Skip to main content

GUC-Secure Commitments via Random Oracles: New Impossibility and Feasibility

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2022 (ASIACRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13794))

Abstract

In the UC framework, protocols must be subroutine respecting; therefore, shared trusted setup might cause security issues. To address this drawback, Generalized UC (GUC) framework is introduced by Canetti et al. (TCC 2007). In this work, we investigate the impossibility and feasibility of GUC-secure commitments using global random oracles (GRO) as the trusted setup. In particular, we show that it is impossible to have a 2-round (1-round committing and 1-round opening) GUC-secure commitment in the global observable RO model by Canetti et al. (CCS 2014). We then give a new round-optimal GUC-secure commitment that uses only Minicrypt assumptions (i.e. the existence of one-way functions) in the global observable RO model. Furthermore, we also examine the complete picture on round complexity of the GUC-secure commitments in various global RO models.

Z. Zhou and B. Zhang—Work supported by the National Key R &D Program of China (No. 2021YFB3101601), the National Natural Science Foundation of China (Grant No. 62072401), “Open Project Program of Key Laboratory of Blockchain and Cyberspace Governance of Zhejiang Province”, and Input Output (iohk.io).

H.-S. Zhou—Work supported in part by NSF grant CNS-1801470, a Google Faculty Research Award and a research gift from Ergo Platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout this work, we do not consider the case of simultaneous rounds where two parties can send their messages to each other at the same round [24, 36].

  2. 2.

    In [9], Camenisch et al. used the notations Restricted Observable Global Random oracles (GroRO), Restricted Programmable Global Random Oracles (GrpRO) and Restricted Observable and Programmable Global Random Oracles (GrpoRO). Here we adopt the notations GORO, GPRO and GPORO which skips the “r” for the sake of the simplicity as in [15].

References

  1. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: ACM CCS 2017, pp. 2087–2104. ACM Press (2017)

    Google Scholar 

  2. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS 2004, pp. 186–195. IEEE Computer Society Press (2004)

    Google Scholar 

  3. Baum, C., David, B., Dowsley, R.: Insured MPC: efficient secure computation with financial penalties. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 404–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_22

    Chapter  MATH  Google Scholar 

  4. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: ACM CCS 1993, pp. 62–73. ACM Press (1993)

    Google Scholar 

  5. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable zero knowledge with no trusted setup. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 701–732. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_23

    Chapter  Google Scholar 

  6. Branco, P.: A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Adv. Math. Commun. 15(1), 113 (2021)

    Article  MATH  Google Scholar 

  7. Branco, P., Goulão, M., Mateus, P.: UC-commitment schemes with phase-adaptive security from trapdoor functions. Cryptology ePrint Archive, Report 2019/529 (2019). https://eprint.iacr.org/2019/529

  8. Byali, M., Patra, A., Ravi, D., Sarkar, P.: Fast and universally-composable oblivious transfer and commitment scheme with adaptive security. Cryptology ePrint Archive, Report 2017/1165 (2017). https://eprint.iacr.org/2017/1165

  9. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_11

    Chapter  Google Scholar 

  10. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society Press (2001)

    Google Scholar 

  11. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

    Chapter  Google Scholar 

  12. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: ACM STOC 1998, pp. 209–218. ACM Press (1998)

    Google Scholar 

  14. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: ACM CCS 2014, pp. 597–608. ACM Press (2014)

    Google Scholar 

  15. Canetti, R., Sarkar, P., Wang, X.: Efficient and round-optimal oblivious transfer and commitment with adaptive security. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 277–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_10

    Chapter  Google Scholar 

  16. Chase, M., et al.: Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: ACM CCS 2017, pp. 1825–1842. ACM Press (2017)

    Google Scholar 

  17. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 769–793. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_27

    Chapter  Google Scholar 

  18. Damgård, I.: On \(\Sigma \)-protocols. https://www.cs.au.dk/~ivan/Sigma.pdf

  19. de Saint Guilhem, C.D., Orsini, E., Tanguy, T.: Limbo: efficient zero-knowledge MPCitH-based arguments. In: ACM CCS 2021, pp. 3022–3036. ACM Press (2021)

    Google Scholar 

  20. Dodis, Y., Shoup, V., Walfish, S.: Efficient constructions of composable commitments and zero-knowledge proofs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 515–535. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_29

    Chapter  Google Scholar 

  21. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In: ACM STOC 1990, pp. 416–426. ACM Press (1990)

    Google Scholar 

  22. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  23. Ganesh, C., Kondi, Y., Patra, A., Sarkar, P.: Efficient adaptively secure zero-knowledge from garbled circuits. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 499–529. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_17

    Chapter  Google Scholar 

  24. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018. LNCS, vol. 11239, pp. 123–151. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_5

    Chapter  Google Scholar 

  25. Giacomelli, I., Madsen, J., Orlandi, C.: ZKBoo: faster zero-knowledge for Boolean circuits. In: USENIX Security 2016, pp. 1069–1083. USENIX Association (2016)

    Google Scholar 

  26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: ACM STOC 1987, pp. 218–229. ACM Press (1987)

    Google Scholar 

  27. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  Google Scholar 

  28. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using random oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_4

    Chapter  Google Scholar 

  29. Impagliazzo, R.: A personal view of average-case complexity. In: SCT 1995, pp. 134–147. IEEE (1995)

    Google Scholar 

  30. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: ACM STOC 2007, pp. 21–30. ACM Press (2007)

    Google Scholar 

  31. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: ACM CCS 2018, pp. 525–537. ACM Press (2018)

    Google Scholar 

  32. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. CRC Press, Boca Raton (2020)

    Book  MATH  Google Scholar 

  33. Kuykendall, B., Zhandry, M.: Towards non-interactive witness hiding. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 627–656. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_22

    Chapter  Google Scholar 

  34. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the global random-oracle model. Cryptology ePrint Archive, Paper 2022/290 (2022). https://eprint.iacr.org/2022/290

  35. MacKenzie, P., Yang, K.: On simulation-sound trapdoor commitments. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 382–400. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_23

    Chapter  Google Scholar 

  36. Masny, D., Rindal, P.: Endemic oblivious transfer. In: ACM CCS 2019, pp. 309–326. ACM Press (2019)

    Google Scholar 

  37. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 501–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_18

    Chapter  Google Scholar 

  38. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

    Chapter  Google Scholar 

  39. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS 1982, pp. 160–164. IEEE Computer Society Press (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingsheng Zhang or Hong-Sheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Zhang, B., Zhou, HS., Ren, K. (2022). GUC-Secure Commitments via Random Oracles: New Impossibility and Feasibility. In: Agrawal, S., Lin, D. (eds) Advances in Cryptology – ASIACRYPT 2022. ASIACRYPT 2022. Lecture Notes in Computer Science, vol 13794. Springer, Cham. https://doi.org/10.1007/978-3-031-22972-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22972-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22971-8

  • Online ISBN: 978-3-031-22972-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics