Skip to main content

Explicit Non-malleable Codes from Bipartite Graphs

  • Conference paper
  • First Online:
Book cover Arithmetic of Finite Fields (WAIFI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13638))

Included in the following conference series:

  • 415 Accesses

Abstract

Non-malleable codes are introduced to protect the communication against adversarial tampering of data, as a relaxation of the error-correcting codes and error-detecting codes. To explicitly construct non-malleable codes is a central and challenging problem which has drawn considerable attention and been extensively studied in the past few years. Recently, Rasmussen and Sahai built an interesting connection between non-malleable codes and (non-bipartite) expander graphs, which is the first explicit construction of non-malleable codes based on graph theory other than the typically exploited extractors. So far, there is no other graph-based construction for non-malleable codes yet. In this paper, we aim to explore more connections between non-malleable codes and graph theory. Specifically, we first extend the Rasmussen-Sahai construction to bipartite expander graphs. Accordingly, we establish several explicit constructions for non-malleable codes based on Lubotzky-Phillips-Sarnak Ramanujan graphs and generalized quadrangles, respectively. It is shown that the resulting codes can either work for a more flexible split-state model or have better code rate in comparison with the existing results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, D., Agrawal, S., Gupta, D., Maji, H.K., Pandey, O., Prabhakaran, M.: Optimal computational split-state non-malleable codes. In: Proceedings of Thirteenth IACR Theory of Cryptography Conference (TCC 2016-A), pp. 393–417 (2016)

    Google Scholar 

  2. Aggarwal, D., Briët, J.: Revisiting the Sanders-Bogolyubov-Ruzsa theorem in \(\mathbb{F} _p^n\) and its application to non-malleable codes. In: Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1322–1326 (2016)

    Google Scholar 

  3. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. SIAM J. Comput. 47(2), 524–546 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and applications. In: Proceedings of 47th Annual Symposium on the Theory of Computing (STOC 2015), pp. 459–468 (2015)

    Google Scholar 

  5. Aggarwal, D., Obremski, M.: Inception makes non-malleable codes shorter as well! Cryptology ePrint Archive, Report 2019/399 (2019)

    Google Scholar 

  6. Aggarwal, D. Obremski, M.: A constant rate non-malleable code in the split-state model. In: Proceedings of IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS 2020), pp. 1285–1294 (2020)

    Google Scholar 

  7. Aggarwal, D., Obremski, M., Ribeiro, J.L., Simkin, M., Siniscalchi, L.: Computational and information-theoretic two-source (non-malleable) extractors. Cryptology ePrint Archive, Report 2020/259 (2020)

    Google Scholar 

  8. Ahrens, R.W., Szekeres, G.: On a combinatorial generalization of \(27\) lines associated with a cubic surface. J. Aust. Math. Soc. 10(3–4), 485–492 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1939-6

    Book  MATH  Google Scholar 

  10. Chattopadhyay, E., Goyal, V., Li, X.: Non-malleable extractors and codes, with their many tampered extensions. In: Proceedings of 48th Annual Symposium on the Theory of Computing (STOC 2016), pp. 285–298 (2016)

    Google Scholar 

  11. Chattopadhyay, E., Zuckerman, D.: Non-malleable codes against constant split-state tampering. In: 55th Annual Symposium on Foundations of Computer Science (FOCS 2014), pp. 306–315 (2014)

    Google Scholar 

  12. Davì, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4_9

    Chapter  Google Scholar 

  13. Davidoff, G., Sarnak, P., Valette, A.: Elementary Number Theory, Group Theory, and Ramanujan Graphs. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. De Winter, S., Schillewaert, J., Verstraete, J.: Large incidence-free sets in geometries. Electron. J. Comb. 19(4), \(\#\)P24 (2012)

    Google Scholar 

  15. Diao, Q., Li, J., Lin, S., Blake, I.F.: New classes of partial geometries and their associated LDPC codes. IEEE Trans. Inf. Theory 62(6), 2947–2965 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source extractors. In: Proceedings of 33rd Annual Cryptology Conference (CRYPTO 2013), pp. 239–257 (2013)

