoBW) fairness mechanisms aim to give all agents both an ex-ante guarantee (such as getting the
proportional share in expectation) and an ex-post guarantee. Prior BoBW results have focused on ex-
post guarantees that are based on the “up to one item” paradigm, such as envy-free up to one item
(EF1). In this work we attempt to give every agent a high value ex-post, and specifically, a constant
fraction of her maximin share (MMS). The up-to-one-item paradigm fails to give such a guarantee, and
it is not difficult to present examples in which previous BoBW mechanisms give some agent only a 1

n

fraction of her MMS.
Our main result is a deterministic polynomial-time algorithm that computes a distribution over

allocations that is ex-ante proportional, and ex-post, every allocation gives every agent at least her
proportional share up to one item, and more importantly, at least half of her MMS. Moreover, this
last ex-post guarantee holds even with respect to a more demanding notion of a share, introduced in
this paper, that we refer to as the truncated proportional share (TPS). Our guarantees are nearly best
possible, in the sense that one cannot guarantee agents more than their proportional share ex-ante, and
one cannot guarantee all agents value larger than a n

2n−1
-fraction of their TPS ex-post.

1 Introduction

In this paper we consider fair allocation of indivisible items to agents with additive valuations. An instance
I = (v,M,N ) of the fair allocation problem consists of a set M of m indivisible items, a set N of n agents,
and vector v = (v1, v2, . . . , vn) of non-negative additive valuations, with the valuation of agent i ∈ N for set
S ⊆ M being vi(S) =

∑

j∈S vi(j), where vi(j) denotes the value of agent i for item j ∈ M. We assume
that the valuation functions of the agents are known to the social planer, and that there are no transfers
(no money involved). We further assume that all agents have equal entitlement to the items. An allocation
A is a collection of n disjoint bundles A1, . . . , An (some of which might be empty), where Ai ⊆ M for
every i ∈ N . A randomized allocation is a distribution over deterministic allocations. We wish to design
randomized allocations that enjoy certain fairness properties.

Before discussing some standard fairness properties, we briefly motivate the best of both worlds (BoBW)
framework, that considers both ex-ante and ex-post properties of randomized allocations. Consider a simple
allocation instance I1 with two agents and two equally valued items. Intuitively, any fair allocation in this
case is an allocation that gives each agent one of the items. Giving both items to one of the agents and
no item to the other agent is not considered fair. Consider now an instance I2 with two agents and just
one item. As we want to allocate the item (to achieve Pareto efficiency) but the item is indivisible, we give
it to one of the agents, and then the other agent gets no item. The fact that some agent receives no item
is unavoidable, and in this respect the allocation is fair. Yet, the agent not getting the item might argue
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that this deterministic allocation is unfair as she has the same right to the item as the other agent. Indeed,
we can improve the situation at least ex-ante: We can invoke a lottery to decide at random which of the
two agents gets the item. While for any realization inevitably one agent is left with nothing, the allocation
mechanism is ex-ante fair (each agent has a fair chance to win the lottery). Going back to instance I1, we
could also have a lottery for I1, and have the winner receive both items. This too would be ex-ante fair,
but ex-post (with respect to the final allocation) it would not be fair (as we did have the option to choose
an allocation that gives every agent one item). Examples such as those above illustrate why we want our
allocation mechanism to concurrently enjoy both ex-ante and ex-post fairness guarantees, as each guarantee
by itself seems not to be sufficiently fair.

For the purpose of defining ex-ante fairness properties of randomized allocations, we assume that agents
are risk neutral. That is, the ex-ante value that an agent derives from a distribution over bundles is the same
as the expected value of a bundle selected at random from this distribution. Consequently, when considering
a distribution D over allocations (of M to N ), we also consider the expectation of this distribution, which
can be interpreted as a fractional allocation. In this fraction allocation, the fraction of item i given to agent j
exactly equals the probability with which agent i receives item j under D. We naturally extend the additive
valuation functions of agents to fractional allocations, by considering the expected valuation, that is, an
additive valuation where the value of a fraction qj of item j to agent i is qj · vi(j).

1.1 Brief Review of Terminology and Notation

We briefly review some properties of allocations from the literature, properties that are most relevant to the
current work and to prior related work.

We start with standard share definitions. The proportional share of agent i is PSi =
vi(M)

n
. We say that

an allocation A = (A1, . . . , An) is proportional if every agent i gets value at least PSi (that is, vi(Ai) ≥
vi(M)

n
= PSi), and a fractional (randomized) allocation is ex-ante proportional if she gets her proportional

share in expectation. We say that an allocation A is proportional up to one item (Prop1) if for every agent i
it holds that vi(Ai) ≥ PSi −maxj∈M\Ai

vi(j). The maximin share MMSi of agent i is the maximum value
that i could secure if she was to partition M into n bundles, and receive the bundle with the lowest value
under vi.

We next discuss envy. An allocation is envy free (EF) if every agent (weakly) prefers her own bundle over
that of any other agent, and a fractional (randomized) allocation is ex-ante envy free if for every agent, the
expected value of her own allocation is at least as high as the expected value of the allocation of any other
agent. Note that an allocation that is ex-ante envy free is ex-ante proportional. An allocation is envy-free
up to one good (EF1) (envy-free up to any good (EFX), respectively) if every agent weakly prefers her own
bundle over that of any other agent, up to the most (least, respectively) valuable item in the other agent’s
bundle. Note that EF1 implies Prop1. Finally, an allocation is envy-free up to one good more-and-less (EF 1

1 )
if no agent i envies another agent j after removing one item from the set j gets, and adding one item (not
necessarily the same item) to i. Note that EF 1

1 is weaker than EF1.
Finally, we consider notions of efficiency. An (fractional) allocation Pareto dominates another (fractional)

allocation if it is weakly preferred by all agents, and strictly so by at least one. An integral allocation is
Pareto optimal (PO) if no integral allocation Pareto dominates it. An allocation (integral or fractional)
is fractionally Pareto optimal (fPO) if it is Pareto optimal, and moreover, no fractional allocation Pareto
dominates it. Another notion of efficiency is that of Nash Social Welfare maximization. The Nash Social

Welfare (NSW) of allocation A = (A1, . . . , An) is
(
∏

i∈N vi(Ai)
)

1
n . In case of fractional allocations, we use

the notation fNSW.

1.2 Previous BoBW Results for Additive Valuations

The state of the art BoBW results for additive valuations are presented in the two recent papers of
Freeman et al. [2020], Aziz [2020]. Both of these works are based on the well known paradigm that we
call here “faithful implementation of a fractional allocation”: a distribution over deterministic allocations is
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a faithful implementation of the fractional allocation if the ex-ante (expected) value of every agent under the
distribution is the same as it is in the fractional allocation, and ex-post (for any realization) it is the same as
the expectation, up to the value of one item. Both papers use versions of the result of Budish et al. [2013]
showing that any fractional allocation can be faithfully implemented. Various versions of these results were
presented in the past, and in Appendix B we survey those results. In Section 2 we formally present a version
of “faithful implementation” that summarizes the prior results, stated as Lemma 10.

By “faithful implementing” the fractional allocation that is the outcome of multiple executions of the
probabilistic serial mechanism (a.k.a. eating mechanism) of Bogomolnaia and Moulin [2001] till there are
no more items, the following BoBW result was proved in [Aziz, 2020]. (The same theorem was established
earlier in [Freeman et al., 2020], but with a somewhat more complicated proof.)

Theorem 1 ([Freeman et al., 2020, Aziz, 2020]) There is a deterministic polynomial-time faithful im-
plementation of a fractional allocation that is ex-ante envy free (and thus ex-ante proportional), and the
implementation is supported on allocations that are (ex-post) EF1.

By “faithful implementing” the fractional allocation that maximizes the fractional Nash Social Welfare,
the following BoBW result was proved in [Freeman et al., 2020].

Theorem 2 ([Freeman et al., 2020]) There is a deterministic polynomial-time faithful implementation
of a fractional allocation that is ex-ante fPO and ex-ante proportional, and the implementation is supported
on allocations that are (ex-post) fPO, Prop1, and EF 1

1 .

The “up to one item” paradigm used in the ex-post guarantees of Theorems 1 and 2 is most useful when
a difference of one item does not make a big difference in value. However, when items do have large values,
it does not guarantee agents a high ex-post value. In contrast, we aim to give each agent “high enough
value” ex-post, where value is measure compared to “what the agent deserves”, captured by her fair share.
Specifically, we aim to give every agent a large fraction (“an approximation”) of her “fair share”, e.g. half
the agent’s MMS share. The following allocation instance shows that neither Theorem 1 nor Theorem 2
provide a constant approximation for the MMS ex-post, and both are supported only on allocations that are
intuitively very unfair. Moreover, in this instance the MMS equals the proportional share, and hence one
cannot dismiss this example as one in which the MMS is too small for the agents to care about.

Consider an instance with n identical items, each of value n. In this case it is clear each agent should
get one item ex-post. Now, suppose that one of those big items is split into n small items, each of value 1.
In this case we want one agent to get all of these small items, and each other agent to get one of the big
items. Our next example shows that once these small items are not completely identical, but rather each
agent slightly prefers a different one of them, then in both prior BoBW results, in every realization, one of
the agents ends up getting only a small fraction of her MMS.

Example 3 The instance has 2n − 1 items {s1, s2, . . . , sn} ∪ {b1, b2, . . . , bn−1}. For some small ǫ > 0, for
every agent i ∈ N , the additive valuation function vi is as follows:

• vi(si) = 1 + ǫ.

• vi(sj) = 1− ǫ
n−1 for every 1 ≤ j ≤ n such that j 6= i.

• vi(bj) = n for every 1 ≤ j ≤ n− 1.

The MMS of every agent is n: one bundle contains all small items {s1, . . . , sn}, and the remaining
bundles each contain one of the remaining, big, items. The proportional share of every agent is also n.

In every allocation, at least on agent does not receive a big item, as there are fewer big items than agents.

The algorithms of Theorem 1 gives every agent at most ⌈ |M|
n

⌉ items. Hence the agent that does not receive
a big item receives a value of at most 2− ǫ, whereas her MMS is n.

The algorithm of Theorem 2 starts with a fractional allocation that maximizes the fractional Nash Social
Welfare. This fractional allocation necessarily allocates the small item si integrally to agent i, for every
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i ≤ n. Consequently, also ex-post, every agent i gets the respective item si. By the pigeon-hole principle,
in an ex-post allocation there is an agent that receives no item among the big items {b1, b2, . . . , bn−1}. This
agent i receives only the small item si, and hence only a 1+ǫ

n
fraction of her MMS.

