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Abstract. Empirical game-theoretic analysis (EGTA) is a general frame-
work for reasoning about complex games using agent-based simulation.
Data from simulating select strategy profiles is employed to estimate a
cogent and tractable game model approximating the underlying game.
To date, EGTA methodology has focused on game models in normal
form; though the simulations play out in sequential observations and
decisions over time, the game model abstracts away this temporal struc-
ture. Richer models of extensive-form games (EFGs) provide a means to
capture temporal patterns in action and information, using tree represen-
tations. We propose tree-exploiting EGTA (TE-EGTA), an approach to
incorporate EFG models into EGTA. TE-EGTA constructs game models
that express observations and temporal organization of activity, albeit
at a coarser grain than the underlying agent-based simulation model.
The idea is to exploit key structure while maintaining tractability. We
establish theoretically and experimentally that exploiting even a little
temporal structure can vastly reduce estimation error in strategy-profile
payoffs compared to the normal-form model.1 Further, we explore the
implications of EFG models for iterative approaches to EGTA, where
strategy spaces are extended incrementally. Our experiments on several
game instances demonstrate that TE-EGTA can also improve perfor-
mance in the iterative setting, as measured by the quality of equilibrium
approximation as the strategy spaces are expanded.

1 Introduction

Empirical game-theoretic analysis (EGTA) (Wellman, 2016) employs agent-based
simulation to induce a game model over a restricted set of strategies. The
methodology is salient for games that are too complex for analytic description
and reasoning. Complexity in dynamics and information can be expressed in
a simulator, but abstracted from the game model. In typical EGTA practice,
simulation data is used to estimate a normal-form game (NFG) model, associ-
ating a payoff vector with each combination of strategies available to the agents.
But game theory offers richer model forms that capture sequentiality in agent
1 This paper has been slightly revised from the original version published at WINE
2022; to wit, the proof included in the appendices of our key theoretical result has
been expanded.
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play and conditional information. Specifically, extensive-form game (EFG) mod-
els represent the game as a tree, where nodes or sets of nodes represent states,
and edges represent player moves and chance events. Whereas NFGs treat agent
strategies as atomic objects, EFGs afford a finer-grained expression of the ob-
servations and actions that define these strategies, capturing structure that may
be shared among many strategies. The goal of this work is to take advantage of
extensive-form structure, at flexible granularity, for complex game environments
described by agent-based simulation. Our approach, Tree-Exploiting EGTA (TE-
EGTA), follows the basic framework of EGTA, but employs a parameterized
EFG model to leverage part of the game’s tree structure.

Taking advantage of extensive form necessitates two key modifications to the
EGTA process. First, we require methods to estimate the more complex model
form: an abstracted game tree parameterized by player utilities at terminal nodes
and probability distributions over successors for stochastic events represented by
chance nodes in the tree. These stochastic events, together with information-set
structure, model the imperfect information available to the players. We introduce
straightforward techniques to estimate these game-tree parameters, and describe
how the structure intuitively affords more effective use of available simulation
data. Second, we require methods for extending extensive-form models as the
strategy space is expanded, across iterations of the EGTA process. We introduce
techniques for iterative augmentation of empirical game-tree models with new
(best-response) strategies, within a standard approach that incorporates deep
RL within EGTA (Lanctot et al., 2017).

To establish the benefits of tree-exploitation for EGTA, we show that an
extensive-form empirical game model provides (with high probability) a more
accurate approximation of the true game than a normal-form model constructed
from the same simulation data. As it is generally intractable to construct a
game tree expressing the full fidelity of the game simulated, our approach is
designed to operate on highly abstracted models capturing only selected tree
structure. To ground the meaning of such abstractions, we provide an algorithm
that produces a coarsened model given the full game and a description of what to
abstract away. We demonstrate the efficacy of TE-EGTA through experiments
on three stylized games, and over varying levels of abstraction. We compare TE-
EGTA to normal-form EGTA on two key performance measures. The first is the
average error incurred from estimating the true player payoffs for all strategy
combinations in the empirical game. The second is the regret of empirical-game
solutions with respect to the full multiagent scenario, computed over successive
empirical game models in an iterative EGTA process.

Outline. §2 provides technical preliminaries, including a formal exposition of
the EFG representation and precise elaboration of the EGTA framework and
process. §3 delineates our algorithmic contribution, TE-EGTA, starting with
the structure of an extensive-form empirical game model and how to estimate
its parameters from simulation data (§3.1). We then give a theoretical procedure
for generating a (usually) coarsened extensive-form model from the underlying
game (§3.2), and explain how to iteratively refine the model via simulation-
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aided strategy exploration (§3.3). In §4, we present theoretical results on the
advantage of TE-EGTA over normal-form EGTA in approximating true payoffs
given a set of strategy profiles. All proofs are available in the full version.In §5, we
report experiments that demonstrate the improvement in strategy-profile payoff
estimation (§5.1) and in model refinement using the PSRO approach (Lanctot
et al., 2017) (§5.2) produced via tree exploitation. §6 concludes.

2 Preliminaries

2.1 Extensive-Form Games (EFGs)

An extensive-form game (EFG) is a standard model for strategic multi-agent
scenarios where agents act sequentially with potentially varying degrees of im-
perfect information about the history of game play. Early algorithmic work on
EFGs showed how to generalize the Lemke-Howson method for computing Nash
equilibria (NE) for two-player games with perfect recall (Koller et al., 1996).
Well-known game-theoretic methods such as replicator dynamics (Gatti et al.,
2013) and fictitious self-play (Heinrich et al., 2015) have also been adapted for
EFGs. The task of successful abstraction with exploitability guarantees has also
been investigated: Kroer and Sandholm (2018) gave a framework for analyzing
abstractions of large-scale EFGs, and Zhang and Sandholm (2020) introduced
the notion of small certificates carrying proofs of approximate NE. Other works
have developed algorithms that search for optimal strategies or approximate
equilibria that minimize exploitability (Johanson et al., 2012; Lockhart et al.,
2019). In this paper, we will only consider games with perfect recall, so no player
can forget what it observed or knew earlier.

Tree structure. Formally, a finite, imperfect-information EFG is a tuple
G := 〈N,H, V, {Ij}nj=0, {Πj}nj=1, X, P, u〉. The components of G are defined as
follows (see Fig. 1 for an illustrative example):

– N = {0, . . . , n} is the set of players. Player 0 represents Nature, a non-
strategic agent responsible for stochastic events that impact the course of
play; the remaining players are strategic rational agents.

– H is the finite game tree, rooted at a node h0, that captures the dynamic
nature of interactions. Each node h ∈ H represents a state of the game,
also identified with a history of actions (see below) beginning at the initial
state h0 which corresponds to the null history ∅. The leaves or terminal
nodes T ⊂ H represent possible end-states of the game. We refer to the non-
terminal nodes of H as decision nodes, represented by the set D = H \ T .

– V : D → N assigns a player to each decision node h.
– For each player j ∈ N , Ij is a partition of V −1(j) where each I ∈ Ij is an

information set (infoset) of j. All nodes h ∈ I are indistinguishable from the
viewpoint of player j.

– At each information set I ∈ Ij , player j has a set of available actions Πj(I).
– A node h where V (h) = 0 is called a chance node. X(h) is the set of actions

available to Nature (i.e., possible outcomes of the stochastic event) at h, and
P (· | h) is the probability distribution over X(h).



4 C. Konicki et al.

– The utility function u : T → Rn maps each terminal node to a real-valued
vector of players’ utilities {uj(t)}nj=1.

The directed edge connecting any h ∈ I to its child child[h] represents a state
transition resulting from V (h)’s move, and is labeled with an action π ∈ ΠV (h)(I)
if V (h) 6= 0, or an outcome x ∈ X(h) otherwise. We denote by ϕ(h, j) the history
of actions belonging to player j up to node h.