    Google Scholar 

  18. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008), pp. 293–302 (2008)

    Google Scholar 

  19. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Proceedings of Innovations in Computer Science (ICS 2010), pp. 434–452 (2010)

    Google Scholar 

  20. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. J. ACM 65(4), 20:1–20:32 (2018)

    Google Scholar 

  21. Haemers, W.: Eigenvalue techniques in design and graph theory. Ph.D. thesis, Eindhoven University of Technology (1979)

    Google Scholar 

  22. Haemers, W.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226(228), 593–616 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Høholdt, T., Janwa, H.: Eigenvalues and expansion of bipartite graphs. Des. Codes Cryptogr. 65(3), 259–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, W.-C.W., Solé, P.: Spectra of regular graphs and hypergraphs and orthogonal polynomials. Eur. J. Comb. 17(5), 461–477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, W.-C.W., Lu, M., Wang, C.: Recent developments in low-density parity-check codes. In: Chee, Y.M., Li, C., Ling, S., Wang, H., Xing, C. (eds.) IWCC 2009. LNCS, vol. 5557, pp. 107–123. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01877-0_11

    Chapter  Google Scholar 

  26. Li, X.: Improved non-malleable extractors, non-malleable codes and independent source extractors. In: Proceedings of 49th Annual ACM Symposium on the Theory of Computing (STOC 2017), pp. 1144–1156 (2017)

    Google Scholar 

  27. Li, X.: Non-malleable extractors and non-malleable codes: partially optimal constructions. Cryptology ePrint Archive, Report 2018/353 (2018)

    Google Scholar 

  28. Liu, Z., Pados, D.A.: LDPC codes from generalized polygons. IEEE Trans. Inform. Theory 51(11), 3890–3898 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Margulis, G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Probl. Inform. Transm. 24(1), 39–46 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Mohanty, S., O’Donnell, R., Paredes, P.: Explicit near-Ramanujan graphs of every degree. In: Proceedings of 52nd Annual ACM Symposium on Theory of Computing (STOC 2020), pp. 510–523 (2020)

    Google Scholar 

  32. Rasmussen, P.M.R., Sahai, A.: Expander graphs are non-malleable codes. In: Proceedings of Information-Theoretic Cryptography (ITC 2020), pp. 6:1–6:10 (2020)

    Google Scholar 

  33. Payne, S.E., Thas, J.A.: Finite Generalized Quadrangles. Pitman (Advanced Publishing Program), Boston (1984)

    MATH  Google Scholar 

  34. Satake, S. Gu, Y., Sakurai, K.: Graph-based construction for non-malleable codes, Cryptology ePrint Archive: Report 2021/164 (2021)

    Google Scholar 

  35. Sin, P., Sorci, J., Xiang, Q.: Linear representations of finite geometries and associated LDPC codes. J. Comb. Theory Ser. A. 173(1), 105238 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tanner, R.M.: A recursive approach to low complexity codes. IEEE Trans. Inform. Theory 27(5), 533–547 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tanner, R.M.: Explicit concentrators from generalized \(N\)-gons. SIAM J. Algebraic Discrete Methods 5(3), 287–293 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  38. van Maldeghem, H.: Generalized Polygons. MBirkhäuser Verlag, Basel (1998)

    Book  MATH  Google Scholar 

  39. Wang, M.: On the efficiency of cryptographic constructions. Ph.D thesis, Purdue University (2021)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Peter Rasmussen and Prof. Amit Sahai for their helpful comments to an earlier version of this paper. S. Satake has been supported by JSPS Grant-in-Aid for JSPS Fellows (Grant No. 20J00469) and JST ACT-X (Grant No. JPMJAX2109). Y. Gu has been supported by JSPS Grant-in-Aid for Early-Career Scientists (Grant No. 21K13830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Satake, S., Gu, Y., Sakurai, K. (2023). Explicit Non-malleable Codes from Bipartite Graphs. In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22944-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22943-5

  • Online ISBN: 978-3-031-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics