
Blockchain-based Access Control for Secure
Smart Industry Management Systems

Aditya Pribadi Kalapaaking1[0000−0001−5796−8344], Ibrahim
Khalil1[0000−0001−5512−114X], Mohammad Saidur Rahman1[0000−0002−4024−0725],

and Abdelaziz Bouras2[0000−0001−5765−1259]

1 School of Computing Technologies, RMIT University, Melbourne, Victoria,
Australia

aditya.pribadi.kalapaaking@student.rmit.edu.au
2 College of Engineering, Qatar University, Doha,Qatar

abdelaziz.bouras@qu.edu.qa

Abstract. Smart manufacturing systems involve a large number of in-
terconnected devices resulting in massive data generation. Cloud com-
puting technology has recently gained increasing attention in smart man-
ufacturing systems for facilitating cost-effective service provisioning and
massive data management. In a cloud-based manufacturing system, en-
suring authorized access to the data is crucial. A cloud platform is oper-
ated under a single authority. Hence, a cloud platform is prone to a single
point of failure and vulnerable to adversaries. An internal or external ad-
versary can easily modify users’ access to allow unauthorized users to ac-
cess the data. This paper proposes a role-based access control to prevent
modification attacks by leveraging blockchain and smart contracts in a
cloud-based smart manufacturing system. The role-based access control
is developed to determine users’ roles and rights in smart contracts. The
smart contracts are then deployed to the private blockchain network. We
evaluate our solution by utilizing Ethereum private blockchain network
to deploy the smart contract. The experimental results demonstrate the
feasibility and evaluation of the proposed framework’s performance.

Keywords: Blockchain, Smart Contract, Access Control, Smart Manu-
facturing, Industry 4.0

1 Introduction

The advancement of communication and Internet-of-Things (IoT) technologies
has pushed the rapid development of smart industries or industry 4.0 to allow
more efficient and customizable production and logistic operations. However, IoT
devices collect a massive amount of data associated with their surroundings and
influence cloud computing resources for storing and examining data to extract
valuable insights.

Cloud technologies [4] is a superior technology that solves the problems in
smart manufacturing systems. By offering the necessary platforms and infras-
tructure, cloud computing technology ensures efficient data management at a

ar
X

iv
:2

30
4.

13
37

9v
1

 [
cs

.C
R

]
 2

6
A

pr
 2

02
3

2 A. P. Kalapaaking et al.

reasonable price. As a result, cloud service providers may manage data from
smart manufacturing service providers effectively and affordably.

However, cloud-based smart manufacturing systems bring up some security
and trust issues. The centralized nature of cloud-based data storage enables a
single authority to oversee the management of cloud-based data storage. As a
result, the cloud service provider is susceptible to a single point of failure for the
smart manufacturing services and stored transaction data. However, most cloud
service providers employ advanced security measures to thwart outside cyber-
attacks. For example, an untrustworthy employee of the cloud service provider
could alter or tamper with customer data or transactions. Therefore, internal
cyberattacks against the cloud platform are not secure.

Blockchain is a distributed system that links data structure for data storage,
ensuring the data is resistant to modification. Initially, blockchain applications
were limited to cryptocurrencies and financial transactions. The invention of
smart contracts oversees the development of more diverse application scenarios
such as healthcare [11] and supply chains [12]. Since blockchain is a decentralized
system, it can solve a single point of failure from the cloud. To prevent resources
stored in the cloud from being accessed or stolen by illegal users, access control
is required for supplementary solutions.

Therefore, a trustworthy smart manufacturing system is needed to guarantee
the integrity of stored data and maintain the proper accessibility of the users’
data in smart manufacturing management systems. The contributions of our
work are summarized as follows:

– provisioning of cloud-based search to aid in timely retrieval of end-user data

– blockchain-based storage to provide strong immutability for data provided
by IoT devices

– access control powered by smart contracts to protect the ability of users to
modify, view or delete the data

2 Related Work

Azaria et al. [17] proposed a decentralized management system, creating a pro-
totype that showed an immutable database that provided access to their data
via the facilities acting as miners in a blockchain network. These projects rely
on proof-of-work (PoW) consensus processes, which demand a lot of processing
power.