Strategies and payoffs. A pure strategy for player j ∈ N \ {0} specifies
the action πj ∈ Πj(I) that j selects at information set I ∈ Ij . More generally,
a mixed strategy or simply strategy σj(· | I) defines a probability distribution
over Πj(I) at each information set of agent j; that is, action πj is selected with
probability σj(πj | I). The vector σ = (σ1, . . . , σn) is called a strategy profile,
and σ−j represents the combination of strategies for players other than j. We
denote the set of all strategies available to player j by Σj and the space of
joint strategy profiles by Σ = ×nj=1Σj . Let rj(t, σj) denote the probability that
node t is reached if player j adopts strategy σj and all other players (including
Nature) always choose actions that lead to h when possible; the probability that
t is reached under strategy profile σ is given by its reach probability, r(t,σ) =∏
j∈N rj(t, σj). Likewise, the contribution of Nature to the reach probability

of t is r0(t) =
∏
h∈H, e∈X(h)∩ϕ(t,0) P (e | h). We define the payoff from joint

strategy profile σ to player j as its expected utility over all end-states: Uj(σ) :=∑
t∈T uj(t)r(t,σ).
Best response formulation and regret. A best response (BR) of player

j ∈ N \ {0} to σ−j is a strategy σj ∈ arg maxσ′j∈Σj
Uj(σ

′
j ,σ−j) that maximizes

the payoff for j given σ−j . The regret of player j from playing σ is given by
Regj(σ) = maxσj∈Σj

Uj(σj ,σ−j)−Uj(σ). The total regret of the strategy profile
σ is the sum: Reg(σ) =

∑n
j=1 Regj(σ). For ε > 0, an ε-Nash equilibrium is a

strategy profile σ such that Regj(σ) ≤ ε for every player j ∈ N \ {0}; a strategy
profile σ with Reg(σ) = 0 is a Nash equilibrium.

Fig. 1: EFG representation of Game1, our running example also used in our experi-
ments. Dashed lines indicate outgoing edges to nodes omitted from this illustration.
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Running example. Consider the two-agent strategic scenario depicted in
Fig. 1, which we call Game1. First, Player 1 chooses an action from Π1 =
{πi1}10i=1; then, a single stochastic event X(πi1) ∈ {A,B} occurs, outcome A
having probability P (A | πi1) dependent on Player 1’s choice πi1. Player 2 observes
the outcome e ∈ {A,B} but not Player 1’s chosen action, which induces two
information sets for Player 2. Player 2 also has ten actions to choose from in
each information set, Π2A = {πi2A}10i=1 and Π2B = {πi2B}10i=1. Each leaf with
history (πi1, e, π

i′

2e) is labeled with the 2-dimensional vector of Player 1 and 2’s
realized utilities. Neither the conditional probabilities P (A | πi1) nor the leaf
utilities u(πi1, e, π

i′

2e) are known a priori to the game analyst.

2.2 Empirical Game-Theoretic Analysis (EGTA)

The framework of EGTA was developed for the application of game-theoretic
reasoning to scenarios too complex for analytic description, accessible only in
the form of a procedural simulation (Wellman, 2016). Over the years, EGTA has
been applied to multifarious problem domains including recreational strategy
games (Tuyls et al., 2020), security games (Wang et al., 2019), social dilemmas
(Leibo et al., 2017), and auctions (Wellman, 2020). There is also substantial work
on methodological questions such as how to decide which strategy profiles to sim-
ulate (Fearnley et al., 2015; Jordan et al., 2008), and how to reason statistically
about estimated game models (Areyan Viqueira et al., 2020; Tuyls et al., 2020;
Vorobeychik, 2010). Recently, EGTA has received newfound attention, as the
simulation-based approach meshes well with powerful new strategy generation
methods from deep reinforcement learning (RL) (Lanctot et al., 2017).

Fig. 2: Schematic illustration of EGTA. TE-EGTA modifies two subprocesses to in-
corporate the tree structure of EFGs: accumulation of simulation data into the game
model (enclosed in blue, described in §3.1); and the procedure for augmenting Σ̂ with
new strategies (enclosed in red, described in §3.3). Black (resp. grey) arrows represent
the sequence of operations (resp. direction of possible information flow).

The main feature of EGTA is its construction of an empirical game model
Ĝ of a much larger game of interest, called the true game G, from simulation
data. A typical EGTA process (see Fig. 2) iteratively refines and extends Ĝ
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by cumulative simulation over an incrementally growing strategy space. Ĝ is a
simplification of the underlying G since: (1) it is defined on restricted subsets
Σ̂j ⊂ Σj of the players’ true-game strategy spaces, and the restricted strat-
egy profile space, given by Σ̂ = ×nj=1Σ̂j , is typically a vast reduction of Σ; (2)
some information revelation and conditioning structure may be abstracted away.
Moreover, we assume that G is accessible only through a high-fidelity but expen-
sive simulator that executes a given strategy profile in G and outputs limited
observation histories and noisy utility samples. Ĝ is thus also an approximation
of G since its parameters must be estimated from this simulation data.

Almost all EGTA literature to date expresses game models in normal form,
given by a (multi-dimensional) matrix of payoff estimates for combinations of
agents’ strategies from the restricted set. The multi-agent scenarios themselves
are typically dynamic in nature, as represented by an agent-based simulator;
agent strategies are generally conditional on partial observations. For example,
a normal-form game model for Game1 in §2.1 would treat each pure strategy πi

′

2

of player 2 as atomic, abstracting away the nuanced conditioning on whether A
or B happened, and record estimated utility vectors for strategy combinations
of the form (πi1, π

i′

2 ) from restricted set.
As our objective is to extend EGTA to extensive-form modeling, we will call

this normal-form baseline NF-EGTA. In NF-EGTA, the sole simulator output
of concern is the noisy sample of players’ payoffs, from which we compute es-
timates {ÛNF

j (σ)}nj=1 of the true utilities {Uj(σ)}nj=1 to obtain the empirical
game model Ĝ. We then analyze or solve this tractable, multi-dimensional game
matrix by standard techniques to obtain a result for the next iteration. Termi-
nation may be decided by a criterion such as the true-game regret of a solution
(i.e., the maximum payoff increase achievable by any player j by deviating to
a strategy in Σj rather than Σ̂j) falling below a specified threshold. If termi-
nation criteria are not met, we expand the restricted strategy sets through a
process called strategy exploration (Balduzzi et al., 2019; Jordan et al., 2010),
and update Ĝ through further simulation and model induction.

Game Model Estimation. Consider the process of estimating a normal-
form model for an underlying extensive-form game implicitly represented by
traces from the simulator. Suppose we simulate each strategy profile in Σ̂ m
times. Each simulated play traces a path through the game tree ending at some
undisclosed terminal node t ∈ T and returns a vector of noisy payoffs for all
players sampled from a distribution with expectation u(t). Let {ūij}nj=1 denote
the realized payoff sample at the end of the ith simulation for i = 1, . . . ,m;
Typically, NF-EGTA’s payoff estimate ÛNF

j (σ) is the simple average of these
samples. ÛNF

j (σ) is an unbiased estimator of the true payoff, as shown in Propo-
sition 1. In practice, the number of samples m that can be acquired is limited
by the computational cost of simulation. This begs the question: can incorporat-
ing tree structure into Ĝ improve the accuracy of estimated payoffs, relative to
NF-EGTA, for a fixed simulation budget m? We address this question in §3.1.



Exploiting Extensive-Form Structure in Empirical Game-Theoretic Analysis 7

Proposition 1. For every player j ∈ N \ {0} and strategy profile σ ∈ Σ̂,
E
[
ÛNF
j (σ)

]
= Uj(σ).

Policy-Space Response Oracles (PSRO). A fully automated implemen-
tation of the iterative EGTA framework of Fig. 2 requires the ability to auto-
matically generate new strategies based on analysis of the empirical game model
at a given point. Phelps et al. (2006) first introduced automated strategy gen-
eration to EGTA via genetic search, and Schvartzman and Wellman (2009) first
employed RL for this purpose. The advent of deep RL methods brought sig-
nificant new power to this approach, which is now the predominant means of
accumulating a set of restricted strategies in EGTA algorithms.

Lanctot et al. (2017) developed a general framework for interleaving empir-
ical game modeling with deep RL techniques, which they termed policy-space
response oracles. A key idea of PSRO is that of a meta-strategy solver (MSS),
an abstract operation that implements the “Analyze Empirical Game” block of
Fig. 2. The output of an MSS is a strategy profile, which provides the other-
agent context for a BR calculation performed by deep RL. The policy generated
by RL as a BR to the MSS result is then added as a new strategy to expand
the current restricted strategy space, leading to another round of simulation and
induction for the next EGTA iteration. The MSS concept provides a useful ab-
straction for expressing a variety of approaches to strategy exploration (Wang
et al., 2022). For example, using Nash equilibrium as an MSS yields the double
oracle (DO) algorithm (McMahan et al., 2003). If the MSS simply returns the
uniform distribution over the restricted strategy sets, the algorithm reduces to
fictitious play.

Prior work has extended the DO algorithm to exploit game-tree structure.
Bošanský et al. (2014) developed a sequence-form double-oracle algorithm for
zero-sum EFGs that maintains a restricted game model based on partial action
sequences. The XDO algorithm of McAleer et al. (2021) for two-player zero-sum
games computes a mixed BR at each information set, as compared to normal-
form DO which mixes policies only at the root level. It modifies PSRO for EFGs
while still using a normal-form empirical model. The benefits over normal-form
demonstrated by these works suggest EGTA can be similarly extended to exploit
game-tree structure beyond the strategy exploration block.

3 Tree-Exploiting EGTA

We call our approach for augmenting empirical game models to incorporate
extensive-form game elements tree-exploiting EGTA (TE-EGTA). In the typical
normal-form treatment of EGTA, the underlying game is parameterized by en-
tries in a payoff matrix {Uj(σ)}j∈N\{0},σ∈Σ .2 TE-EGTA instead parameterizes
the underlying game to capture the EFG tree structure through a set of leaf
2 More general approaches based on regression have been proposed (Sokota et al.,
2019; Vorobeychik et al., 2007), which also amount to parameterized representations
of a payoff function.
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utilities {u(t)}t∈T , and conditional probability distributions that are dependent
on possibly unobserved previous choices made in the game play and estimated
from observations of stochastic events.

We assume that the structure of decisions and stochastic events in the em-
pirical EFG model is given (typically a high-level abstraction of the game tree
implicitly represented by the simulator, as discussed in §3.2). This ensures that
the order of player choices and stochastic events in the empirical game tree
matches the order in the true game, from root to leaf. In particular, the true
game’s information sets must be a refinement of the empirical game’s infor-
mation sets. Given this structure, we treat observations of Nature’s actions as
conditioned on past game play. The empirical game tree therefore must associate
with each chance node a conditional probability distribution over the relevant
set of outgoing edges. Leaves of the tree are associated with payoff estimates,
which depend on the entire path from the root.

Each simulation of a strategy profile yields sample payoffs, as well as a trace
of publicly or privately observable actions from both the players and Nature that
are made over the course of the game. This is a key point of contrast with the
normal-form model, for which only payoffs are relevant. The trace of actions tells
us which leaf node in the abstract model is reached and what stochastic event
outcomes were realized along the way.

To explain our tree-exploiting estimation approach, we first restate the ex-
pression for Uj(σ) in a way that explicitly factors in probabilities of specific
observations of stochastic events. We assume that a game theorist working with
the black-box simulator’s partial observations in order to formulate an empirical
model is aware of the game’s rules, and so can surmise where in the game the
observation has occurred. We also assume that the observation labels used by the
simulator allow the game theorist to distinguish the observations from each other
and associate them with the appropriate chance nodes. A stochastic observation
during gameplay is captured in the tree by an edge e ∈ ϕ(t, 0) from a chance
node h such that V (h) = 0 to a node with history he. The reach probability of
he from the perspective of Nature is r0(he) = P (e | h), and recall r0(t) is the
joint probability of Nature’s choices along the path from the root to t. Hence,

Uj(σ) =
∑
t∈T

uj(t)

n∏
k=1

rk(t, σk)r0(t). (1)

3.1 TE-EGTA Game Model Estimation

The probabilities rk(t, σk), for all terminal nodes t, are directly determined by
the strategy profile σ. Hence, to estimate Uj(σ) based on Eq. (1), we need
estimates for u(t) and {r0(t)}t∈T . These are, in fact, the game parameters for
TE-EGTA (leaf utilities and conditional probabilities respectively) that we intro-
duced above. We denote the respective estimates by {ûj(t)}nj=1 and {r̂0(t)}t∈T .

A key feature of TE-EGTA is that, in modeling the payoff of strategy pro-
file σ, we estimate the parameters using all relevant simulation data, not just
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the data from simulating σ. Different strategy profiles may lead to overlapping
or identical paths being taken through the game tree, with some probability.
We compute ûj(t) as the sample average of player j’s payoffs across simulation
runs that terminate at node t. Similarly, we estimate chance node probabilities
using all simulations. Suppose a chance node h is reached mh times across all
simulation data, and the node with history he (reflecting Nature’s choice e) is
reached mhe < mh times. The empirical probability of observing the stochastic
outcome represented by e in the game tree is mhe

mh
. Note that mh can never be

zero because the algorithm for constructing the empirical game model includes
only nodes that are reached in simulation. Finally, we give player j’s estimated
payoff for strategy profile σ:

ÛTE
j (σ) =

∑
t∈T

ûj(t)

n∏
k=1

rk(t, σk)

 ∏
e∈ϕ(t,0)

mhe

mh

 .

Recall that each strategy profile σ in Σ̂ is simulated m times, resulting in m
game play sequences for each. Some strategies that end at different terminal
nodes t1 and t2 may still include the same node h in their respective paths and
result in the same observation e ∈ X̂(h). The observation occurs with the same
probability for both strategies since their histories diverge only at node he. This
feature is what allows the empirical game model to take into account the role of
different decision points in the formulation of player strategies in a way that the
normal-form model does not.

To illustrate the difference in model estimation between NF- and TE-EGTA,
consider the following example from Game1. Suppose we simulate the strategy
profile (π1

1 , π
1
2) 10 times, and obtain the following payoff samples for Player 1:

99, 95, 100, 96, 95, 100, 92, 95, 93, 94; we also observe outcome A of the stochastic
event in the first 6 of these 10 simulations. NF-EGTA would simply average
the 10 payoff samples and record ÛNF

1 (π1
1 , π

1
2) = 95.9. In contrast, TE-EGTA

distinguishes the 6 samples corresponding to the leaf (π1
1 , A, π

1
2A) from the 4

samples corresponding to the leaf (π1
1 , B, π

1
2B ), and separately averages them to

get the estimates û1(π1
1 , A, π

1
2A) = 97.5 and û1(π1

1 , B, π
1
2B ) = 93.5. Now, suppose

we also have data from 10 simulations of another strategy profile (π1
1 , π

2
2), π2

2 6=
π1
2 , A being realized in 5 of these simulations. From this experience, our overall

estimated probability of A conditioned on π1
1 is 6+5

10+10 = 0.55. Thus, using all
relevant sample data, ÛTE

1 (π1
1 , π

1
2) = 0.55× 97.5 + (1− 0.55)× 93.5 = 95.7.

The following proposition shows that, like NF-EGTA, TE-EGTA produces
unbiased estimates of strategy-profile payoffs. However, our theoretical results
in §4 suggest that TE-EGTA offers more accurate payoff estimates with a high
probability.