1.3 Our Contributions

In this paper we aim for a Best-of-Both-Worlds fairness result: a randomized allocation that gives every
agent at least her proportional share ex-ante, and some guaranteed value ex-post. The ex-post guarantee we
give is at least half the MMS, and in fact, stronger. We introduce a new notion of share that we refer to as
the truncated proportional share (TPS), which we believe might be of independent interest. We show that
the TPS is at least as large as the MMS, and our BoBW result guarantees half of the TPS ex-post (and thus
half the MMS ex post), while also giving each agent her proportional share ex-ante.

1.3.1 The Truncated Proportional Share

We next define the Truncated Proportional Share of an agent with an additive valuation. As we will see
later, this share has two advantages over MMS: it is at least as high as the MMS, and while the MMS is
NP-hard to compute, the TPS is easy to compute. We alert the reader that in this paper we define TPS only
with respect to additive valuation functions (while the definition of MMS extends without change beyond
additive valuations).

Definition 4 For a setting with n agents and a set of items M, the truncated proportional share TPSi =
TPSi(n,M, vi) of agent i with additive valuation function vi is the largest value t such that 1

n

∑

j∈M min[vi(j), t] =
t.

We note that the TPS is well defined, as t = 0 satisfies the equality, and the maximum is obtained as
the RHS is linear, while the LHS is piece-wise-linear with finitely many segments (at most m). From the
definition of TPS it is immediate to see that TPSi ≤ PSi, but TPSi is smaller than PSi when there is at
least one over-proportional item, which is an item that by itself gives agent i value larger than PSi. Observe
that if the value of every over-proportional items is reduced to TPSi, then the TPS is the proportional share
of the resulting valuation function after these reductions. In absence of over-proportional items, clearly
TPSi = PSi. Yet, when there are over-proportional items, TPSi might be much smaller than PSi. For
example, whenever there are less items than agents (e.g. a single item and two agents that desire it) then
for every agent TPSi = MMSi = 0 while PSi > 0. In any such case, it is clearly impossible to concurrently
give all agents a positive fraction of their proportional share ex post (while the truncated proportional shares
and the maximin share are small enough to make their approximation plausible).

Moreover, regardless of the presence of over-proportional items, TPSi ≥ MMSi. This is because taking
t = MMSi satisfies

1
n

∑

j∈M min[vj , t] ≥ t (as every one of the n bundles in the partition that determines
MMSi contributes at least t to the sum), which implies that t in Definition 4 is at least as large as MMSi.
Hence MMSi ≤ TPSi ≤ PSi. In particular, guarantees with respect to the TPS imply at least the same
guarantees with respect to MMS, and sometimes better.

The following example illustrates the TPS definition:

Example 5 There are n = 4 agents and m = 5 items. The values of the items for agent i are 2, 3, 4, 5, 6.
Her proportional share PSi equals

2+3+4+5+6
4 = 5, and her truncated proportional share TPSi can be seen

to be 4.5. Her TPS is at least 4.5 since 2+3+4+4.5+4.5
4 = 4.5. Her TPS is at most 4.5 since for every t > 4.5,

it holds that 2+3+4+min(5,t)+min(6,t)
4 ≤ 9+2t

4 < t.

The TPS is a more tractable object than the MMS. It is not difficult to see that the TPS can be
recursively defined as follows: when n = 1 then TPSi = TPSi(1,M, vi) = vi(M), and when n ≥ 2 then

TPSi is the minimum among vi(M)
n

, the proportional share of agent i, and her TPS in a reduced instance
in which an item j of highest value is removed as well as one of the agents, that is, TPSi in this case is
TPSi(n − 1,M\ {j}, vi). This procedure provides a simple polynomial time algorithm for computing the
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TPS: if the proportional share of the reduced instance is smaller than that of the original instance, compute
TPSi for the reduced instance. If not, then TPSi is the proportional share of the original instance. (In
contrast, computing the MMS is NP-hard.) To demonstrate the calculation of the TPS, consider Example 5.
We first check whether her maximal value (6) is greater than her proportional share (5). Since 6 > 5, we
remove one agent and the maximal item, and calculate the TPS for the remaining items and agents. The
new proportional share is now 2+3+4+5

3 = 14
3 , while the maximal value is 5 which is still greater. Thus,

we remove again one agent, and the maximal item. Now, the proportional share is 2+3+4
2 = 4.5 and the

maximal value is 4 which is at most her proportional, therefore 4.5 is her TPS.
Moreover, consider ρTPS , the highest fraction such that in every instance, there is an allocation giving

every agent a ρTPS fraction of her TPS. It is easy to determine the exact value of ρTPS , which turns out
to be n

2n−1 . (In contrast, the exact value of the corresponding ρMMS is unknown [Kurokawa et al., 2018,
Garg and Taki, 2020].) To see that ρTPS ≥ n

2n−1 , we observe that a polynomial time allocation algorithm
of Lipton et al. [2004] gives every agent a n

2n−1 fraction of her TPS. (For more details, see Appendix A.) To
see that ρTPS ≤ n

2n−1 , consider an instance with 2n− 1 items, each of value 1. The TPS of every agent is
2n−1

n
, but in every allocation, at least one of the agents gets at most one item, and hence value at most 1.

The example above also shows that the TPS of an agent can be factor 2n−1
n

larger than her MMS. This
ratio is tight, because MMSi ≥ n

2n−1TPSi for every agent i. This follows by considering n agents with the
same valuation function vi, and recalling that there is an allocation that gives every agent at least a n

2n−1
fraction of her TPS. The n bundles of this allocation each have a value of at least n

2n−1TPSi, and hence
they form a partition of M that shows that MMSi ≥ n

2n−1TPSi. We summarize the above discussion in
the following proposition:

Proposition 6 For any setting with n agents and any additive valuation vi it holds that

PSi ≥ TPSi ≥ MMSi ≥ n
2n−1 · TPSi

Moreover, each of the above inequalities is strict for some instance, and holds as equality for some other
instance.

1.3.2 Our Best-of-Both-Worlds Result

We now return to present our main result. Due to the difficulties alluded to in Example 3 and Proposition 8,
we do not follow the paradigm of starting with a simple to describe fractional allocation, and then faithfully
implementing it (using Lemma 10). Instead, we design an algorithm that generates a distribution over
allocations that each gives every agent at least half of her TPS, with the additional property that every
agent gets at least her proportional share in expectation. Along the way, we do use Lemma 10, but we
apply it on fractional allocations that involve only carefully selected subsets of M, rather than a fractional
allocation that involves all of M. Our main result is the following.

Theorem 7 For every allocation instance with additive valuations, there is a randomized allocation that is
ex-ante proportional, and gives each agent at least half of her TPS ex-post (and hence also at least half of her
MMS), as well as being Prop1 ex-post. Moreover, there is a deterministic polynomial time algorithm that,
given the valuation functions of the agents, computes such a randomized allocation, supported on at most n
allocations.

Theorem 7 is nearly the best possible in the following senses. First, it is not possible to guarantee every
agent value that is strictly larger than her proportional share ex-ante (e.g., if all agents have the same
valuation function). Second, the highest possible fraction of the truncated proportional share that can be
guaranteed ex-post is at most n

2n−1 = 1
2 + 1

4n−2 (recall the example above with the 2n− 1 identical items),
which tends to half as n grows large, and the theorem indeed ensures a fraction of half. We also remark that
for the instance in Example 3, while in the BoBW results from prior work [Freeman et al., 2020, Aziz, 2020]
there is always an agent that gets only a small fraction of her MMS, the algorithm of Theorem 7 gives every
agent her TPS (and her MMS) ex post.
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Another aspect in which Theorem 7 cannot be improved is with respect to its Pareto properties. While the
prior result of Freeman et al. [2020] present a BoBW result (Theorem 2) with a distribution over allocations
that is ex-ante fPO, our result does not give ex-ante fPO. We next show that if we want every agent to
receive ex-post at least a constant fraction of her maximin share, getting the guarantee of ex-ante fPO is
impossible. Moreover, this conflict between ex-ante fPO and half the MMS concerns every ex-post allocation
that might potentially be in the support, not just one of them.

Proposition 8 For every n ≥ 2 and every ǫ > 0 there are allocation instances with additive valuations,
with the following property: for every ex-ante Pareto optimal (fPO) randomized allocation (whether ex-ante
proportional or not), every allocation in its support does not give some agent more than a 1+ǫ

n
fraction of

her maximin share.

The proof of Proposition 8 is based on Example 3, and is given in Appendix A.
We thus see that we cannot hope to improve our result to also guarantee ex-ante fPO. How about

the weaker condition of ex-post PO? The polynomial time algorithm referred to in Theorem 7 does not
necessarily produce Pareto efficient allocations. However, the existential result in the theorem does hold
simultaneously with a Pareto efficiency requirement, for the simple reason that ex-post replacement of an
allocation by an allocation that Pareto dominates it cannot reduce the received fraction of the (ex-post)
truncated proportional share (and ex-ante proportional share) of any of the agents. It is not clear whether
this reallocation can be done in polynomial time. (For NP-hardness results associated with Pareto efficient
reallocation, see [De Keijzer et al., 2009, Aziz et al., 2016].)

Corollary 9 For every allocation instance with additive valuations, there is a randomized allocation that is
supported on at most n allocations, is ex-ante proportional, and ex-post it gives every agent at least half of
her TPS (and hence also at least half her MMS), as well as being ex-post PO.1

1.4 Additional Related Work

The maximin share was introduced by Budish [2011] as a relaxation of the proportional share. Kurokawa et al.
[2018] showed that for agents with additive valuations, an allocation that gives each agent her MMS may
not exist. A series of papers [Kurokawa et al., 2018, Amanatidis et al., 2017b, Barman and Krishnamurthy,
2020, Ghodsi et al., 2018, Garg et al., 2019 ,Garg and Taki, 2020] considered the best fraction of the MMS
that can be concurrently guaranteed to all agents, and the current state of the art (for additive valuations) is
a 3

4 +Θ( 1
n
)-fraction of the MMS (whereas there are instances in which more than a 39

40 fraction of the MMS
cannot be achieved [Feige et al., 2021]). For the case of arbitrary (non-equal) entitlements, Babaioff et al.
[2021] define a share named the AnyPrice share (APS), which is the value the agent can guarantee herself
whenever her budget is set to her entitlement bi (when

∑

i bi = 1) and she buys her highest value affordable
set when items are adversarially priced with a total price of 1. To approximate the APS, they extend our def-
inition of the TPS to the case of unequal entitlements. For additive valuations they show that TPSi ≥ APSi

and that the inequality is strict for some instances.
The fairness notion of Prop1 was introduced by Conitzer et al. [2017]. The fairness notion of EF1 was

implicitly used in [Lipton et al., 2004], and was formally defined in [Budish, 2011]. EFX (envy-free up to
any good) was introduced in [Caragiannis et al., 2019] The notion of envy-free up to one good more-and-less
(EF 1

1 ) was defined in [Barman and Krishnamurthy, 2019], relaxing EF1.
For a subclass of additive valuations, that of additive dichotomous valuations, very strong BoBW results

are known [Halpern et al., 2020, Aziz, 2020, Babaioff et al., 2020], which among other properties, are EF ex-
ante, EFX ex-post, maximize welfare, and the underlying allocation mechanism is universally truthful. Such
a strong combination of results is impossible to achieve for general additive valuations. In particular, the
results of Amanatidis et al. [2017a] imply that every universally truthful randomized allocation mechanism

1The improvement to a PO allocation might not maintain the Prop1 property, yet each agent’s value never decreases under
that improvement.
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for two agents that allocates all items must sometimes not give an agent more than a 2
m

fraction of her MMS
ex-post. See Section 4.3 for a more extensive discussion on truthfulness.