Although data retrieval is still computationally intensive, Wang et al. [1]
developed the blockchain-based Data Gateway to encourage end-users to own,
monitor, and exchange their data. Measa et al. [8] also proposed using blockchain
to publish and transfer resource usage rights regulations between users. However,
they only used a hypothetical proof-of-concept Bitcoin implementation.

[16] employed a blockchain-based framework to transmit data between insti-
tutions in the cloud, employing access protocols and smart contracts to track
data movement and spot breaches. The lengthy response time of requests, which
might take up to twenty minutes, is still a significant issue.

Title Suppressed Due to Excessive Length 3

The issue of data protection on blockchain has been addressed. Zyskind et
al. [18] established a decentralized management system that uses a multi-party
protocol for automatic access control to ensure users own their data.

The Ethereum ledger and attribute-based encryption technologies are com-
bined in a decentralized storage architecture that Wang et al. [14] characterised
as a blockchain-based data exchange architecture. Using the smart contracts on
Ethereum,

A multi-authority attribute-based access management system was proposed
by Guo et al. [3]

The FairAccess system was proposed by Ouaddah et al.[10], and it uses a local
ledger that is implemented on a Raspberry Pi computer to allow transactions to
grant, obtain, delegate, and revoke access.

Table 1: Overview of related work

Model Description Remarks
[1] provide a decentralised

management system for
Health record, using per-
mission management in-
stead of access control

each node store specific
information, however in
the blockchain each node
should have same record,
permission management
system consume huge
computation resource

[8] provide a blockchain-
based mechanism to
published access rights

The access control still
vulnerable to tampering
attack, there are no exper-
iment or evaluation set up
for this concept in the pa-
per

[17] proposed a healthcare
framework with utilising
blockchain for the storage
system

change the traditional
database into the
blockchain. However,
the access control is
placed on the end-user
gateway which is not
effective

[16] proposed a blockchain-
based framework using a
smart contract to authen-
ticate the access for every
query

in this paper, all the data
still stored in a traditional
database. They rely on
the smart contract as an
access control since in the
architecture there is not
any access control layer is
used

4 A. P. Kalapaaking et al.

Based on the current works, none of these earlier publications discuss the
use of smart contracts with role-based access control systems, particularly with
smart manufacturing based on the Internet of Things. In Table 1, summarize
the key point from our proposed method from the previous work.

3 Proposed Framework

This section presents our proposed blockchain-based access control. First, we
present an overview of the system architecture. Next, we discuss the various
components of our proposed framework in detail.

3.1 Overview of the Proposed Framework

Fig. 1: Overview of the proposed framework

The framework integrates blockchain and smart contract in cloud-based smart
manufacturing management systems for tamper proof access control. There are
two types of participants in the system: data owner and users. Data owners are
the smart manufacturer (e.g., Administrator), whilst a user can be a engineer,
product quality assurance, courier, supply-chain manager or even the customer
itself. A large amount of data is generated by the various smart manufacturer
sensors and devices, which authorised users gain access to for review or update.

Title Suppressed Due to Excessive Length 5

Thus, it is paramount that user roles are verified given the sensitive nature
of the data. However, role specifications themselves may be tampered and so, to
ensure trustworthy definition and verification of roles, smart contracts are used.

Here, we integrate blockchain into the system, with smart contracts being de-
ployed to all blockchain nodes. User authentication details (e.g., user id and roles)
are stored within the blockchain to harden against modification attacks. More-
over, customers’ transaction data is stored distributively amongst the blockchain
nodes. Overview of the proposed framework is illustrated in Figure 1.

To ease explanation in later sections, we break down the components of the
proposed framework as follows:

– Cloud Service Provider (CSP) acts as the interface between users and
data, allowing direct communication and acting as an intermediary by an-
swering user requests with results contained within. The actual query oper-
ation itself is performed by the ACM.

– Access Control Manager (ACM) only allows authorised access to data
by users via requests. This involves user registration, role validation, and the
retrieval of user rights. To ensure trustworthiness, it communicates with the
blockchain network for user role validation.