Proposition 2. For every player j ∈ N \ {0} and strategy profile σ ∈ Σ̂,
Et∼r(T,σ)

[
ÛTE
j (σ)

]
= Uj(σ).
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3.2 The Game Model as an Abstraction

Abstraction methods have extended the state of the art in solving imperfect-
information games over the years (Sandholm, 2010), particularly poker. An ab-
straction algorithm takes as input a complete game description and produces a
simpler version of the tree. TE-EGTA incorporates some of the tree structure
from the true game into the empirical game model; in order to ground this game
model as a coarse abstraction of the underlying game, we describe Coarsen, an
algorithm that coarsens a game tree by abstracting away chance nodes.

We express coarseness as the fraction of chance nodes from the true game
that are included in the empirical game model. An empirical game that matches
the true game’s structure would include all of them; conversely, an empirical
game in normal-form would include none of them. We are primarily concerned
with games represented by agent-based simulation where the representation of
the true game as an EFG is intractable, and thus we would not expect to obtain
a coarsened model by actually applying Coarsen. Our intent is to contextualize
a coarsened game as one that could in principle be produced by abstracting away
chance nodes.

Coarsen Algorithm for coarsening an input game G
Require: Input game G, partition C′ ⊆ C and map ρ : C′ → X
Copy H ′ = H, with each node h represented by its history
for c ∈ C′, beginning at the chance node furthest from the root do

Let Ij(c) be the set of infosets induced by each event e ∈ X(c) for player j.
Compute power set Z∗ of intersections Z =

⋂
I∈Ij(c){h | he ∈ I} of all the

histories h across Ij(c).
for Z ∈ Z∗ do
{I ′j , Π ′j(I ′j)}, H ′ = CoarsenInfosets (Ij(c), Z, ρ,G)
Assign X ′(c) = X(c) \ ρ(c)
I′j , Π ′j = CondenseBranching

(
{I ′j , Π ′j(I ′j)}, I′j

)
end for

end for
Assign X ′(c) = X(c) for all c /∈ C′.
Assign all player j’s infosets not conditioned on chance events from any c ∈ C′ to I′j
For all nodes h that preceded or did not follow any nodes in C′, assign V ′(h) = V (h)

return G′ = (N,H ′, V ′, {I′}nj=1, {Π ′j}nj=1, X
′)

The algorithm is given a partition of both G’s chance nodes C = {h ∈ H |
V (h) = 0} and the set of outcomes X(h) for each chance node, denoting what
to exclude from the coarsened tree. One important restriction on G is that the
child nodes of a given chance node in C ′ must all belong to the same player so
that they can be collapsed into one node. We denote the abstracted game by
G′ = 〈N,H ′, V ′, {I ′j}nj=1, {Π ′j}nj=1, X

′〉 whose components are defined as in §2.
The nodes identified, information sets, and action spaces will necessarily differ
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from those ofG, depending on what information is coarsened and where. Without
loss of generality, Coarsen treats both G and G′ as binary trees in order to
limit the branching factor of G′. CoarsenInfosets transforms the intersecting
information sets of the children of each c ∈ C ′ into a new information set for G′
whose action space is the Cartesian product of the old infosets’ action spaces. To
keep the branching factor equal to 2, CondenseBranching transforms these
action spaces (comprised of tuples) into binary (sub-)trees where each edge is
part of an action tuple.

CoarsenInfosets Subroutine for coarsening input game G’s infosets
Require: Set Ij(c) of infosets induced by each outcome e ∈ X(c) for player j, set Z
of intersecting histories across Ij(c), map ρ : C′ → X, input game G, H ′

Create a new infoset I ′j =
⋃
e∈ρ(c){he | h ∈ Z} and add to I′j

Compute the new action space Π ′j(I ′j) =
⊗

I∈Ij(c)Πj(I).
for ha ∈ H ′ do

if a was part of an action space of Ij(c) then
Let Π ′j(I ′j , a) = {x|x ∈ Π ′j(I ′j), a ∈ x}
Replace ha with hb for each action tuple b ∈ Π ′j(I ′j , a)
Assign V ′(hb) = V (ha)

end if
end for
In {I ′j} and H ′, delete both duplicate histories and from each history, all e ∈ ρ(C′)

return {I ′j , Π ′j(I ′j)}, H ′

CondenseBranching Subroutine for reducing the branching factor induced
by the newly coarsened action tuples
Require: Set of infosets and action spaces {I ′j , Π ′j(I ′j)}, final output set I′j

A = copy(Π ′j(I
′
j))

for h ∈ I ′j do
g = copy(h) and Π ′j({g}) = 〈〉
for x ∈ A, a ∈ x do

Add new infoset {g} to I′j if {g} /∈ I′j
Add x[: index(a)] to the action space Π ′j({g}) if a /∈ Π ′j({g})
g = g x[: index(a)]
V ′(g) = j

end for
end for

return I′j , Π ′j
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3.3 Tree-Exploiting PSRO

Recall the PSRO framework for iterative EGTA with deep RL, introduced
in §2.2. Like EGTA more generally, past work within the PSRO framework has
relied on normal-form representations of the empirical game, even though the
games of interest are inherently sequential. We call PSRO that uses a normal-
form (resp. tree-exploiting) empirical game NF-PSRO (TE-PSRO). In addition
to exploiting extensive structure for estimation (§3.1), TE-PSRO also takes ad-
vantage of the tree representation for managing the restricted strategy space. A
single pure strategy profile can result in multiple different paths depending on
Nature’s choices. If a new best response for a given infoset is part of the profile,
new paths with their own new utilities and stochastic distributions at Nature’s
decision points are discovered and added to the empirical game tree. If one of
those paths includes moves from other players that are already part of the game
tree, then additional samples from this new combination can be included in the
(tighter) estimation of the old parameters pertinent to that path.

Consider the empirical game in Fig. 3a with restricted strategy sets Π̂1, Π̂2A,
and Π̂2B for each information set as shown; the true game here is Game1. Let
BR1(σ2A, σ2B ) and (BR2A(σ1), BR2B (σ1)) denote the respective best responses
from Game1 (the true game) to the strategy profile (σ1, (σ2A, σ2B )). Suppose,
in an iteration, BR1(σ2A, σ2B ) = π2

1 , BR2A(σ1) = π2
2A, and BR2B (σ1) = π1

2B .

(a) Starting empirical game tree. (b) Update after best-response computation.

Fig. 3: Two successive steps of possible TE-PSRO instantiation on Game1.

In the next round, the new best-response elements are considered in conjunc-
tion with the pre-existing strategy combinations from the restricted set, as well as
other players’ new best responses. The resulting trajectories are shown in Fig. 3b:
(1) BR1×Π2A×Π2B highlighted in yellow; (2) Π1×BR2A×Π2B highlighted in
blue; (3) Π1×Π2A×BR2B highlighted in orange; and (4) (BR1, BR2A, BR2B )
highlighted in purple. See the full paper for more detail.This expansion of the
empirical game tree captures finer-grained structural information about the true
game than simply adding a matrix entry for each new best-response combination.
To conclude this section, we supply the pseudocode that summarizes TE-PSRO.
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TE-PSRO Tree-Exploiting Policy Space Response Oracles

Require: Initial singleton strategy sets Σ̂j for all players

Initialize solution profile to the pure strategy σj ∈ Σ̂j
while epoch e in {1, 2, · · · } do

for player j ∈ {1, 2, . . . , n} do
Initialize Qπj (I, a) = 0 for all reachable infosets and actions defined by σ
for many episodes do

Initialize I to the singleton infoset containing the root node
Sample π−j ∼ σ−j
Simulate gameplay in G until a leaf is reached using π−j and Qπj (I, a),

choosing actions a ∈ πj(I) randomly with prob. ε
Update Q-table with episode rewards
Update π′j(I) ∈ argmaxaQ

π
j (I, a) for all I ∈ Ij included in Ĝ

end for
Σ̂j = Σ̂j ∪ {π′j }

end for
Accumulate new payoff and observation data from black-box simulator
Update Ĝ’s average leaf utilities ûj(t) with new payoff samples and leaves
Update Ĝ’s stochastic probs r̂0(t) with new observations and chance nodes
Compute σ from Ĝ and Σ̂ using an MSS

end while

return A final solution strategy σj for each player j

4 Payoff Estimation Improvement: Theoretical Results

To develop a formal framework for comparing the efficacy of payoff estimation
(§3.1) by TE-EGTA and NF-EGTA, we apply the concept of uniform approxi-
mation of a game (Areyan Viqueira et al., 2020) to our setting. Consider a true
EFG G and an empirical game Ĝ with the same set of players and with re-
stricted set Σ̂ constructed from accumulated simulation data upon termination
of EGTA. Let Ûj(σ) be the estimate in Ĝ of an arbitrary player j’s true payoff
under strategy profile σ.