In Section 1.2 we already discussed some previous BoBW results. We further remark that in [Freeman et al.,
2020] they present an instance for which there is no randomized allocation that is ex-ante proportional,
ex-post EF1 and ex-post fPO. For the same instance, there is no randomized allocation that is ex-ante
proportional, is ex-post fPO, and gives every agent a positive fraction of her MMS.

2 Preliminaries

We consider fair allocation of indivisible items to agents with additive valuations. An instance I = (v,M,N )
of the fair allocation problem consists of a set M of m indivisible items, a set N of n agents, and vector
v = (v1, v2, . . . , vn) of non-negative additive valuations, with the valuation of agent i ∈ N for set S ⊆ M
being vi(S) =

∑

j∈S vi(j), where vi(j) denotes the value of agent i for item j ∈ M. We assume that the
valuation functions of the agents are known to the social planer, and that there are no transfers (no money
involved). We further assume that all agents have equal entitlement to the items. An allocation A is a
collection of n disjoint bundles A1, . . . , An (some of which might be empty), where Ai ⊆ M for every i ∈ N .

As we shall be dealing with randomized allocations, let us introduce terminology that we shall use in this
context. A random allocation is a distribution D over integral allocations A1, A2, . . .. It induces an expected
allocation A∗, where A∗

ij specifies for agent i and item j the probability that agent i receives item j, when an
allocation is chosen at random from the underlying distribution D. These probabilities can be interpreted
as fractions of the item that an agent receives ex-ante. Hence the expected allocation A∗ can be viewed
as a fractional allocation, in which items are divisible. Conversely, we say that the distribution D (namely,
the random allocation) implements the fractional allocation A∗ when the expectation of D is A∗. Finally,
we note that an additive valuation function can be extended in a natural way from allocations to fractional
allocations, by considering the expected valuation. That is, the value of a pj fraction of item j to agent i to
is pj · vi(j), and the value of a fractional allocation A∗ to agent i is

∑

j∈M A∗
ij · vi(j).

For the issue of computing randomized allocations there are two different notions of polynomial time com-
putation. In a random polynomial time implementation, there is a randomized polynomial time algorithm
that samples an allocation from the distribution D. In a polynomial time implementation, there is a deter-
ministic polynomial time algorithm that lists all allocations in the support of D (implying in particular that
the support contains at most polynomially many allocations), together with their associated probabilities.

2.1 Faithful Implementation

For general additive valuations, there is a very useful lemma that greatly simplifies the design of BoBW alloca-
tions. We refer to it here as the faithful implementation lemma. The lemma (sometimes with slight variations)
was previously stated and used in BoBW results [Budish et al., 2013, Freeman et al., 2020, Halpern et al.,
2020, Aziz, 2020], and was used even earlier in approximation algorithms for maximizing welfare [Srinivasan,
2008]. Restricted variants of it were introduced for scheduling problems [Lenstra et al., 1990], and were
later used for allocation problems [Bezáková and Dani, 2005]. For an extensive discussion of the faithful
implementation lemma, as well as its proof (presented for completeness), see Appendix B.

Lemma 10 Let A∗ be a fractional allocation of m items to n agents with additive valuations, and let f
denote the number of strictly fractional variables in A∗ (number of pairs (i, j) such that in A∗, the fraction
of item j allocated to agent i is strictly between 0 and 1). Then there is a deterministic polynomial time
implementation of A∗, supported only on allocations in which every agent gets value (ex-post) equal her ex-
ante value (in the fractional allocation A∗), up to the value of one item. (For agent i, the corresponding one
item is the item most valuable to i, among those items that are assigned to i under A∗ in a strictly fractional
fashion. Moreover, the values that the agent gets in any two allocations differ by at most the value of this
single item.) The distribution of the implementation is supported over at most f + 1 allocations.
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Using Lemma 10, one trivially gets the following BoBW result (implicit in previous work), which is a
baseline against which other BoBW results can be compared.

Proposition 11 There is a deterministic polynomial time implementation of a fractional allocation that is
ex-ante envy free, and the implementation is supported on allocations that are (ex-post) Prop1.

Proof. Consider the uniform fractional allocation, that assigns a fraction of 1
n
of every item to every agent.

It is ex-ante envy free, as all agents get the same fractional allocation. Applying Lemma 10, it is implemented
in deterministic polynomial time by allocations that are Prop1. �

3 Main Result: The Best of Both Worlds

We now restate and prove our main result, Theorem 7.

Theorem 7 For every allocation instance with additive valuations, there is a randomized allocation that is
ex-ante proportional, and gives each agent at least half of her TPS ex-post (and hence also at least half of her
MMS), as well as being Prop1 ex-post. Moreover, there is a deterministic polynomial time algorithm that,
given the valuation functions of the agents, computes such a randomized allocation, supported on at most n
allocations.

In Section 4 we discuss possible extensions of the theorem with regard to three aspects: fairness, efficiency
and truthfulness. We present impossibilities of some natural extensions, as well as some open problems.

3.1 Proof Overview

Let I = (v,M,N ) be an input instance. For any instance I we denote the proportional share and the
truncated proportional share of agent i by PSi(I) and TPSi(I) respectively.2 For the original instance, we
omit the instance and denote the proportional share and the truncated proportional share of agent i by PSi

and TPSi, respectively.
To prove the theorem we present a deterministic polynomial time algorithm that, given the input instance

I = (v,M,N ), computes an implementation of a randomized allocation that gives every agent at least her
proportional share ex-ante, and at least half of her truncated proportional share ex-post, and is supported
on at most n allocations. Items that each by itself gives an agent her TPS will play a central rule in our
algorithm. We say that item j is exceptional for agent i if vi(j) ≥ TPSi. Our algorithm has several phases:

1. Find a distribution over 4nmatchings. Each of these matchings partitions the agents to two disjoint sets
N1 and N2, and the items to three disjoint sets M(N1),M(N2) and M3 (M = M(N1)∪M(N2)∪M3,
|N1| = |M(N1)| and |N2| = |M(N2)|). Each agent in N1 is matched with an item in M(N1), and each
agent in N2 is matched with an item in M(N2). The distribution over these matchings is computed
in two steps:

(a) Compute (using LP1) a distribution in which in every matching, every agent in N1 is matched to
an item that is exceptional item for him in M(N1) and such that:

i. No unallocated items (items in M\M(N1)) is exceptional to any agent in N2 = N \ N1.

ii. The distribution over these 4n matchings gives each agent her proportional share conditioned
on every agent in N2 eventually getting her TPS in expectation (as indeed is guaranteed by
1(b)ii below).

(b) Complete each partial matching to a complete matching by matching each agent in N2 to an item
in M(N2), such that:

2Note that PSi and TPSi depend on vi, but not on the valuations of the other agents.
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i. Each agent prefers the item matched to him over any unmatched item (item in M3).

ii. For the unmatched items, there still is a fractional allocation ofM3 such that for each agent in
N2, her expected value for the combination of her matched item and her fractional allocation
is at least her TPS.

2. For each matching above, find (by LP3) a distribution overm+1 deterministic allocations that allocate
M3, the unmatched items, with the following properties:

(a) in each allocation in the support, every agent in N2 gets (in total, over the matched item and the
remaining allocation) at least half her TPS.

(b) In expectation, every agent in N2 gets (in total) her TPS.

3. From the distribution over 4n(m+ 1) allocations defined above, find a distribution over at most n of
these allocations that is ex-ante proportional (all ex-post properties are preserved).

Before elaborating on these steps we make the following remark.

Remark 12 Below we present an allocation algorithm with properties as in the theorem. Some components
in this algorithm are flexible. In particular, this applies to the objective functions of LP1 and LP3. Making
use of this flexibility, we set the objective functions of these LPs so that they maximize welfare (subject to the
constraints of the respective LPs). We find it natural to measure welfare in units of “proportional share”.
Hence we assume (without loss of generality) that in I the valuation function of every agent i is scaled so
that vi(M) = n. Consequently, PSi(I) = 1 (and TPSi(I) ≤ 1). This assumption is not used in the proof of
Theorem 7, and is presented in this remark only so as to explain our particular choice of objective functions
for LP1 and LP3.

3.2 The Algorithm and the Proof

We next move to formally describe all the steps of the algorithm and prove the theorem.
Phase 1a: Maximal allocation of exceptional items.
We start by transforming the input instance I into a new instance I1. In I1, we add n auxiliary items

to M, and denote them by a1, . . . , an, thus obtaining a set M1 = M∪ {a1, . . . , an}. For every i ∈ N , we
modify the original valuation function vi to the following unit demand valuation function ui.

• For every item j ∈ M, if vi(j) ≥ TPSi(I) then ui(j) = vi(j).

• For every item j ∈ M, if vi(j) < TPSi(I) then ui(j) = 0.

• ui(ai) = TPSi(I).

• ui(aj) = 0 for j 6= i.

• ui is unit demand. Namely, for ui(S) = maxj∈S ui(j) for every S ⊂ M1.

We now set up a linear program that finds a fractional allocation that maximizes welfare in I1, subject
to the constraint that the fractional value received by every agent i is at least PSi(I) (hence at least 1, due
to our scaling). Variable xij denotes the fraction of item j received by agent i. Variable si denotes the value
that agent i derives from the fractional allocation. We refer to the following linear program as LP1.

Maximize
∑

i∈N si subject to:

1.
∑

i∈N xij ≤ 1 for every item j ∈ M. (Every item is fractionally allocated at most once.)

2.
∑

j∈M1
xij = 1 for every agent i ∈ N . (Agent i gets item fractions that sum to one item).

3. si =
∑

j∈M1
ui(j)xij for every agent i ∈ N . (Agent’s i value is the sum of fraction of values that she

receives from the fractional allocation.)
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4. si ≥ PSi(I) for every agent i ∈ N . (Agent’s i value is at least as high as PSi(I).)

5. xij ≥ 0 for every agent i ∈ N and item j ∈ M.

Proposition 13 LP1 is feasible.

Proof. Let Ei denote the set of items that are exceptional for agent i in the original instance I. As there
cannot be more than n items worth more than the proportional share, we have that |Ei| ≤ n. Consider a

solution for LP1 with xij = 1
n
for every i ∈ N and j ∈ Ei, and xiai

= 1 −∑j∈Ei
xij = 1 − |Ei|

n
. It clearly

satisfies constraints 1,2,3 and 5. In remains to establish that this solution satisfies constraint 4, that is, the
constraint si ≥ PSi(I).

We shall use the facts that PSi(I) = 1
n
vi(Ei) +

1
n
vi(M\Ei) and TPSi(I) = vi(M\Ei)

n−|Ei|
. We can see that

constraint 4 is satisfied by this solution:

si =
1

n
ui(Ei) +

(

1− |Ei|
n

)

ui(ai) =
1

n
vi(Ei) +

n− |Ei|
n

TPSi =
1

n
(vi(Ei) + vi(M\ Ei)) = PSi(I)

�

We solve LP1. Let A∗ denote the optimal fractional solution that is found. We assume without loss of
generality that ties are broken toward real items: In A∗ there is no agent i that is fractionally allocated her
auxiliary item ai (xiai

> 0) such that there is some real item j ∈ M with value vi(j) = TPSi(I) that is not
fully allocated (it is easy to make sure that is the case by shifting mass from the auxiliary item to such a real
item if not.) Moreover, without loss of generality, in A∗ there are at most 2n−1 items that are (fractionally)
allocated. (By constraint 2 the sum of allocated fractions is exactly n. Hence either there are n items that
are fully allocated, or there are fewer than n fully allocated items. In the latter case, and only in the latter
case, in addition there are items that are partly allocated. The number of partly allocated items need not
exceed n, because no agent needs to receive fractions from two different partly allocated items. The agent
can instead gradually increase her share in the more valuable of the two partly allocated items, and reduce
her share in the other. This gradual increase stops when the first of the following two events happens: either
constraint 1 becomes tight for the more valuable item, and then the item becomes fully allocated instead of
partly allocated, or the share of the agent in the less valuable item becomes 0, and then the agent receives
fractions from one less item.) Consequently, constraint 1 involves at most 2n− 1 items, and constraints 2, 3
and 4 contribute 3n additional constraints. As all n variables si are positive, the number of positive xij

variables is at most 4n− 1.
We perform faithful randomized rounding on A∗. The following proposition follows immediately from

the properties of A∗ and Lemma 10, and hence its proof is omitted.

Proposition 14 The faithful randomized rounding of A∗ produces a distribution over allocations with the
following properties:

1. In every allocation, every agent i gets exactly one item from M1. This item is either one of her
exceptional items, or her auxiliary item ai. In either case the ui value of that item is least TPSi(I).

2. The distribution is supported on at most 4n allocations.

3. In expectation, every agent i gets value si with respect to ui. Recall that si ≥ PSi(I).

Consider now an arbitrary allocation A′ in the support of the faithful randomized rounding of A∗. With
respect to A′, let N1 = N1(A

′) denote the set of agents that receive an item that was exceptional for them,
and let N2 denote the set of agents that receive their auxiliary item. (Note that N1 ∪ N2 = N .)

The first phase ends by giving each agent of N1 the item that she receives under A′, and not giving
agents of N2 any item (as the auxiliary items do not really exist). Thus we have that M(N1) is the set of
items matched to agents in N1. Observe that every agent i ∈ N1 gets at least TPSi ex-post. The remaining
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phases will ensure that agents in N2 get at least half their TPS ex-post. They will also ensure that ex-ante,
every agent gets at least her proportional share (this will make use of item 3 of Proposition 14).

Phase 1b: Completing the matching.
If N2 is empty, we go directly to Phase 2. Hence here we assume that N2 is non-empty.
Let M2 ⊂ M denote the subset of original items (not including the auxiliary items) that remain unal-

located in A′ (those items not allocated to N1). Let I2 denote the allocation instance that has M2 as its
set of items, N2 as its set of agents, and the valuation function of every agent i ∈ N2 remains vi (restricted
to the items in M2.) As I2 is obtained from I by removing |N1| agents and |N1| items, it holds that
TPSi(I2) ≥ TPSi(I) for every agent i ∈ N2.

Importantly, recall that we may assume without loss of generality that M2 has no item that according
to instance I was exceptional for an agent of N2. (If M2 contains an item j that is exceptional for i ∈ N2,
then in A′, give j instead of ai to agent i, by this moving agent i out of N2 and into N1.) The fact that
TPSi(I2) ≥ TPSi(I) (for i ∈ N2) implies that also in I2, M2 has no item that is exceptional for an agent
of N2. Consequently, we infer that for every agent i ∈ N2:

• TPSi(I2) = vi(M2)
|N2|

, and consequently also vi(M2)
|N2|

≥ TPSi(I).

• There are strictly more than |N2| items j ∈ M2 with vi(j) > 0. (This holds because vi(j) < TPSi(I2)
for every j ∈ M2.)

Let Bi ⊂ M2 denote the set of |N2| items of highest value to agent i ∈ N2, breaking ties arbitrarily. Let
Wi = vi(Bi). As M2 has more than |N2| items of positive value for i, it follows that Wi < vi(M2).

We now transform the instance I2 into a new instance I ′
2. The set of items in I ′

2 is M2, and the set of
agents is N2. Every agent i ∈ N2 has a unit demand valuation function wi, defined as follows. For j ∈ Bi

we have wi(j) =
vi(j)

vi(M2)−Wi
(observe that the denominator is positive), and for j 6∈ Bi we have wi(j) = 0.

In the matching completion phase, we find a welfare maximizing allocation B∗ in I ′
2. Observe that this

can be done in polynomial time, because agents are unit demand, and hence finding B∗ amounts to solving
an instance of maximum weight matching in a bipartite graph G, with N2 as the set of left side vertices,
M2 as the set of right side vertices, and weight wi(j) for edge (i, j). In B∗, every agent i ∈ N2 receives an
item from her respective set Bi (this follows because |Bi| ≥ |N2|). We have that M(N2) is the set of items
matched to agents in N2.

By the end of the matching phase, every agent holds one item. Agents in N1 received their item in
Phase 1a (under A′), whereas agents in N2 received their item in Phase 1b (under B∗). Let ei denote the
item that has been allocated to agent i, and let M3 = M\{e1, . . . , en} denote the set of items that are not
yet allocated. A key property established by the first two phases is summarized in the following proposition.

Proposition 15 For every agent i ∈ N it holds that vi(ei) ≥ maxj∈M3 vi(j).

Proof. For an agent i ∈ N1, the proposition follows from the optimality of the fractional allocation A∗.
If there is an item j ∈ M3 with vi(j) > vi(ei), then in A′ item j could replace item ei for agent i, thus
increasing the welfare of A′. This would imply that LP1 has a fractional solution of value higher than that
of A∗, contradicting the optimality of A∗.

For an agent i ∈ N2, the proposition follows from the optimality of the integral allocation B∗. �

We are now ready to move to the next phase of our algorithm.

Phase 2: Allocating unmatched items.
In this phase, for each matching computed before, we allocate the items of M3, the items not in the

matching. Every agent i ∈ N has her original valuation function vi (with vi(M) = n).
We first compute a fractional allocation for the items of M3. This is done by solving a linear program

that we refer to as LP3. In LP3, variable xij denotes the fraction of item j ∈ M3 allocated to agent i, and
si denotes the value that agent i derives from the fraction allocation (under valuation function vi). The
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parameters fi are treated as constants in LP3. Their values are computed based on Phase 1b. Specifically,

fi =
vi(M2)

|N2| −vi(ei)

vi(M2)−Wi
for i ∈ N2 (where ei is the item allocated to agent i in Phase 1b, and Wi = vi(Bi), as

defined in Phase 1b). We now present LP3.
Maximize

∑

i∈N si subject to:

1.
∑

i∈N xij ≤ 1 for every item j ∈ M3. (Every item is fractionally allocated at most once.)

2. si =
∑

j∈M3
vi(j)xij for every agent i ∈ N . (Agent’s i value is the sum of the fractions of values that

she receives from the fractional allocation.)

3. si ≥ fivi(M3) for every agent i ∈ N2. (This is the key constraint that ties LP3 with the allocation B∗

of Phase 1b. It applies only to agents in N2.)

4. xij ≥ 0 for every agent i ∈ N and item j ∈ M3.

Note that LP3 may fractionally allocate items from M3 to agents in N1, but only after each agent in N2

receives items of sufficiently high value as dictated by Constraint 3.

Lemma 16 LP3 is feasible.

Proof. Constraints 2 and 4 are satisfied by every solution in which xi,j ≥ 0 (for all i and j). It remains to
show that constraints 1 and 3 can be satisfied simultaneously.

Recall the bipartite graph G from Phase 1b. In G, consider a fractional matching F = {yij}, where
yij = 1

|N2|
for every agent i ∈ N2 and item j ∈ Bi, and yij = 0 if j 6∈ Bi. Observe that for every agent

i ∈ N2 we have
∑

j∈B2
yij = 1 and for every item j ∈ M2 we have

∑

i∈N2
yij ≤ 1

|N2|
|N2| = 1. Hence

indeed F defines a fractional matching. In I2 the fractional matching F gives agent i ∈ N2 fractional value
∑

j∈Bi
yijvi(j) =

1
|N2|

vi(Bi) =
Wi

|N2|
.

Being a fractional matching, F can be represented as a distribution D over integral matchings. In
every one of these integral matchings, every agent i ∈ N2 is matched, because i is fully matched in F .
Select a matching at random from the distribution D. Then in expectation, agent i gets an item of value
∑

j∈Bi
yijvi(j) =

Wi

|N2|
. Using ED to denote expectation over choice from distribution D, and denoting by ei

the item received by i, we have that ED[vi(ei)] =
Wi

|N2|
. Hence the expectation of fi is ED[

vi(M2)

|N2| −vi(ei)

vi(M2)−Wi
] =

vi(M2)

|N2| −
Wi
|N2|

vi(M2)−Wi
= 1

|N2|
. By linearity of expectation, ED[

∑

i∈N2
fi] = 1. This implies that there is a matching

in G under which the sum of the respective fi satisfies
∑

i∈N2
fi ≤ 1. The matching that maximizes

∑

i∈[n]
vi(ei)

vi(M2)−Wi
(which is B∗ that we use in the matching step, because we defined wi(j) to be vi(j)

vi(M2)−Wi
)

also minimizes
∑

i∈N2
fi, and hence has

∑

i∈N2
fi ≤ 1. This implies that the solution with xij = fi for every

i ∈ N2 and j ∈ M3, and xij = 0 for every i ∈ N1, is feasible for LP3. �

Let C∗ be a fractional allocation of M3 that is an optimal solution to LP3. Phase 2 ends by performing
faithful randomized rounding of C∗. The following proposition follows immediately from the properties of
C∗ and Lemma 10, and hence its proof is omitted.

Proposition 17 The faithful randomized rounding of C∗ produces a distribution over allocations of the
items of M3, with the following properties:

1. The distribution is supported on at most m + 1 allocations. (The number of constraints in LP3 is
|M3| + n + |N2|. In a basic feasible solution, at least |N2| of the si variables are positive, and so at
most |M3|+ n = m of the xij variables are positive.)

2. Every agent i ∈ N2 gets ex-ante value si ≥ fi · vi(M3).

3. Every agent i ∈ N2 gets ex-post value at least si, up to one item. That is, at least si−maxj∈M3 [vi(j)].
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The allocation algorithm above computes a distribution over 4n matchings in Phases 1a and 1b, and for
each such matching, in Phase 2 it computes a distribution over m + 1 allocations of M3. We thus have a
distribution over 4n(m + 1) allocations and we next prove that it satisfies the requirements of Theorem 7
(except the support reduction to n allocations, that will be handled in Phase 3 below).

Every agent gets her proportional share ex-ante. By item 3 of Proposition 14, with respect to
A∗, every agent i gets value at least PSi(I) ex-ante. However, this value might have been attained by being
allocated the respective auxiliary item ai, of value TPSi(I). In this case, agent i does not actually get ai,
but is instead included in N2. Hence we need to show that for every agent i ∈ N2, her combined ex-ante
value from Phases 1b and 2 is at least TPSi(I). This ex-ante value is at least vi(ei)+ fi · vi(M3). We claim
that indeed vi(ei) + fi · vi(M3) ≥ TPSi(I).

Recall that fi =
vi(M2)

|N2| −vi(ei)

vi(M2)−Wi
. Observe also that vi(M2) −Wi ≤ vi(M3), because the total value for i

of the |N2| items allocated under B∗ cannot be larger than Wi = vi(Bi) (as Bi contains the |N2| items of
highest value). Combining these observations we have that:

fi =

vi(M2)
|N2|

− vi(ei)

vi(M2)−Wi

≥
vi(M2)
|N2|

− vi(ei)

vi(M3)
=

vi(M2)− |N2| · vi(ei)
|N2| · vi(M3)

We can now establish the claim.

vi(ei) + fivi(M3) ≥ vi(ei) +
vi(M2)− |N2| · vi(ei)

|N2| · vi(M3)
vi(M3) =

vi(M2)

|N2|
≥ TPSi(I)

(for the last equality, see discussion in Phase 1b).

Every agent gets at least half her TPS ex-post. For agents in N1, this holds by definition. For
agents i ∈ N2, we have already shown that ex-ante they get at least TPSi(I). Item 3 of Proposition 17

implies that ex-post agent i gets a value of at least TPSi(I)−maxj∈M3 [vi(j)]. If maxj∈M3 [vi(j)] ≤ TPSi(I)
2 ,

then at least a value of TPSi(I)
2 remains. If maxj∈M3 [vi(j)] >

TPSi(I)
2 , then also vi(ei) ≥ TPSi(I)

2 (by
Proposition 15), and hence i gets half her TPS already after Phase 1b.

The allocation is prop1 ex-post. If there is an item that is exceptional for agent i, then an item that
i values most, denoted as item j, necessarily satisfies vi(j) ≥ PSi (if vi(j) < PSi then TPSi = PSi, and
then j is not exceptional for i). In this case, every allocation gives i her proportional share, up to the item
j. If there is no item that is exceptional for agent i, then TPSi(I) = PSi(I), and also, i ends up in N2.
Item 3 of Proposition 17 ensures that she gets TPSi(I) up to one item, which in this case is equivalent to
PSi(I) up to one item.

The randomized allocation is computed in polynomial time. The TPS of every agent can be
computed in polynomial time. In various steps, the algorithm involves scaling of the valuation functions
by constant factors, which too can be done in polynomial time. The heavier computational aspects of the
algorithm are the following. Phases 1a and 2 each involve solving an LP, and then performing faithful
randomized rounding. Phase 1b involves finding a maximum weight matching. Also, these heavier steps can
be done in polynomial time, using standard algorithms.

The randomized allocation is supported on n allocations. The combination of item 2 of Propo-
sition 14 and item 1 of Proposition 17 implies that the randomized allocation is supported over at most
4n(m+ 1) allocations. In Phase 3 (to be described next) of our algorithm, we reduce this number to n.

Phase 3: Reducing the support size to be at most n.
So far we established that there is a distribution D over allocations, giving every agent at least her

proportional share ex-ante, and supported on at most 4n(m + 1) “good” allocations: allocations that give
every agent at least half her TPS, and are Prop1. We now explain how to reduce the support size to at most
n.

Set up the following linear program. For every allocation in the support of D (index these allocations
as Gk) there is a variable zk (representing the probability that Gk is selected in our new distribution), and
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for every agent i there is a variable yi (representing her ex-ante value). The coefficients aik denote the value
that agent i derives from the items allocated to him under allocation Gk. The linear program LP4 is as
follows:

Minimize z subject to:

1.
∑

k zk = z.

2. yi =
∑

k aikzk for every agent i ∈ N . (yi represents the ex-ante value of the randomized allocation to
agent i.)

3. yi ≥ PSi for every i ∈ N . (Every agent gets at least her proportional share ex-ante.)

4. zk ≥ 0 for every Gk (zk is proportional to the probability of Gk).

The distribution D shows that the optimal value z∗ of LP4 satisfies z∗ ≤ 1. LP4 has 2n+ 1 constraints
(excluding non-negativity constraints), and hence an optimal basic feasible solution is supported on at most
2n+1 positive variables. As z and the variables yi are all positive, there are at most n variables zk that are
positive. Scale the zk variables of the optimal solution by 1

z∗ , so that they form a probability distribution.
Likewise, scale the yi variables by 1

z∗ so that constraint 2 remains satisfied. Constraint 3 also remains
satisfied, as 1

z∗ ≥ 1. The scaled values of the zk variables represent a randomized allocation that proves
Theorem 7.

4 Discussion

We have presented a best-of-both-worlds result, showing that for every allocation instance with additive
valuations, there is a randomized allocation that gives every agent at least her proportional share ex-ante,
and at least half of her TPS (and MMS) ex-post. Moreover, we have shown that there is a deterministic
polynomial time algorithm that, given the valuation functions of the agents, computes a faithful implemen-
tation of such a randomized allocation, supported on at most n allocations. We next discuss directions in
which our results can possibly be improved upon, presenting impossibilities of some natural extensions, as
well as some open problems.

4.1 Other Fairness Guarantees

Theorem 7 guarantees every agent at least half her TPS ex-post. This is nearly the best possible, in the
sense that there are allocation instances for which no allocation gives every agent more than a n

2n−1 fraction
of her TPS. Still, it might be interesting to see if the ex-post BoBW guarantee can be improved to n

2n−1 of
the TPS, to match the lower bound.

For the maximin share, MMS, it might be possible to offer every agent a ρ-fraction of her MMS ex-post,
for some 1

2 < ρ < 1 significantly larger than 1
2 . Even if so, it is not clear if such a guarantee will be better

than half the TPS, because the gap between MMS and TPS may be a factor of 2− 1
n
.

Our focus in this paper is on share-based fairness notions (such as proportional, MMS and TPS). Other
works (see Theorems 1 and 2) addressed envy-based notions (such as EF and EF1). We briefly discuss
here whether envy-based fairness notions offer agents higher value than share-based notions. Our allocation
is ex-ante proportional, but not necessarily ex-ante envy free. One might argue that guaranteeing an ex-
ante envy-free allocation (as indeed achieved in Theorems 1 and 2) offers agents higher value ex-ante, as
every envy-free allocation is also proportional, but there are proportional allocations that are not envy free.
However, as every fractional proportional allocation Pareto dominates a fractional envy free allocation (the
trivial allocation in which every agent gets a 1

n
fraction of every item), an ex-ante envy freeness guarantee

by itself offers no advantage over an ex-ante proportional guarantee, in terms of the value that it guarantees
to agents.
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As to ex-post guarantees, Example 3 (among others) illustrates that EF1 allocations might give agents
value that is a factor of Ω(n) smaller than their TPS (and MMS). Our allocations guarantee every agent at
least half her TPS ex-post. In this paper we did not aim to also get EF1. A direction for future work is
to obtain EF1 on top of the properties we obtain (TPS approximation and ex-ante proportionality). Our
algorithm does not obtain all these properties (it is not EF1). In Appendix D we present a result that shows
that EF1 is not in conflict with the combination of approximate TPS and approximate proportionality (yet
leave open the question for exact proportionality). Specifically, we present a randomized allocation that does
achieve (ex-post) both EF1 as well as an approximate TPS guarantee, but only an approximate proportional
guarantee ex-ante (concretely, it achieves n

2n−1 -TPS and EF1 ex-post, and n
2n−1 -proportional share ex-ante).

An alternative BoBW result that one might consider is a result in which we replace the ex-post guarantee
to be EFX. As every EFX allocation gives every agent a n

2n−1 fraction of her TPS (see proof in Appendix A),
such a result will, in particular, strengthen our result and obtain the best possible TPS fraction of n

2n−1 .
For two agents, running the standard cut-and-choose protocol with a random cutter gives a randomized
allocation that is proportional ex-ante (which for two agents implies also EF ex-ante), and both EFX and
MMS ex-post (and 2/3-TPS). A major hurdle in obtaining such a combination of properties for arbitrarily
many agents is that EFX allocations are not known to always exist beyond 3 agents, so achieving EFX in the
BoBW setting seems to be currently beyond reach. Moreover, Plaut and Roughgarden [2020] showed that
EFX conflicts with Pareto optimality3, another important property that we wish to have, thus we cannot
have an EFX-based BoBW result with Pareto optimality.

4.2 Economic Efficiency

As noted in Corollary 9, our BoBW result can be supported on allocations that are Pareto optimal (though
our polynomial time randomized allocation of Theorem 7 does not guarantee ex-post PO). Some stronger
economic efficiency properties cannot be achieved, as they contradict our ex-post fairness properties. For
example, ex-ante Pareto optimal (fPO) cannot be achieved, as shown in Proposition 8. Likewise, the next ex-
ample shows that one should not attempt to approximately maximize welfare, not even if valuation functions
are normalized and scaled so that every agent has the same value for the set of all items M.