– Blockchain Authentication Manager (BAM) communicates with the
ACM on behalf of the blockchain. It receives a user-role validation task as
a transaction, communicating with other nodes to validate and retrieves the
correct role with the help of smart contracts.

– Blockchain Database Manager (BDM) is another node in the blockchain
network. Generally, it is responsible for executing transactions in the blockchain
network, performing operations on blockchain data, and producing authen-
ticated results.

3.2 System Model

Assume that a set of transaction records is stored as a blockchain in a blockchain
network BCN . In the blockchain, U be the set of n types of users that is
denoted as U = {u1, u2, . . . , un}. R be the set of m roles and denoted as R =
{r1, r2, . . . , rm}.

Rui is the set of roles that is assigned to the user ui. A role ri is associated
with one or more rights. The set G of k rights is denoted as G = {g1, g2, . . . , gk}.
Let, Att be the set of l attributes in the transaction records that is denoted as:
Att = {att1, att2, . . . , attl}. A right gi is the set of l boolean values indicating
the accessibility on l different attributes of a transaction record.

The formal definition of the Roles-based access control (RBAC) model is
defined as follows:

Definition 3.1 The RBAC model (RBACM) is a tuple:

RBACM =< AU,R, AR,G, G > (1)

where:

– AU,R = U × R, is the set of all possible role assignment relations between

users and roles. A user type ui ∈ U can be assigned to roles {r′ |r′ ⊆ R},
then the role assignment can be denoted as Aui,r

′ ⊆ AU,R.

6 A. P. Kalapaaking et al.

– AR,G = R ×G, is the set of all possible right association relations between

roles and rights. A role ri ∈ R is associated with rights {g′ |g′ ⊆ G}, then
the right association can be denoted as Ari,g

′ ⊆ AR,G.

– gi ∈ G can be denoted as gi = {b1, b2, . . . , bl} where bj is the accessibility
indicator on the jth attribute (1 ≤ j ≤ l) and bj = true or false. The
value bj = true indicates that the jth attribute attj ∈ Att is accessible and
bj = false indicates otherwise.

The accessibility of a particular type of user is verified based on the RBACM .
To obtain the accessibility, a user needs to send a data access request. The data
access request can be formally defined as follows:

Definition 3.2 A data access request is a function req(p, param), where p
is the unique user ID with a user type p.type, and param is the list of query
parameters containing q attribute (att) and value (val) pairs. param can be
represented as: param = {(att1, val1),
(att2, val2), . . . , (attq, valq)}.

Definition 3.3 An Accessibility Rule is a set AR of semantics that must
be satisfied to verify the accessibility of the user p while sending a request
req(p, param). AR comprises of the following semantics:

p.type ⊆ U, (2)

p.role ⊆ AU,R and p.role = Aup,rp . (3)

p.rights ⊆ AR,G and p.rights = Ari,g
′ . (4)

∀atti ∈ param.Att
′
, param.Att

′
⊆ Att ∧ atti ∈ g

′
. (5)

The RBACM model is defined in a smart contract (SC) to ensure the trust-
worthy validation of accessibility based on the semantics AR. The formal defi-
nition of the smart contract can be provided as below:

Definition 3.4 A smart contract (SC) is a tuple:

SC =< Op,AR >, (6)

where Op is set of operations in SC and AR is the set of accessibility rules.

3.3 Role-based Access Control using Smart Contract

This section describes the proposed role-based access control using smart con-
tracts. The proposed role-based access control mechanism involves several steps.
Each step is described below:

Title Suppressed Due to Excessive Length 7

Step-1: Initialization The data owner, the access control layer (ACM), the
blockchain authentication manager (BAM), and the blockchain data manager
(BDM) all generate keys as part of the initialization process. Assume that
KeyGen() is a key generation algorithm based on public-key cryptography that
generates a public-key (PK) and private-key (PR) pair. Using KeyGen(), the
data owner creates a key pair made up of a public key (PKDO) and a private
key (PRDO). The data owner will use this key pair to deploy the smart contract
and carry out its activities. The data owner preserves PRDO as a secret and
shares PKDO with the cloud’s ACM and the blockchain network’s BAM . Us-
ing KeyGen(), ACM also creates a key pair, including a public key (PKACM)
and a private key (PRACM). The key-pairs for BAM and BDM are generated
similarly as follows: PKBAM , PRBAM , and PKBDM , PRBDM .