Definition 1. The `∞-norm between games G and Ĝ is given by

‖ G− Ĝ ‖∞= max
j∈N\{0},σ∈Σ̂

|Uj(σ)− Ûj(σ)|.

If ‖ G− Ĝ ‖∞≤ ε, then Ĝ is said to be a uniform ε-approximation of G.

Note that in this definition, the maximization is only over the restricted set
Σ̂ ⊆ Σ. An important consequence of Ĝ being a uniform approximation of G
upon EGTA’s termination is that a strategy profile that is an approximate Nash
equilibrium in Ĝ is an approximate Nash equilibrium in G as well:

Proposition 3. If Ĝ is a uniform ε-approximation of G and σ is a γ-Nash
equilibrium of Ĝ for some γ ≥ 0, then Regj(σ) ≤ 2ε + γ for each player j ∈
N \ {0} upon the termination of EGTA.
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The main result of this section is that for a given EFG, under reasonable as-
sumptions, TE-EGTA induces an empirical game model that is a tighter uniform
approximation of the EFG than that induced by NF-EGTA, with a high proba-
bility. Given an arbitrary true game G, let ĜNF and ĜTE denote respectively the
empirical game models induced by the application of NF-EGTA and TE-EGTA
to G over the same restricted set Σ̂.3 We further assume an upper and a lower
bound for each agent payoff sample returned by the simulator; more specifically,
we assume that the noise function for each payoff follows a sub-Gaussian dis-
tribution. Let c be the number of strategy profiles from the restricted set that,
after each profile is sampled m times, result in a path taken through the tree
that includes the first edge of ϕ(t). c can be as small as 1 and as large as O(|Σj |)
for some j ∈ N depending on the game structure and when the selected EGTA
method terminates. With very high probability, c is strictly greater than 1 by
the time EGTA has terminated due to our exhaustive simulation of all possible
profiles in the empirical strategy space. Combined with Proposition 3, we have
the following result, which also implies a tighter upper bound for player regret
in G under approximate equilibria in the empirical game model computed using
payoffs estimated through TE-EGTA.

Theorem 1. For any δ ∈ (0, 1) and the same number m of game simulation
repetitions in each iteration of either type of EGTA, there exist positive constants
εNF and εTE such that εTE

εNF
= 1√

c
, and with probability at least 1 − δ w.r.t. the

randomness in the simulator payoff output, ĜNF (respectively, ĜTE ) is a uniform
εNF -approximation (respectively, εTE -approximation) of G.

5 Experiments

We conducted two sets of experiments comparing TE-EGTA with varying levels
of tree structure exploitation to NF-EGTA. Each set used three different EFGs,
chosen so that the corresponding empirical game models induced by our flexible
tree-exploiting framework would vary in size and complexity. We implemented
a simulator for each game that produced observations in accordance with the
corresponding stochastic events, and end-state payoff samples that were normally
distributed about the true utilities at the respective terminal nodes with a noise
variance ε = 0.1. The first game was Game1 (§2.1). In our experiments, for
each instance of Game1, we randomly assigned P (A | πi1) from U [0, 1] for each
πi1 ∈ Π1 and u(t) from {0, 0.25, . . . , 4.75, 5} for each leaf utility. During each
game play sample, the simulator returned the realized outcome A or B of the
single stochastic event and a noisy payoff vector.
3 In the iterative application of EGTA, the NF- and TE- variants may produce different
choices of strategies to add; hence, strategy sets covered at a given iteration number
tend to diverge. However, for comparing model estimation accuracy, however, it
makes sense to start with a common baseline of strategy space. Our experiments (§5)
provide empirical corroboration that the benefits accrue as well when we examine
the trajectory of models produced within the iterative PSRO framework.
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The second game was Game2, an extension of Game1 having a second
stochastic event e2 ∈ {C,D} after Player 2’s turn and a second turn for Player 1
afterward. Player 1 only observes its first action and the second event e2. Thus
Player 2 has 2 information sets whereas Player 1 has 1+2·10 = 21. For its second
turn, Player 1 has ten options depending on which outcome of e2 it observed:
Π1C = {πi1C}10i=1 and Π1D = {πi1D}10i=1. See the full version of this paper for an
illustration. Figure 4 provides the extenstive-form game tree for Game2

Fig. 4: EFG representation of Game2. Dashed lines indicate edges to nodes omitted
from this illustration.

For each instance of Game2 and each πi2A (respectively, πi2B ), we sampled
P (C | A, πi2A) (respectively, P (C | B, πi2B )) from U [0, 1]. Each leaf utility was
chosen uniformly at random from the set {0, 0.1, . . . , 9.9, 10}. We experimented
with two game model forms: one for when the simulator returned a noisy payoff
vector and e1 only, and one for when it returned the vector and outcomes of
both events.

The final game was Game3, which begins with a stochastic event e1 ∈
{A,B,C,D}. Player 1 observes the event and then takes a turn, choosing one
of four possible actions. Next, Player 2 observes the event (but not Player 1’s
action) and also chooses from four possible actions. This 3-round sequence is
repeated twice, but in each subsequent sequence, the only outcomes available to
Nature and the agents are the remaining ones that have not yet been chosen.
For instance, if e1 = A, then Nature can only output e2 ∈ {B,C,D} during its
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second turn and e3 ∈ {B,C,D} \ {e2} during its third. Likewise, the players are
restricted to the actions that they have not yet played in the previous 3-round se-
quence(s). Since the players are only unable to observe the other player’s actions
during the current 3-round sequence, each player has 4+43 ·3+43 ·33 ·2 = 3652
information sets. To compare the effects of varying degrees of tree exploitation,
we examined three different game model forms: (1) simulator reports observa-
tion e1 only; (2) simulator reports e1 and e2 only; and (3) simulator reports
all three events. We believe that a model that includes only the first stochastic
event would generally yield only a negligible difference in accuracy from a model
that includes only the second (or third) stochastic event.

Each iteration of EGTA had a fixed budget of 500 total samples available for
all strategy combinations to be fed into the simulator for Game1 and Game2.
Due to the larger size, we allotted 5000 total samples for Game3. We ran the
experiments for Game1 on a standard laptop (Quad-Core Intel Core i7 Proces-
sor, 2.7 GHz, 16GB RAM). Each repetition of both TE-PSRO and NF-PSRO
for Game1 finished in less than 1 min. We ran the experiments for Game2 and
Game3 on a single core of the Great Lakes Slurm cluster at the University of
Michigan, with 786MB of memory. NF-PSRO on Game2 consistently finished
within 6 minutes, and took 4–90 minutes for Game3. TE-PSRO required be-
tween 3 minutes and 5 hours for Game2 (depending on the MSS used, see §5.2),
and at most 1 hour for Game3. All figures include the metrics’ initial values at
time-step 0.