Consider the following example with m = n, with n being a perfect square. For every agent i ≤ √
n, every

item j with j = imodulo
√
n has value

√
n (and the rest of the items have value 0). For the remaining agents,

every item has value 1. Observe that vi(M) = n for every agent i, so valuations are indeed normalized. The
TPS of each of the remaining agents is 1, and hence if we want every agent to get at least a constant fraction
of her TPS, in every ex-post allocation each of them must receive at least one item. The welfare of every
such allocation is at most n − √

n +
√
n · √n < 2n, whereas the maximum welfare allocation gives each of

the first
√
n agents value of n (

√
n items, each of value

√
n), resulting in optimal welfare of n

3
2 . Thus, any

allocation that gives every agent a constant fraction of her TPS does not approximate the maximum welfare
(even when valuations are normalized) to any factor better than Ω(

√
n).

This leads us to consider Nash Social Welfare (NSW). We cannot hope to exactly maximize the fractional
NSW (fNSW) ex-ante, as this allocation is fractionally PO, and Proposition 8 shows an impossibility result for
this case. However, we can hope to get a constant approximation for the maximum fNSW ex-ante. It would
be interesting to understand whether some version of our allocation algorithm from the proof of Theorem 7
(with suitable modifications) could provide such a result. In Appendix C we show that in the simplest
non-trivial case (when there are n items to allocate to n additive agents) there is a randomized allocation
algorithm that obtains fNSW approximation ex-ante, while giving every agent at least her proportional share
ex-ante and at least her TPS ex-post. This demonstrates that at least in simple settings, it is possible to
achieve fNSW approximation ex-ante together with the other properties we are after.

3Their example for the additive case uses goods with zero values. Such examples are not known for instances with no
zero-value items.
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4.3 Incentive Compatibility

We discuss here truthfulness aspects for individual agents, and do not address in our discussion more de-
manding aspects of group strategyproofness.

BoBW allocation mechanisms are randomized. As such, one may consider either ex-post or ex-ante
truthfulness notions. The most straightforward notion is that of universal truthfulness – reporting the true
valuation function is a dominant strategy, with respect to both ex-post and ex-ante values simultaneously, for
every realization of the coin tosses of the randomized allocation. A BoBW result with universal truthfulness
was achieved in [Babaioff et al., 2020] in the special case of additive dichotomous valuations (and also for
submodular dichotomous valuations). However, for general additive valuations, there are impossibility results
for truthful mechanisms, and they carry over to universally truthful mechanisms. In particular, it is proved
in [Amanatidis et al., 2017a] that every truthful allocation mechanism for two agents that allocates all items
must, in some instances, give an agent no more than a 2

m
fraction of her MMS. Consequently, every universally

truthful randomized allocation mechanism for two agents that allocates all items must sometimes give an
agent no more than a 2

m
fraction of her MMS ex-post. Moreover, this implies the next proposition regarding

n agents. The proposition is a direct corollary from the result of Amanatidis et al. [2017a].

Proposition 18 Every universally truthful randomized allocation mechanism for n agents and m items that
is ex-post PO must sometimes not give an agent more than an O( n

m
) fraction of her MMS ex-post.

This proposition holds by adapting the two agents impossibility result proof, having large enough m and
adding one auxiliary item and n− 2 auxiliary agents that each wants only the auxiliary item.

An alternative truthfulness notion is that of truthful in expectation (TIE), which is an ex-ante notion,
and postulates that agents attempt to maximize their expected utility. In the BoBW setting, it is indeed
reasonable to assume that agents are expectation maximizers, as these are the type of guarantees that they
are given ex-ante. However, TIE tacitly assumes that agents are not strategic concerning their ex-post
guarantees, an aspect that is somewhat problematic in BoBW settings. A TIE BoBW result for additive
dichotomous valuations is achieved in [Halpern et al., 2020].

None of the BoBW results (the previous Theorems 2 and 1, and our Theorem 7) provides a truthful
mechanism, not even TIE. On the other hand, the weaker and rather trivial Proposition 11 does give a TIE
mechanism, but with rather weak BoBW guarantees.

In the mechanism of Proposition 11 an agent that maximizes expected utility has no incentive to lie, but
also no incentive to be truthful. Using a trick of Mossel and Tamuz [2010], we can modify that mechanism so
as to make truthfulness the unique dominant strategy. After receiving the valuation functions of all agents,
first generate a fractional solution Af

R at random. If Af
R Pareto dominates the uniform fractional allocation,

then faithfully implement Af
R. If not, then faithfully implement the uniform fractional allocation. This

mechanism is ex-ante proportional and ex-post Prop1.
We do not know if there is a TIE mechanism that offers every agent at least a constant fraction of her

MMS ex-post (even without requiring any ex-ante guarantee).

4.4 Extension to Chores (Bads)

We briefly discuss here the BoBW setting for indivisible chores. As we shall see, known results for deter-
ministic allocation of chores easily lead to BoBW results for chores that are comparable to, or even stronger
than, the ones that we prove for goods.

Recall the setting of allocating a set M of indivisible items to n agents with additive valuations. Items
are referred to as chores (or bads) if vi(j) ≤ 0 for every agent i and item j ∈ M. Thus, this chore has a cost
of −vi(j). In this setting, agents prefer not to receive any item, but all chores must be taken care of, so the
allocation is required to allocate all of them.

The definitions of proportional share (PS) and maximin share (MMS) with respect to chores are exactly
the same as they are with respect to goods. For the truncated proportional share (TPS), we propose the
following simple definition with respect to chores: TPSi = min[PSi,minj∈M[vi(j)]]. In analogy with the
definition of TPS with respect to goods, if there are no exceptional items, then the TPS for chores is equal to
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the proportional share. For chores, an item is exceptional if its cost is larger than the cost of the proportional
share (or equivalently, its value is more negative than the proportional share), whereas for goods an item
is exceptional if its value is larger than the value of the proportional share. In the presence of exceptional
items, the definition of TPS for goods needs to account for the possibility that an agent other that our agent
receives the good, whereas the definition of TPS for chores needs to account for the possibility that our agent
receives the chore. As these are different types of events, this leads to technical differences between the two
definitions of TPS, the one for goods and the one for chores.

For chores, the value of the proportional share, the MMS and the TPS are all negative, unless vi is
identically 0. Note also that as in the case for goods, also for chores the following inequalities hold (for
additive valuations): PSi ≥ TPSi ≥ MMSi.

In [Aziz et al., 2017] it is shown (adapting results of Kurokawa et al. [2018] from goods to chores) that
there are allocation instances for indivisible chores for agents with additive valuations in which no allocation
gives every agent value at least her MMS. On the positive side, it was shown that letting agents choose
chores in a round-robin fashion assigns every agent chores of cost at most 2− 1

n
times the cost of her MMS.

This is a (2 − 1
n
)-approximation of her MMS. (Note that as the MMS is negative, approximation ratios

are at least 1 rather than at most 1.) In fact, their proof shows that every agent i gets value at least
PSi + (1− 1

n
)minj∈M[vi(j)], and hence no worse than a (2− 1

n
)-approximation of her TPS. For TPS, this

is nearly the best possible guarantee. Consider an instance with n + 1 items each of value −1. The TPS
of every agent is −n+1

n
, whereas in every allocation, some agent gets a bundle of value not better than −2.

Hence in every allocation, some agent gets a bundle of value no better than 2− 2
n+1 times her TPS.

The round-robin allocation can easily be transformed into a BoBW result by using a random permutation
to determine the order among agents. In this case, every agent gets at least her proportional share ex-ante,
and chores of cost at most 2− 1

n
times her TPS cost ex-post. Moreover, this allocation is also EF1 ex-post.

Unlike the case of goods, where the up-to-one-good paradigm does not offer any approximation for the
TPS, for chores, the up-to-one-good paradigm guarantees a factor 2 approximation of the TPS. Consequently,
approaches similar to those of [Freeman et al., 2020] (with straightforward adaptation to chores instead of
goods) can be used in order to get fractional allocations that are fractionally Pareto optimal both ex-ante
and ex-post, are proportional ex-ante, and assign every agent chores of cost at most twice her TPS cost
ex-post.

If one considers ex-post guarantees with respect to the MMS instead of the TPS, better approximation
ratios can be achieved ex-post. In [Aziz et al., 2020] it was shown that a certain picking order leads to
allocations that assign every agent chores of cost no worse than 5

3 times the cost of her MMS. Also this
allocation can be transformed into a BoBW result by using a random permutation to determine the order
among agents.

Observation 19 The allocation mechanism of [Aziz et al., 2020] with a random permutation over the agents
assigns every agent chores of cost at most 5

3 times her MMS cost ex-post, and in expectation her cost is at
most her proportional share.

For deterministic allocations (not as part of a BoBW result), the 5
3 ratio is known not to be best

possible. There are allocations that assign every agent chores of cost at most 11
9 times the cost of her

MMS [Huang and Lu, 2019].
For allocation instances that involve a mixture of goods and chores, known also as mixed manna, there

are instances in which agents have additive valuations, the MMS of every agent is strictly positive, whereas
in every allocation (that allocates all items) some agent receives a bundle of value at most 0 [Kulkarni et al.,
2020]. Hence, for mixed manna, it is not always possible to find an allocation that gives every agent a
positive fraction of her MMS.
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A Missing Proofs

We first show that there is a polynomial time algorithm that gives every agent (with an additive valuation)
at least a n

2n−1 fraction of her TPS.
We say that an allocation A = (A1, . . . , An) is half-fair if for every two agents i and j, if |Aj | > 1 then

vi(Ai) ≥ 1
2vi(Aj). In other words, if an agent i prefers bundle Aj over her own bundle Ai, then either Aj

contains only one item, or Aj is at most twice as valuable to i than Ai.
Proposition 20 below shows that in every half-fair allocation, every agent gets at least a n

2n−1 fraction of
her TPS. We note that every EFX allocation is half-fair, and thus gives every agent at least a n

2n−1 fraction
of her TPS. Unfortunately, EFX allocations are not known to always exist. However, EF1 allocations do
always exist, as shown in [Lipton et al., 2004]. Though EF1 allocations are not necessarily half-fair (recall
Example 3), the EF1 allocations generated by the algorithm of Lipton et al. [2004] are half-fair. Hence the
algorithm of Lipton et al. [2004] produces an allocation that gives every agent at least a n

2n−1 fraction of her
TPS.