Step-2: Generation and deployment of smart contracts In this stage, the
data owner establishes roles for various user types and sets the access control
rules (AR) depending on those user types. The data owner then uses AR as
described in Definition 3.4 to create a smart contract (SC). In order to deploy
SC in the blockchain network, the data owner sends a transaction to the BAM
called TxSC . Formally, TxSC can be written as follows:

TxSC = {IDDO, IDBAM , costSC , Sign(SC,PRDO)}, (7)

where:

– IDBAM is the unique ID of the blockchain authentication manager (BAM).
– IDDO is the unique ID of the data owner representing the transaction gen-

erator.
– costSC is the price of running the transaction TXSC .
– Sign(SC,PRDO) is the signed smart contract SC that is constructed using

a digital signature technique with the data owner’s private key PRDO.

A smart contract scripting language for the blockchain platform can be used
to create SC. The blockchain platform for this study is Ethereum, and SC
is created using the Solidity programming language. Section 4.1 discusses the
implementation specifics. Figure 2 shows the SC creation and deployment oper-
ations.

Step-3: User registration By giving each user one or more roles in this stage,
the data owner creates new users and registers them. When a user is created,
roles are assigned, and the user roles are stored on the blockchain. The data
owner issues a blockchain transaction called TxUR. The Blockchain Data Man-
ager (BDM) receives TxUR from the data owner, which is forwarded to the
blockchain network for inclusion in the blockchain. The following is a formal
representation of TxUR:

TxUR = {IDDO, IDBDM , costUR, Sign(Upro, PRDO)}, (8)

where:

8 A. P. Kalapaaking et al.

Fig. 2: Generation and deployment of Smart Contract

– IDBDM is the unique ID of the blockchain data manager (BDM).
– IDDO is the unique ID of the data owner representing the transaction gen-

erator.
– costUR is the price of running the transaction TXUR.
– Sign(Upro, PRDO) is the signed user data Upro that is produced using a

digital signature schemes with data owner’s private-key PRDO. Upro is the
digitally signed user data Upro that was created using the private key of
the data owner PRDO. The list of user data known as Upro is denoted as

Upro = {p,R′

p}, where p is the user’s unique ID and R
′

p is the set of user

roles such that R
′

p ⊆ R.

The only transactions TxUR that the data owner can create are those for adding
users and assigning roles. Before storing TxUR into the blockchain, the network
verifies it. As a result, malicious users cannot create fake user roles or alter those
that already exist.

Step-4: User role validation and granting access In this stage, a user role
is verified, and access is granted to a system-authorized user. After signing up for
the system, a user can send a data access request to the cloud service provider
(CSP) using the syntax req(p, param). The access control layer (ACM) receives
req(p, param) from the cloud service provider. The user role validation transac-
tion TxV is then created by ACM and sent to BAM for user role validation.
The following is a representation of TxV :

TxV = {IDACM , IDBAM , costV ,

IDSC , Sign(p.role, PRACM)},
(9)

Title Suppressed Due to Excessive Length 9

where:

– IDACM is the unique ID of ACM denoting the transaction generator.

– IDBAM is the unique ID of the blockchain authentication manager (BAM).

– costV is the cost of executing the transaction TXV .

– IDSC is the smart contract’s unique ID.

– Sign(p.role, PRACM) is the signed user role that is produced using a digital
signature schemes with ACM’s private-key PRACM .

In the blockchain network, BAM propagates TxV to verify user roles. Using
the smart contract SC, the user role is verified. The matching rights (p.rights)
of the user are then returned to BAM , signed by BAM , and sent to ACM .
Sign(p.rights, PRBAM) can be used to represent the signed rights. ACM then
gives the user p the rights. The user role validation procedure based on smart
contracts is represented by the Algorithm 1.