5.1 TE-EGTA Payoff Estimation

The aim of the first set of experiments was to assess the improvement in strat-
egy profile payoff estimation produced by incorporating the EFG tree structure
into the empirical game model. We ran NF-EGTA and TE-EGTA on each true
game with the same number m = 500 of simulations for each strategy-profile
payoff vector estimation. To update the game model for either variant of EGTA,
we implemented the PSRO framework using an oracle that returns the best re-
sponse to the other player’s strategy for Game1 and Game2. However, the size
of Game3 made a best response oracle infeasible, so we instead used Q-learning
to compute an approximate best response from the true game. For newly selected
strategy profiles that were simulated in each iteration, we computed estimated
payoffs ÛNF

j (σ) (resp. ÛTE
j (σ)) for NF-EGTA (resp. TE-EGTA) from accu-

mulated simulation data using the approach described in §2.2 (resp. §3.1). We
evaluated the estimation error for that iteration of either variant as the average
absolute difference between true and estimated payoffs for all players over all
strategy combinations in the current empirical game. We repeated this oper-
ation for 25 initial restricted sets, each consisting of a single randomly chosen
policy, and reported the estimation error averaged over all 25 repetitions for each
iteration of PSRO in Fig. 5.

As the plots show, TE-EGTA achieves significantly lower payoff estimation
error compared to NF-EGTA across all games. It is also clear that while the vast
number of infosets in Game3 led NF-EGTA to perform worse as more strategy
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(a) Game1 (b) Game2

(c) Game2 with 1 event (d) Game3

Fig. 5: Average estimation error of strategy payoffs over the course of EGTA’s run-
time. Shaded areas represent the standard error of the mean. The estimation errors
at iteration 0 are identical since the restricted sets for both models contain the same
randomly chosen policy; hence, they are omitted.

combinations were added despite an unchanging sample budget m; such was not
the case for TE-EGTA, which converged very quickly. We attribute this to the
relatively small number of actions (2, 3, or 4) available at each information set, as
well as the large number of infosets relative to the total number of game paths.
Q-learning returned a best response for every infoset that could be reached,
given σ, so the empirical game ceased growing after only a few iterations. Finally,
we note that the more stochastic events included in Ĝ, the more tree structure
is exploited by TE-EGTA, and the lower the resulting payoff error. In fact, the
inclusion of even a single stochastic event or round in the model dramatically
decreased the payoff error in comparison to NF-EGTA.

5.2 Iterative Model Refinement in PSRO

Our second set of experiments compared the power of NF-PSRO and TE-PSRO
to iteratively explore the EFG’s strategy space and fine-tune their respective
empirical game models. PSRO terminates once no new best responses can be
added to Σ̂. To evaluate the efficacy of this iterative fine-tuning, we computed
the regret Reg(σ) (as defined in §2.1) in the true game G of the solution σ
returned by the MSS in every iteration.
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(a) Game1 (b) Game2

(c) Game2 with 1 event (d) Game3

Fig. 6: Average regret of solution profiles over the course of PSRO’s runtime. Shaded
areas represent standard error of the mean.

For NF-PSRO, we used the Python-Gambit interface to represent the em-
pirical game and used Gambit’s lcp solver as the MSS. The solver takes as
input an NFG or EFG, converts it into a linear complementarity program, and
solves for all NE. We also used the lcp as the TE-PSRO solver for Game1 and
Game2. It is important to note that Gambit’s solvers can become intractable for
medium or large game trees. However, when possible, we intentionally chose an
MSS that finds exact solutions to the empirical game in order to minimize any
error/variability in the solutions resulting from the iterative process of adding
strategies and fine-tuning the empirical game models. For medium-to-large game
trees like Game3, we used counterfactual regret minimization (CFR) (Zinkevich
et al., 2007) to find an approximate NE and Q-learning to learn an approximate
best response from the true game. We used CFR as the MSS for Game2 as well
for comparison to the exact lcp solver. As in §5.1, we repeated PSRO for 25
different restricted sets, each consisting of a single, randomly chosen strategy
profile. We report the regret curves, averaged over 25 repetitions, in Fig. 6.

TE-PSRO converged on average to a regret at least as tight as NF-PSRO
using the same simulation budget and regardless of which pure σ the initial
restricted set contained. It also converged in fewer iterations, particularly in
Game2 and Game3 as more tree structure was included in Ĝ. Additional plots in
the full version of this paper demonstrate the same result for different numbers
of samples. However, the standard error shadings for Game1 overlap mainly
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due to the high volatility in NF-PSRO regret in earlier iterations. Since, in
each iteration, we add new, pertinent best responses to Σ̂, we hypothesize that
their absence from the previous strategy space caused the regret to increase. A
one-sided two-sample t-test on each of the iterations of Game1’s regret curves
established that TE-PSRO’s regret improvement was statistically significant.
These results suggest that including even some tree structure in Ĝ results in
PSRO converging at least as quickly and to a solution that has lower regret in
the true game.

6 Conclusions and Future Work

This study represents a first step towards the goal of leveraging extensive-form
structure within the EGTA framework. Our work complements prior research
that showed benefits of exploiting tree structure in game reasoning and learning,
for example studies that demonstrated advantages of extensive form in tech-
niques based on the double oracle algorithm (Bošanský et al., 2014; McAleer
et al., 2021). In future work, we hope to draw on further insights from this line
of work, combining the best features of techniques from game reasoning, ma-
chine learning, and simulation-based game modeling. One particularly fruitful
direction may be consideration of strategy exploration methods that explicitly
consider extensive structure in the currently defined strategy space.
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Appendices (Supplemental)

A Omitted proofs

A.1 Proofs for Section 2.2

Recall from Section 2.2 that, to estimate a strategy-profile payoff vector U(σ) in
each NF-EGTA iteration, we simulate the strategy profile m times, and hence
compute the averages

ÛNFj (σ) =
1

m

m∑
i=1

ūij ∀j ∈ N \ {0},

where ūij denotes the realized payoff sample of each player j ∈ N \ {0} at the
end of the ith simulation, i = 1, 2, . . . ,m.
Restatement of Proposition 1. The NF-EGTA estimate ÛNFj (σ) is an un-

biased estimator of the true strategy-profile payoff, i.e. E
[
ÛNFj (σ)

]
= Uj(σ) for

every player j = 1, 2, . . . , n.

Proof. Given any strategy profile σ, suppose an arbitrary undisclosed t ∈ T is
reached in mt out of these m simulated game-plays (each corresponding to a
path). We do not observe any mt, but we do know that

∑
t∈T mt = m and that

each terminal node t ∈ T is reached with a probability r(t,σ) by the definition
of r(t,σ) from Section 2.2. Thus, each mt is a priori binomially distributed with
parametersm equal to the number of trials and r(t,σ) equal to the per-trial fixed
probability of reaching terminal node t (i.e., a success). Hence, E [mt] = m·r(t,σ)
for every t ∈ T .

Denote player j’s realized payoff sample at the end of the ith of these mt

simulations ending at node t by ūij(t). By the property of the simulator and
linearity of expectation, E

[
ūij(t)

]
= uj(t) for every j ∈ N \ {0}. It follows

that we can rewrite the NF-EGTA payoff estimates as follows and compute the
expected value with respect to the pertinent terminal nodes:

ÛNF
j (σ) =

1

m

∑
t∈T

mt∑
i=1

ūij(t).

Hence, Et∼r(T,σ)

[
ÛNF
j (σ)

]
=

1

m

∑
t∈T

E

[
mt∑
i=1

ūij(t)

]

=
1

m

∑
t∈T

E [mt] · E
[
ūij(t)

]
=

1

m

∑
t∈T

(m · r(t,σ))uj(t)

=
∑
t∈T

uj(t) · r(t,σ)

= Uj(σ).
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The first equality follows simply from the linearity of expectation; the second
holds since the quantity of summands ūij(t) is a binomial random variable mt;
and the final two equalities follow from the definition of Uj(σ). �

A.2 Proofs for Section 3.1

Recall, from Section 3.1, the formula for computing the TE-EGTA payoff esti-
mate for each player j’s under strategy profile σ:

ÛTE
j (σ) =

∑
t∈T

ûj(t)

n∏
k=1

rk(t, σk)

 ∏
w∈ϕ(t,0)

mw

mparent[w]

 .

wheremh is the number of times out of allm simulations that a node h is reached
across all strategy profiles in the restricted set.
Restatement of Proposition 2. For every player j ∈ N \ {0} and strategy
profile σ ∈ Σ̂, Et∼r(T,σ)

[
ÛTE
j (σ)

]
= Uj(σ).

Proof. Conditioned on a terminal node t, ûj(t) and
∏
w∈ϕ(t,0)

mw

mparent[w]
are inde-

pendent random variables. The randomness in the first is due to uncertainty in
the simulator’s utility output, given by a symmetric distribution (such as Gaus-
sian) centered around the true leaf utility. The randomness in the second is due
to the uncertainty in the path traversed during an actual instantiation of the
strategy profile (including the stochasticity in Nature’s choice).

Hence, by the sum law of expectations, E [ûj(t)] = uj(t). We note also that

∏
w∈ϕ(t,0)

mw

mparent[w]
=

|ϕ(t,0)|∏
i=1

mwi

mwi−1

where mw0
≡ mϕ(t)[0] is the total number of times out of m that the first node

in the path ϕ(t) is reached, and w1, . . . , w|ϕ(t,0)| is the list of chance nodes along
the path from the root to t. We note that this expression can be rewritten as

r̂0(t) =

|ϕ(t,0)|∏
i=1

mwi

mwi−1

=
mw|ϕ(t,0)|

mϕ(t)[0]

where m|ϕ(t,0)| is the final node in the path and mw|ϕ(t,0)| ∼ Binom(m, r0(t,σ)).

Finally, taking the expectation of ÛTE
j (σ) with respect to all the above

sources of uncertainty and applying the linearity property of expectation for
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independent random variables,

E
[
ÛTE
j (σ)

]
=
∑
t∈T

E

ûj(t) · n∏
k=1

rk(t, σk) ·
∏

w∈ϕ(t,0)

mw

mparent[w]


=
∑
t∈T

E [ûj(t)] ·
n∏
k=1

rk(t, σk) · E

 ∏
w∈ϕ(t,0)

mw

mparent[w]


=
∑
t∈T

E [ûj(t)] ·
n∏
k=1

rk(t, σk) · E
[
mw|ϕ(t,0)|

mϕ(t)[0]

]

=
∑
t∈T

uj(t) ·
n∏
k=1

rk(t, σk) ·
mϕ(t)[0] · r0(t,σ)

mϕ(t)[0]

=
∑
t∈T

uj(t) ·
n∏
k=1

rk(t, σk) · r0(t,σ)

=
∑
t∈T

uj(t) · r(t,σ) = Uj(σ).

The last equality follows from Equation (1) in Section 3. �

A.3 Proofs for Section 4

Restatement of Proposition 3. If Ĝ is a uniform ε-approximation of G and
σ is a γ-Nash equilibrium of Ĝ for some γ ≥ 0, then Regj(σ) ≤ 2ε+ γ for each
player j ∈ N \ {0} upon the termination of EGTA.

Proof. We adapt the proof of Areyan Viqueira et al. (2020, Theorem 2.2) to our
setting.

For the strategy profile σ under consideration, let

σ∗ ∈ arg max
σj∈Σ̂j

Uj(σj ,σ−j); σ̂∗ ∈ arg max
σj∈Σ̂j

Ûj(σj ,σ−j).

Recall that any strategy σj induces a probability distribution over Πj(I) for
each information set I of player j. Recall also that Σ̂j ⊆ Σj for any player j.
We wish to demonstrate that

Uj(σ
∗) = max

σj∈Σ̂j

Uj(σj ,σ−j) = max
σj∈Σj

Uj(σj ,σ−j).

In order to do this, for each player j, it must be true that the policy σ′j that
maximizes j’s utility is included in the empirical restricted set Σ̂j by the time
that EGTA terminates. Since we add new policies to the restricted set Σ̂j for
each player using best response, the policy in question falls into one of three
possible cases:
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1. Policy σ′j ∈ Σ̂j and is part of the support of the final optimal solution σ∗;
2. Policy σ′j ∈ Σ̂j but is not part of σ∗’s support;
3. Policy σ′j /∈ Σ̂j .

Case 1 is trivial. Case 2 means that there exists a better mixed strategy for
player j such that there is no incentive to deviate to another strategy such as σ′j in
the restricted set, so Uj(σ̂∗) ≥ Uj(σ′j , σ̂∗−j). We demonstrate that Case 3 is not a
possible outcome at PSRO’s termination through proof by contradiction. Assume
that there exists σ′j /∈ Σ̂j , and that σ′j produces a utility greater than that of
σ̂∗. If this is true, then σ′j must be the best response to σ̂∗−j . It follows that σ′j
must be added to the restricted set and PSRO must continue until neither player
has new best responses that are not already in their respective restricted sets.
Therefore, it is not possible for Case 3 to happen when PSRO has terminated,
which means that Uj(σ∗) = maxσj∈Σ̂j

Uj(σj ,σ−j) = maxσj∈Σj
Uj(σj ,σ−j).

From the above equalities and the definition of player regret from Section 2.1,
we get

Regj(σ) = Uj(σ
∗)− Uj(σ)

≤ Ûj(σ∗) + ε−
(
Ûj(σ)− ε

)
≤ Ûj(σ̂∗) + ε−

(
Ûj(σ)− ε

)
≤ Ûj(σ̂∗) + ε−

(
Ûj(σ̂

∗)− ε− γ
)

≤ 2ε+ γ.

The first inequality follows from the fact that Ĝ is a uniform ε-approximation
of G (Section 4 Definition 1), the second from the optimality of σ̂∗ as defined
above, and the final line from the fact that σ is a γ-Nash equilibrium in Ĝ. �

Restatement of Theorem 1. Under the assumptions of Section 4, for any
δ ∈ (0, 1) and the same number m of game simulation repetitions in each itera-
tion of either type of EGTA, there exist positive constants εNF and εTE such that
εTE

εNF
= 1√

c
, and with probability at least 1 − δ w.r.t. the randomness in the sim-

ulator payoff output, ĜNF (respectively, ĜTE ) is a uniform εNF -approximation
(respectively, εTE -approximation) of G.

Proof. Recall from Section 2.1 that we assume ĜNF and ĜTE have the same
resticted set Σ̂. Without loss of generality, we assume that the noise for each
sampled utility ūj(t) follows a sub-Gaussian distribution with a variance proxy
of σ2

j . We need to prove that TE-EGTA’s empirical game model leads to a tighter
`∞ norm than the normal-form model.

First, we rewrite the payoff estimate computed by NF-EGTA as a sum over
m simulation iterations and all terminal nodes t ∈ T using the Kronecker delta
notation (where ti denotes the terminal node reached in the the ith simulated
play):
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ÛNF
j (σ) =

1

m

∑
t∈T

mtûj(t) =
1

m

m∑
i=1

∑
t∈T

ūj(ti)δtit.