Proposition 20 Every half-fair allocation A = (A1, . . . , An) gives agent i at least a n
2n−1 fraction of her

TPS.
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Proof. Let A = (A1, . . . , An) be a half-fair allocation. Recall that TPSi has the property that for every
single item e, TPSi(n− 1,M\{e}, vi) ≥ TPSi(n,M, vi). Let K denote the set of items that are in bundles
(excluding Ai) that contain only a single item, and let M′ = M \ K. Then TPSi(n − |K|,M′, vi) ≥
TPSi(n,M, vi). As allocation A is half-fair, we have that vi(M′) ≤ (2(n− |K|)− 1)vi(Ai), since the items
in M′ \Ai are divided between n− |K| − 1 agents, and each of those agents has a value (according to vi) of
at most 2vi(Ai). Hence:

TPSi ≤ TPSi(n− |K|,M′, vi) ≤ PSi(n− |K|,M′, vi) ≤
2(n− |K|)− 1

n− |K| vi(Ai) ≤
2n− 1

n
vi(Ai),

which concludes the proof. �

We now restate and prove Proposition 8, showing that ex-ante fPO is in conflict with the ex-post fairness
properties that we desire.

Proposition 8 For every n ≥ 2 and every ǫ > 0 there are allocation instances with additive valuations,
with the following property: for every ex-ante Pareto optimal (fPO) randomized allocation (whether ex-ante
proportional or not), every allocation in its support does not give some agent more than a 1+ǫ

n
fraction of

her maximin share.

Proof. Recall the instance of Example 3, where the maximin share of every agent is n. Consider an arbitrary
fractional fPO allocation A∗ for this instance. We may assume that every agent i receives fractions either
from at least one of the items {b1, b2, . . . , bn−1} or from at least two of the items in {s1, . . . , sn}, as otherwise
agent i cannot get ex-post a value larger than 1 + ǫ. In either of these cases, agent i holds some fraction of
an item (say, item ej) different from si. Fractional Pareto optimality of A∗ then implies that A∗ allocates
si in full to agent i. (Otherwise A∗ can be Pareto improved. Agent i, who values si more than other agents
do, and values ej not more than other agents do, can trade a fraction of ej with a fraction of si, benefiting
himself, and without hurting the agent who originally holds the fraction of item si.) Consequently, every
agent i receives the corresponding item si in every ex-post allocation. By the pigeon-hole principle, in an
ex-post allocation there is an agent that receives no item among {b1, b2, . . . , bn−1}. This agent i receives only
si, and hence only a 1+ǫ

n
fraction of her MMS. �

B Faithful Implementations of Fractional Allocations

In this section we present a self contained explanation of a usage of randomized rounding to obtain BoBW
fairness, the concept we refer to as faithful implementation. We provide some historical context as to the
development of various components of it, and present the proof of Lemma 10, which summarizes the result
regarding faithful implementations.

Consider a fractional allocation A∗ of m items to n agents with additive valuations. Denote the fractional
allocation to agent i by A∗

i , with A∗
ij denoting the fraction of item j given to agent i in A∗. Let Mf

i =
{j | 0 < A∗

ij < 1} denote the set of items for which some positive proper fraction (neither 0 nor 1) is allocated

to i, and let f =
∑

i∈N |Mf
i | denote the number of variables that are strictly fractional.

We consider generating a distribution over integral allocations from the fractional allocationA∗ (a “round-
ing procedure”). We distinguish between three kinds of rounding:

• Deterministic rounding. Produces a single integral allocation.

• Randomized rounding. Produces a distribution over integral allocations.

• Implementation. Randomized rounding, where the expectation of the associated distribution is exactly
A∗.
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We consider two notions of polynomial-time algorithms for performing randomized rounding.

• Randomized polynomial time. There is a randomized polynomial time algorithm that samples an integer
allocation from the associated distribution.

• Deterministic polynomial time. There is a deterministic polynomial time algorithm that lists all integral
allocations in the support of the distribution, together with the associated probability of each allocation.
In particular, this implies that the size of the support is upper bounded by some polynomial in n and
m.

We list several faithfulness properties that may be associated with the rounding.

1. Ex-post faithfulness, which satisfy both of the following properties:

(a) Faithfulness from above. In the rounded integral allocation A, every agent i gets a bundle of value
at most her fractional value, up to the value of one of her fractionally allocated items. That is,
vi(Ai) ≤ vi(A

∗
i ) + max

j∈Mf
i

vi(j).

(b) Faithfulness from below. In the rounded integral allocation A, every agent i gets a bundle of value
at least her fractional value, up to the value of one of her fractionally allocated items. That is,
vi(Ai) ≥ vi(A

∗
i )−max

j∈Mf
i
vi(j).

For an implementation of a fractional allocation, Ex-post faithfulness follows from the following single
property:

• Small spread. For every agent i, the difference in values that i receives in any two rounded integral
allocations is at most max

j∈Mf
i
vi(j).

We refer to a distribution over allocations as a faithful implementation of A∗ if it is an implementation
that satisfies small spread.

2. Ex-ante faithfulness. In the randomized rounding, every agent i gets in expectation value at least
equal to her fractional value. E[vi(Ai)] ≥ vi(A

∗
i ). Observe that by definition, an implementation of

the fractional allocation is ex-ante faithful.

Faithful rounding of fractional solutions has a long history, where in different times researchers added
additional ingredients (from those mentioned above) that they wished to satisfy. We briefly mention a few
past relevant works.

Independent randomized rounding has numerous applications for approximation algorithms. The round-
ing allocates each item to at most one agent, independently of the allocation of other items. That is, each
item j is independently (from other items) allocated to at most a single agent, with each agent i getting
item j with probability equal to A∗

ij . This procedure provides a randomized polynomial time implementa-
tion for the fractional allocation (and hence is ex-ante faithful), but it does not provide ex-post faithfulness
guarantees.

Deterministic (polynomial time) rounding that is faithful from above was developed in [Lenstra et al.,
1990] in the context of scheduling problems. For allocation problems, faithfulness from below is a more
natural requirement, and this version was presented in [Bezáková and Dani, 2005]. A randomized polynomial
time faithful implementation (showing that the small spread property holds and making explicit use it) was
presented in [Srinivasan, 2008]. A randomized polynomial time faithful implementation for a more general
setting (referred to as a bi-hierarchy) was presented in [Budish et al., 2013]. Later work was concerned
with deterministic (rather than randomized) polynomial time faithful implementations, with one approach
described in [Freeman et al., 2020], and a somewhat simpler approach presented in [Aziz, 2020]. Summarizing
the above discussion, and marginally improving over it (in terms of the upper bound on the support of the
distribution), we have the following lemma.
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Lemma 10 Let A∗ be a fractional allocation of m items to n agents with additive valuations, and let f
denote the number of strictly fractional variables in A∗ (number of pairs (i, j) such that in A∗, the fraction
of item j allocated to agent i is strictly between 0 and 1). Then there is a deterministic polynomial time
implementation of A∗, supported only on allocations in which every agent gets value (ex-post) equal her ex-
ante value (in the fractional allocation A∗), up to the value of one item. (For agent i, the corresponding one
item is the item most valuable to i, among those items that are assigned to i under A∗ in a strictly fractional
fashion. Moreover, the values that the agent gets in any two allocations differ by at most the value of this
single item.) The distribution of the implementation is supported over at most f + 1 allocations.

Proof. The proof of the lemma has two parts, neither one of them is new. The first (and main) part proves
the lemma but without the upper bound of f + 1, and the second part observes that standard techniques
reduce the support to size f + 1.

For the first part, we sketch for completeness the proof approach of Aziz [2020]. Recall the Birkhoff –
von Neumann theorem that says that every doubly stochastic matrix can be decomposed into a weighted
sum of permutation matrices. Equivalently, every perfect fractional matching in a bipartite graph can be
decomposed into a weighted sum of perfect (integral) matchings. Moreover, this can be done in polynomial
time, via repeatedly finding and peeling off a bipartite perfect matchings.

We reduce the setting of Lemma 10 to that of the Birkhoff – von Neumann theorem, showing how we can
take A∗ and generate a distribution over matchings of “clones” of each agent, that can be use to generate a
distribution over allocations that is a faithful implementation of A∗. For every agent i we do the following.
Let fi =

∑

j A
∗
ij denote the total sum of fractions of items (not their values) received by i under A∗. We

replace i by ⌈fi⌉ clones c1i , . . . , c
⌈fi⌉
i as follows. Sort all items in order of decreasing vi value. This gives a

priority order for the following sequential “eating” process. The clones of i “eat” the fractional allocation of
i, where each clone in its turn consumes one unit of the fractional allocation (starting consuming only after
the prior clone completed consuming), where the unit is chosen according to the priority order. The last
clone might have less than a single unit to consume.

Having done the above for all agents, we now have a fractional matching between clones and items. This
is not a perfect fractional matching (the last clone of an agent may consume less than one item), but the
Birkhoff – von Neumann theorem still applies (e.g., one can add dummy clones and items as needed so
as to complete the instance to a perfect fractional matching on a larger bipartite graph). Hence we can
decompose the fractional matching into integral matchings. In every integral matching, every agent gets the
items received by her clones.

Ex-post faithfulness follows from the fact that for every agent i, in every integral allocation, each of
i’s clones (except for perhaps the last one) receives one item. Let Si,max (Si,min, respectively) be the set
of items obtained by taking for each of i’s clones the highest priority (lowest priority, respectively) item
that the clone may possibly receive. Then every allocation that agent i may receive has value in the range
[vi(Si,min), vi(Si,max)]. Observe that vi(Si,min) ≥ vi(Si,max) − max

j∈Mf
i
vi(j). This last statement can be

verified by removing the most valuable item (that of clone 1) from Si,max, and then using the fact that for
every j ≤ 1, the item of clone j in Si,min is at least as valuable as the item of clone j + 1 in Si,max. This
established the small spread property, which implies ex-post faithfulness.

The first part of the proof provided a deterministic polynomial time implementation of A∗ as a distribution
D over polynomially many allocations A1, A2, . . . Aℓ, where every allocation in the support is ex-post faithful.
In the second part we reduce the size of the support to f + 1. For this we set up a linear program. The
variable xk specifies the extent to which we include allocation Ak in the new implementation of A∗. The set
F contains those pairs (i, j) for which in A∗, agent i is allocated a strictly fractional part of item j, and A∗

i,j

denotes this fraction. Observe that |F | = f . For every allocation Ak in the support of D, we use Ak
i,j as an

indicator of whether item j is allocated to agent i in Ak. The A∗
i,j and Ak

i,j values serve as coefficients in
our LP. The constraints of the LP are (the objective function can be set to 0):

1.
∑

1≤k≤ℓ xk = 1.

2.
∑

i∈N , 1≤k≤ℓ A
k
i,jxk = A∗

i,j for every (i, j) ∈ F .
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3. xk ≥ 0 for every 1 ≤ k ≤ ℓ.

The above LP is feasible, as the probabilities that D assigns to each Ak serve as a feasible solution.
In polynomial time, one can find a basic feasible solution to the LP. The number of non-zero variables in
this solution is no larger than the number of constraints (excluding the non-negativity constraints), which
is f + 1, as desired. �

C Approximate fNSW

To demonstrate that fractional NSW approximation ex-ante is not in conflict with ex-post guarantees, we
next show that in the simplest non-trivial cases (when there are at most n items to allocate to n additive
agents4 ) it is indeed feasible to obtain fractional NSW approximation ex-ante, while giving every agent
at least her proportional share ex-ante and at least her TPS ex-post (with every ex-post allocation being
Pareto optimal). It is easy to observe that these ex-post properties simply imply that the allocation is
always a matching. Yet note that the agents have additive valuations, and the ex-ante benchmark of fNSW
maximization is stronger than fNSW maximization for unit-demand valuations (as valuations are additive).

Theorem 21 For every instance with n agents with additive valuations over at most n items, there is a
randomized allocation with the following properties.

• Ex-post: every agent gets at least her truncated proportional share (TPS), and the allocation is Pareto
optimal (PO).

• Ex-ante: every agent gets at least her proportional share (PS), and the randomized allocation approxi-

mates the fNSW with a ratio no worse than e
e+1
e ≃ 3.927.

Moreover, the fractional allocation associated with the randomized allocation can be computed in polyno-
mial time.

Proof. Let vi denote the valuation function of agent i, naturally extended to fractional allocations. We
assume without loss of generality that the number of items is exactly n (which can be enforced by adding
items of 0 value, if needed). Let A = (A1, . . . , An) denote a fractional allocation. Let |Ai| denote the sum of

fractions of items allocated to agent i. Observe that a fractional allocation A maximizes fNSW (
∏

i vi(Ai))
1
n

if and only if it maximizes
∑

i log vi(Ai). As the logarithm function is concave, the following optimization
problem can be solved in polynomial time (up to arbitrary precision).

Maximize
∑

i log vi(Ai) subject to:

1. A = (A1, . . . , An) is a fractional allocation.

2. vi(Ai) ≥ 1
n
vi(M).

3. |Ai| = 1 for every i.

The above optimization problem is feasible (allocating to every agent a 1
n

fraction of every item is a
feasible solution). By constraint 3, after rounding, every agent gets exactly one item. As there are n items,
the TPS of an agent is the value of the least valuable item for her, and hence every agent gets her TPS
ex-post. The ex-post allocation need not be PO (e.g., an agent may receive an item of 0-value to him, that
some other agent desires), but if needed, it can be replaced by a PO allocation that Pareto-dominates it
(though we do not claim that this part can be done in polynomial time). By constraint 2, every agent gets
at least her proportional share ex-ante. It remains to prove the constant approximation to the fNSW.

4When there are less items than agents, the TPS is zero. In this case any randomized allocation that maximizes the fNSW is
also proportional, and when supported on Pareto optimal allocations (using a faithful implementation) we get a stronger claim
than the one proven in Theorem 21 (the fNSW approximation is perfect).
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Let A∗ be a fractional allocation that maximizes fNSW. We show how it can be transformed into an
allocation that satisfies the constraints of the optimization problem, while losing only a constant fraction in
the value of the fNSW.

We first transform A∗ into an allocation B that satisfies constraint 3. Let P denote the set of those
agents that under A∗ receive fractions adding up to strictly more than one item. Scale down the fractional
allocation of every agent i ∈ P by |A∗

i |. For the remaining agents, use the freed-up fractions of items to
complete their allocation in an arbitrary way so that they each receive fractionally exactly one item. This
gives the allocation B.

We now compare fNSW (A∗) with fNSW (B). Observe that fNSW (A∗) ≤ fNSW (B)
(
∏

i∈P |A∗
i |
)

1
n .

But as
∑

i∈P |A∗
i | ≤ n, a convexity argument shows that

(
∏

i∈P |A∗
i |
)

1
n ≤ minx(x

n
x )

1
n . The minimizer is

x = e, and hence fNSW (A∗) ≤ fNSW (B) · e 1
e .

We now transform B into an allocation A that satisfies constraint 2. This is done in rounds. Starting at
round r = 1, we do the following.

1. If the fractional allocation gives every agent at least her PS, then end and return this allocation as the
allocation A.

2. Consider an arbitrary agent that does not receive her proportional share. Denote this agent by Zr.

3. For every agent other than Z1, . . . Zr−1, scale its allocation by n−r
n−r+1 . Observe that from every item,

a 1
n
fraction is now not allocated.

4. Replace the allocation of Zr by an allocation that gives it a 1
n
fraction of every item. Now Zr receives

her proportional share.

5. For every agent not in Z1, . . . , Zr, use fractions of items freed-up by Zr to complete her sum of fractions
of items to 1 in an arbitrary way.

Note that the largest possible value of r is n− 1 (because if every agent in Z1, . . . , Zn−1 gets a 1
n
fraction

of every item, so does the remaining agent).
We now compare fNSW (A) with fNSW (B). In a round r, every agent not in {Z1, . . . , Zr} maintains

at least a n−r
n−r+1 of her value, whereas agents in {Z1, . . . , Zr} do not lose value. Hence in the rounds leading

to r, agent Zr maintains at least a n−1
n

· . . . · n−r
n−r+1 = n−r

n
of its value. Hence altogether,

fNSW (B) ≤ fNSW (A)

(

n−1
∏

r=1

n

n− r

)

1
n

.

Observe that

n−1
∏

r=1

n

n− r
=

nn−1

(n− 1)!
≤ nn−1en−1

(n− 1)n−1
√

2π(n− 1)
= (1 +

1

n+ 1
)n−1 en−1

√

2π(n− 1)
≤ en,

showing that fNSW (B) ≤ fNSW (A) · e. �

D Combining EF1

An interesting challenge is to prove a result that adds EF1 to the guarantees we provide (proportionality
and half the TPS). For two agents, running the standard cut-and-choose protocol with a random cutter gives
a randomized allocation that is proportional ex-ante (which for two agents implies also EF ex-ante), and
both EFX and MMS ex-post (and 2/3-TPS). Unfortunately, we do not know of a randomized allocation that
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obtains such a result beyond two agents. Yet, below we prove a weaker result and present a randomized
allocation that is EF1, gives every agent at least a n

2n−1 fraction of her TPS, and n
2n−1 fraction of her pro-

portional share ex-ante. Moreover, the allocation is poly-time computable. We next present the randomized
allocation algorithm.

1. First allocate a single item to every agent as follows. Pick a random order over agents. According
to that order, assign every agent an item of highest value to her among those items that are not yet
assigned.

2. Select an arbitrary agent that no one envies, and assign to that agent the item of highest value for her,
among those items that have not yet been allocated.

3. As long as there are envy cycles, eliminate them. Go back to step (2).

Theorem 22 The randomized allocation produced by the above algorithm is EF1 and n
2n−1 -TPS. Addition-

ally, it gives every agent at least a n
2n−1 fraction of her proportional share ex-ante. Moreover, the allocation

is poly-time computable.

The claim that the allocation is poly-time computable is immediate. Thus, the theorem follows from the
next two lemmas.

Lemma 23 The allocation produced by the algorithm is EF1 and n
2n−1 -TPS (ex-post, for every realization).

Proof. The allocation is EF1 because for every agent i, all bundles start at equal value (of 0), and thereafter,
there is no round in which a bundle that i envies receives an item. Hence removing the last item in a bundle
B not allocated to i, agent i does not envy that bundle. (The allocation is not necessarily EFX, as the last
item in B need not be the one of smallest value in the eyes of i.)

To see the TPS approximation, consider the first item e received by i. If vi(e) ≥ n
2n−1TPSi, we are

done. If not, then observe that every bundle with higher value than i’s bundle either has one item, or its
value exceeds that of vi(Bi) by at most vi(e). In the former case, eliminate the items and the agent, without

hurting TPSi. The value received by i is at least a n′

2n′−1 fraction of her proportional share of the set of
those items that are in the n′ remaining bundles. �

Lemma 24 For every number of agents, the uniformly random greedy algorithm gives every agent at least
a n

2n−1 fraction of her proportional share ex-ante.

Proof. If no item by itself is valued above the proportional share, then this follows from the ex-post
n

2n−1 -TPS guarantee.
Hence, let 1 ≤ k < n denote the number of items of value above TPS, let X denote their total value,

and let Y denote the total value of remaining items. Then with probability at least k
n
the agent gets one

of the top items, and conditioned on that, the expected value received is at least X
k
. With the remaining

probability the agent gets at least n
2n−1 -TPS, where the TPS is exactly Y

n−k
. Hence in expectation the agent

gets a least:

k

n
· X
k

+
n− k

n
· n

2n− 1
· Y

n− k
≥ n

2n− 1
· X + Y

n

which is a n
2n−1 fraction of her proportional share. �

There are instances in which the allocation algorithm in the proof of Theorem 22 does not provide
every her proportional share ex-ante, not even if in Step 2 of the algorithm the agent to receive an item is
chosen uniformly at random among those agents that no one envies. For example, if there are five items
and valuations (12, 10, 9, 8, 5) and (10, 12, 9, 6, 5) then the proportional share of the first agent is 22, this
randomized version of the greedy algorithm will give her the bundle (12, 9) with probability 1

2 , and each
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of the bundles (12, 8) and (12, 8, 5) with probability 1
4 , for a total expected value of 21.75. Adding a large

constant M to the value of every item, the proportional share of the agent is roughly 5
2M , whereas in

expectation she gets 9
4M , showing that one does not get better than a 9

10 approximation to the proportional
share ex-ante.

Unfortunately, the allocation need not give more than n
2n−1 -MMS ex-post. An example showing that the

allocation need not give more than n
2n−1 -MMS is as follows. For agent 1, the first n items have value n

2n−1 ,
and all remaining items have value small ǫ > 0, where the proportional share and MMS are 1. For other
agents, the first item has value 1, and the remaining item have value ǫ′ > 0, where the proportional share
and MMS are 1. If agent 1 gets the first item, the other agents might get all remaining items in reverse
order (items 2 to n are allocated last, each to a different agent).

Our results imply that every two of the properties ex-post EF1, ex-post approximate TPS and ex-ante
proportional can be achieved simultaneously. The combination of ex-post EF1 and n

2n−1 -TPS follows from

Theorem 22, the combination of ex-post 1
2 -TPS and ex-ante proportional follows from Theorem 7, and the

combination of ex-post EF1 and ex-ante proportional follows from Aziz [2020]. The question of whether all
three can be achieved simultaneously remains open.
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