Algorithm 1: Smart Contract based user role validation process

Input:
p.type, type of current user p

Output:
p.rights, rights of current user p

1 while CSP do
2 if p.type ⊆ U then
3 if p.role ⊆ AU,R ∧ p.role = Aup,rp then
4 SendTxV =

IDACM , IDBAM , costV , IDSC , Sign(p.role, PRACM)toSC if
TxV is valid then

5 return p.rights return p.rights = NULL if
p.rights 6= NULL then

6 ACM grants access to user p with p.rights
7 end

8 else
9 p.rights 6= valid

10 end

11 else
12 Invalid User
13 end

14 else
15 Invalid User
16 end

17 endWhile

10 A. P. Kalapaaking et al.

Step-5: Accessibility based Operation The user does the action in this stage
in accordance with the responsibilities and rights granted to the user. The se-
quence diagram for the entire accessibility-based operation is shown in Figure 3.
An end user is initially authenticated by the CSP. The end user then issues an
ACM inquiry request. The ACM retrieves the rights for the user and confirms
the roles with BAM. After then, the ACM sends the query request to the BDM
for processing. For the request, the BDM creates a query result and transmits
it to the CSP. The end-user receives the result from CSP.

Fig. 3: Accessibility based operation

4 Experimental Results

In this section, we show several experiments conducted to evaluate the perfor-
mance of our proposed framework and discuss the results.

4.1 Experimental Setup

In our experiments, we run the experiments with the AWS EC2 cloud. We use
T2.XLarge instance and it has 4 vCPU and 1 GB of RAM that simulate medium
size smart manufacturer server.

The implementation of the prototype comprises of the core framework and
the blockchain. The core framework is developed as a Java server-side application,
which is then interfaced with an Ethereum blockchain emulated in Ganache
[7], which includes ten accounts as default with 100 ethers. Accounts and held
Ethereum sums may be changed as needed.

Title Suppressed Due to Excessive Length 11

Each account can send and receive Ethereum transfers, or engage in smart
contract activities. By forming a block for each operation, the Ganache blockchain
also provides miner consent. Therefore, it is not required to wait for the trans-
fers to be approved in the virtual environment [5]. We develop and commu-
nicate smart contracts using both Solidity [9] and the Truffle [15] framework.
NodeJS [13] is used to communicate between servers and Ethereum nodes. To en-
able communication between the Java-based core framework and the Ethereum
blockchain environment, Web3j [6] is used.

4.2 Results and Performance Evaluation

To begin, we examine the cost to generate the smart contracts. Cost here is com-
puted in terms of Gas, the unit used in the Ethereum network. For comparison,
the deployment cost of the systems proposed by Cruz et al. in [2] is shown in
Figure 4 alongside the costs incurred by the proposed approach. As seen, results
indicate that our generation costs consistently track 50% lower across a similar
number of roles. This bodes well for the cost-effectiveness of our approach.

1 2 3 4 5
0

0.5

1

1.5

2
·105

Smart Contracts for Different Roles

R
eq

u
ir

ed
G

as

Proposed Approach

Framework in [2]

Fig. 4: Required Gas to generate smart contracts

Next, we examine at the time cost to produce the query results in Figure
5 where several concurrent query operations are performed and then transmit-
ted to the ACM to be processed. The goal is to imitate concurrent consumers
querying the blockchain for particular sets of data. All queries are forwarded
via the ACM to the BDM, which controls network-wide query activities. The
timings displayed reflect projected peaks and troughs within operational times
for different simultaneous query requests of 100 to 300. According to the results,
execution times rise linearly as the number of requests increases. Even at the
upper end, we saw responses in 86 seconds for 300 simultaneous requests, which
would serve all users in a typical mid-size smart manufacturing. Please note that

12 A. P. Kalapaaking et al.

when the system is implemented on more potent machines, these timings will
dramatically improve.

Figure 6 shows the execution times for the deployment () and verifica-
tion () of smart contracts in our framework. In this experiment, blockchain-
deployed smart contracts are made for various permissions within certain posi-
tions. We also confirm their rights in order to be thorough. Giving the admin
permission to complete the order after carefully reviewing the quality and quan-
tity is one example. Therefore, the client can inform the manufacturer if there
is an issue with the products (such as a wrong amount or a damaged item).