Next, recall the payoff estimate computed from the tree-exploiting model
introduced in Section 4, which relies on the direct estimation of parameters
that are known to comprise the payoffs of different strategies and therefore are
computed using the simulation data generated across several strategies in the
restricted set. Each edge (parent[x], x) in the path from the root to some t ∈ T
is traversed with reach probability rV (x)(x, σV (x)) or rk(t, σk) for k ∈ N . All of
the reach probabilities rk(t, σk) for k 6= 0 are deterministic according to mixed
strategy σ, with the exception of any actions that are hidden in this example from
player j and instead are signaled through the stochastic observations from Nature
whose reach probabilities r0 must be estimated. The empirical probability of
each edge in ϕ(t) being traversed can also be expressed as a product of binomial
ratios mw

mh
for w ∈ ϕ(t, 0) and h = parent[w]. The fractions cancel each other

out, leaving m′t (the number of times terminal t is reached out of m samples in
an iteration of TE-EGTA) in the numerator and some cm in the denominator.
c is the number of strategy profiles from the restricted set that, after each is
sampled m times, result in a path taken through the tree that includes the first
edge of ϕ(t). c is O(1) for most games, but can expand to be as large as O(|Σj |)
for some j ∈ N depending on the game structure and when the selected EGTA
method terminates, depending on the size and format of the EFG. We combine
this notion with the Kronecker delta to rewrite the estimated strategy payoffs
for TE-EGTA:

ÛTE
j (σ) =

∑
t∈T

ûj(t) ·
n∏
k=1

r̂k(t, σk)
∏

w∈ϕ(t,0)

mw

mh

=
∑
t∈T

ûj(t) ·
∏

w∈ϕ(t)

mw

mh

=
∑
t∈T

ûj(t) ·
m′t
c ·m

=
∑
t∈T

1

c ·m

m′t∑
i=1

ūj(t)


=

1

c ·m

m∑
i=1

∑
t∈T

ūj(ti)δtit.

Using these expressions, we apply Hoeffding’s inequality to give an upper
bound for the probability that the empirical strategy payoffs differ from their
expectations by a certain amount. Due to the presence of the Kronecker delta, the
i-th term in each sum also falls within this bound. Additionally, because the noise
function associated with each leaf utility uj(t) is sub-Gaussian with variance
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proxy σ2
j , the i-th term of the summation

∑
t∈T ūj(ti)δtit for each expression

is also sub-Gaussian with mean uj(t) and variance proxy σ2
j . Note that this

quantity is distinct and different from a complete strategy profile σ, despite the
similar notation. The following bound therefore holds for all j ∈ N when the
normal-form game model is used to estimate the strategy payoffs:

Pr
(
|ÛNF
j (σ)− Uj(σ)| ≥ ε

)
≤ 2 exp

(
− 2m2ε2∑m

i=1 2σ2
j

)
= 2 exp

(
−mε

2

2σ2
j

)

Then with probability at least 1 − δ, the deviation εNF [j,σ] :=| ÛNF
j (σ) −

Uj(σ) | between ÛNF
j (σ) and Uj(σ) for j ∈ N \ {0} is bounded from above:

εNF [j,σ] ≤

√
2σ2

j log 2
δ

m
.

Following the same approach, Hoeffding’s inequality yields the following
bound for all j ∈ N when the tree-exploiting game model of TE-EGTA is used
to estimate the strategy payoffs:

Pr
(
|ÛTE
j (σ)− Uj(σ)| ≥ ε

)
≤ 2 exp

(
− 2c2m2ε2∑cm

i=1 2σ2
j

)
= 2 exp

(
−cmε

2

2σ2
j

)

With probability at least 1− δ, the deviation εTE [j,σ] := |ÛTE
j (σ)−Uj(σ)|

for j ∈ N, j 6= 0 is bounded from above:

εTE [j,σ] ≤

√
2σ2

j log 2
δ

cm

Now when all players j ∈ N and all strategies in the restricted set σ ∈ Σ̂ are
considered, the following bounds result (note that the restricted set is assumed
to be the same for both processes):

max
j∈N,σ∈Σ̂

|ÛNF
j (σ)− Uj(σ)| ≤

√
2σ2

j log 2|N×Σ̂|
δ

m
≡ εNF

max
j∈N,σ∈Σ̂

|ÛTE
j (σ)− Uj(σ)| ≤

√
2σ2

j log 2|N×Σ̂|
δ

cm
≡ εTE

=⇒ εTE

εNF
=

√
1

c
.

This completes the proof. �
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B Detailed illustration of TE-PSRO (Section 3.3)

Expansion of the Empirical Game through TE-PSRO (§3.3) We now illustrate
how the best responses returned by PSRO are incorporated into the tree-exploiting
empirical game model. Consider a simple empirical game illustrated by Fig. 7
consisting of two strategies for player 1, one strategy for player 2 when event A is
observed, and one strategy for player 2 when event B is observed. Suppose that
the oracle returns π2

1 as the best response for player 1 and (π2
2A, π

1
2B ) as the best

response for player 2. Let BR1(σ2A, σ2B ) and (BR2A(σ1), BR2B (σ1)) denote
these respective best responses to the current meta-strategy (σ1, (σ2A, σ2B )). In
NF-PSRO, each new strategy combination would result in a single new entry in
the empirical payoff matrix. Figures 8-11 demonstrate how TE-PSRO expands
the empirical game model as a result of simulating the new strategy combinations
and organizing the simulation data to take advantage of the tree structure.

In Fig. 8, two new paths from root to leaf added in yellow as a result of
simulating BR1 with player 2’s original strategy. In Fig. 9, BR2A is simulated
with player 1’s original strategy and player 2’s strategy when B is observed.
In Fig. 10, BR2B is simulated with player 1’s original strategy and player 2’s
strategy when A is observed. Some paths are retread while some additional leaf
nodes are added. In the case where paths are retread, more samples can be
utilized to improve current estimates of old leaf utilities (such as U(π1

1 , B, π
2
2B ))

and conditional probabilities such as P̂ (A | π1
1). In Fig. 11, all best responses

are simulated together in paths that partially overlap with those in Fig. 8. One
can see that in a single step, the information extracted from the simulation data
when the empirical game model gets updated is more complex and nuanced. It
is also clear to see that like before, future best responses may overlap with the
paths in this current game tree because the parameters are outlined by the tree
itself, not the rows and columns of a payoff matrix as in NF-PSRO.

Fig. 7: Sample 2-player empirical game with Π1 = {π1
1 , π

3
1}, Π2A = {π1

2A}, and Π2B =
{π2

2B}
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Fig. 8: Empirical game model updated after simulating {BR1}×Π2A×Π2B . The paths
taken are given in gold.

Fig. 9: Empirical game model updated after simulating Π1×{BR2A}×Π2B . The paths
taken are given in blue.

Fig. 10: Empirical game model updated after simulating Π1 × Π2A × {BR2B}. The
paths taken are given in orange.

Fig. 11: Empirical game model updated after simulating (BR1, BR2A, BR2B ). The
paths taken are given in purple.
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C Omitted details and results from Section 5
(Experiments)

C.1 Note on MSS choice for Experiments in Section 5.2

Initially, we attempted to use NashPy’s Lemke-Howson algorithm as our MSS;
however, we noticed that Lemke-Howson sometimes struggled to solve the empir-
ical game in the intermediate iterations of PSRO, regardless of which empirical
game model was used to compute the strategy payoffs. Sometimes, the exper-
iments would halt because the empirical game was degenerate, meaning there
is an infinite number of mixed strategies for one player that are all the best
response to the other player’s strategy. This was not unexpected, as in the case
of Kuhn poker, there are infinitely many mixed-strategy equilibria for the first
player, who has to check or bet depending on what card he was dealt. Our choice
of Gambit’s lcp solver as the MSS avoids this problem.
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C.2 Omitted plots

(a) m = 200 (b) m = 100

Fig. 12: Comparing the average estimation error of the true EFG strategy payoffs over
the course of EGTA’s runtime for Game1, with m = 200 game-play samples allotted
for each strategy combination during simulation. Error bars represent the (estimated)
standard error of the mean.

(a) m = 200 (b) m = 100

Fig. 13: Comparing the average regret of meta-strategy profiles over time for Game1,
with m game-play samples allotted for each strategy combination during simulation.
Error bars represent the (estimated) standard error of the mean.
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Fig. 14: Game1

Fig. 15: Reported p-values for the one-sided two-sample t-test performed on the results
of Game1 with null hypothesis rEF−rNF ≥ 0 over each iteration of PSRO, for different
values m of allotted game-play samples per strategy combination during simulation.
The null hypothesis is that the player regret resulting from TE-PSRO is at least as
large as the regret resulting from NF-PSRO.
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