The deployment phase, which demands around 115 to 130 ms over the 20
usage rights we defined, is more time-consuming, as was to be expected. With a
speed range of 5 to 15 ms, the verification phase is quicker. Both phases have a
slight rising trend, with the time taken growing as more rights are added. With
the manager, accountant, technician, and administrative personnel all having
distinct and purposeful usage rights within their responsibilities, it is envisaged
that the chosen number of 20 will more than satisfy standard smart manufacturer
requirements.

In Figure 7 we analyze the time needed to generate the blockchain for the
smart manufacturer data across various amounts of records () and nodes
(). The objective is to monitor performance as we scale up the number of
participating nodes and records in the network. We scale the number of records
from 10,000 to 50,000 after limiting the number of blockchain nodes to 4. As
a result, we observe a rising linear trend, with 10K records starting at 1.069
seconds and 50K records ending at 2.155 seconds. This indicates the potential of
incorporating a substantial amount of manufacturer-provided IoT data into the
system, such as access control and consumer transactions. The processing time
will be shortened by using a full server with greater power.

Finally, in the same Figure 7, we observe the impact of including more
blockchain nodes in the system. In this instance, we set the record count at
10K and test against 2 to 20 nodes. Once more, we observe a linear growth from
two nodes at 112 ms to twenty nodes at 2231 ms. These results indicate the
viability of the strategy if scaling up to a more extensive blockchain is necessary,
keeping in mind the hardware limits once more.

100 200 300

0.2

0.4

0.6

0.8

1
·105

Simultaneous Requests

E
x
ec

u
ti

on
T

im
e

(m
s)

Fig. 5: Execution time for query requests

Title Suppressed Due to Excessive Length 13

5 10 15 20
0

5

10

15

20

User Rights per Role

V
er

ifi
ca

ti
o
n

T
im

e
(m

s)

100

110

120

130

140

D
ep

lo
y
m

en
t

T
im

e
(m

s)

verify

deploy

Fig. 6: Deployment and verification times of specific usage rights within user roles

4.3 Discussion

The proposed framework integrates blockchain and smart contract technology.
This ameliorates some of the known issues with centralized cloud platforms as
we seek to decentralize important access-control mechanisms and thus harden
them against attacks. The immutability afforded by the blockchain is a crucial
pillar of this framework, with malicious actors facing an uphill task if they wish
to tamper with actual data. Further, as the roles and rights of system users
are defined in smart contracts, which in turn are also replicated to all nodes in
the blockchain, attacks such as privilege escalations or false authorizations are
minimized.

Each data request is submitted as a blockchain transaction in the suggested
architecture. These transactions comprise the creation of smart contracts (TxSC),
registration of users (TxUR), and validation of user roles (TxV). The associated
transaction generator uses public-key cryptography to sign each of the transac-
tions above digitally. The signature will be secure if the correct key settings are
applied. Using the aggregated key, users can confirm the search result. Because
of this, even a 51 percent attack cannot change the query result. Hence, the
proposed framework guarantees the verifiability of the query result.

Results presented in Section 4, highlight the efficacy and performance of the
proposed blockchain-enabled role-based access control (RBAC). The experiments
show that execution times for most operations (i.e., generation and verification
of user roles) follow a linear trend without spikes as we increase the number of
records and nodes within the network. With the limited source in mind, we pos-
tulate that a larger variant of the proposed approach would perform better in an
environment with more powerful machines. It is reasonable to expect that sig-
nificant smart manufacturing would be able to accommodate the computational
requirements.

14 A. P. Kalapaaking et al.

0 500 1,000 1,500 2,000 2,500
1

2

3

4

5
·104

Execution Time (ms)

N
u

m
b

er
of

R
ec

o
rd

s

5

10

15

20

N
u

m
b

er
of

N
o
d

es

records
nodes

Fig. 7: Generation times across number of records and nodes

5 Conclusion

In this paper, a blockchain-based access control framework is proposed to ensure
the integrity of the data and transaction within the context of a smart manu-
facturing. First, a decentralized data storage model is introduced that stores
the transactions records in the blockchain. The blockchain of records are repli-
cated across multiple nodes to ensure integrity and to protect against tampering.
Second, a smart contract-based access control mechanism is proposed to define
the roles of different system users. Different roles and their corresponding rights
can be created and stored in multiple smart contracts to be deployed in the
blockchain network. The smart contracts are replicated amongst nodes in the
network, with user role creation and validation tasks generated only via valid
blockchain transactions. Accordingly, false user roles cannot be created and none
of the existing user roles can be modified by an attacker. As seen in the ex-
perimental results, the proposed role-based access control (RBAC) using smart
contracts is cost-effective. Moreover, execution times for smart contract gener-
ation and verification tasks showed linear characteristics, which points both to
the efficiency and scalability of the approach. The hierarchy of roles necessary
for the beneficial role and proper management is not taken into account by the
current approach. Our future goal is to include a hierarchical model for roles
and rights management.

Acknowledgement

This work is part of the NPRP11S-1227-170135 project. The authors would like
to express their gratitude to the QNRF (Qatar Foundation) for its support and
funding for the project activities.

Title Suppressed Due to Excessive Length 15

References

1. Azaria, A., Ekblaw, A., Vieira, T., Lippman, A.: Medrec: Using blockchain for
medical data access and permission management. In: 2016 2nd International Con-
ference on Open and Big Data (OBD). pp. 25–30. IEEE (2016)

2. Cruz, J.P., Kaji, Y., Yanai, N.: Rbac-sc: Role-based access control using smart
contract. Ieee Access 6, 12240–12251 (2018)

3. Guo, H., Meamari, E., Shen, C.C.: Multi-authority attribute-based access con-
trol with smart contract. In: Proceedings of the 2019 International Conference on
Blockchain Technology. pp. 6–11 (2019)

4. Hayes, B.: Cloud computing (2008)
5. Karatas, E.: Developing ethereum blockchain-based document verification smart

contract for moodle learning management system. Online Submission 11(4), 399–
406 (2018)

6. Labs, W.: Web3j¶, https://docs.web3j.io/
7. Lee, W.M.: Testing smart contracts using ganache. In: Beginning Ethereum Smart

Contracts Programming, pp. 147–167. Springer (2019)
8. Maesa, D.D.F., Mori, P., Ricci, L.: Blockchain based access control. In: IFIP in-

ternational conference on distributed applications and interoperable systems. pp.
206–220. Springer (2017)

9. Mukhopadhyay, M.: Ethereum Smart Contract Development: Build blockchain-
based decentralized applications using solidity. Packt Publishing Ltd (2018)

10. Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Fairaccess: a new blockchain-
based access control framework for the internet of things. Security and Communi-
cation Networks 9(18), 5943–5964 (2016)

11. Rahman, M.S., Khalil, I., Bouras, A.: Formalizing dynamic behaviors of smart
contract workflow in smart healthcare supply chain. In: International Conference
on Security and Privacy in Communication Systems. pp. 391–402. Springer (2020)

12. Rahman, M.S., Khalil, I., Bouras, A.: A framework for modelling blockchain based
supply chain management system to ensure soundness of smart contract workflow.
In: HICSS. pp. 1–10 (2021)

13. Tilkov, S., Vinoski, S.: Node. js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14(6), 80–83 (2010)

14. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. Ieee Access 6,
38437–38450 (2018)

15. Wimmer, C., Würthinger, T.: Truffle: a self-optimizing runtime system. In: Pro-
ceedings of the 3rd annual conference on Systems, programming, and applications:
software for humanity. pp. 13–14 (2012)

16. Xia, Q., Sifah, E.B., Asamoah, K.O., Gao, J., Du, X., Guizani, M.: Medshare:
Trust-less medical data sharing among cloud service providers via blockchain. IEEE
Access 5, 14757–14767 (2017)

17. Yue, X., Wang, H., Jin, D., Li, M., Jiang, W.: Healthcare data gateways: found
healthcare intelligence on blockchain with novel privacy risk control. Journal of
medical systems 40(10), 218 (2016)

18. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect
personal data. In: 2015 IEEE Security and Privacy Workshops. pp. 180–184. IEEE
(2015)

https://docs.web3j.io/

	Blockchain-based Access Control for Secure Smart Industry Management Systems

