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ABSTRACT

Recently proposed budding tree is a decision tree algorithm in which every node
is part internal node and part leaf. This allows representing every decision tree in
a continuous parameter space, and therefore a budding tree can be jointly trained
with backpropagation, like a neural network. Even though this continuity allows
it to be used in hierarchical representation learning, the learned representations
are local: Activation makes a soft selection among all root-to-leaf paths in a tree.
In this work we extend the budding tree and propose the distributed tree where
the children use different and independent splits and hence multiple paths in a
tree can be traversed at the same time. This ability to combine multiple paths
gives the power of a distributed representation, as in a traditional perceptron layer.
We show that distributed trees perform comparably or better than budding and
traditional hard trees on classification and regression tasks.

1 INTRODUCTION

Decision tree is one of the most widely used models in supervised learning. Consisting of in-
ternal decision nodes and terminal label nodes, it operates by building a hierarchical decision
function (Breiman et al., 1984; Quinlan, 1993; Rokach & Maimon, 2005). For the input x =
[1, x1, . . . , xd], this response function can be defined recursively as follows:

ym(x) =


ρm if m is a leaf
yml(x) else if gm(x) > 0

ymr(x) else if gm(x) ≤ 0

(1)

If m is a leaf node, for binary classification, ρm ∈ [0, 1] returns the probability of belonging to the
positive class; for regression, ρm ∈ R returns the scalar response value. If m is an internal node, the
decision is forwarded to the left or right subtree, depending on the outcome of the test gm(x). ρm
can be a vector as well, for tasks requiring multidimensional outputs (e.g. multiclass classification,
vector regression).

There are many variants of the decision tree model based on how the gating function gm(·) is defined.
Frequently,

gm(x) = xj(m) − cm (2)

is a gating function that compares one of the input attributes to a threshold, and this is called the uni-
variate tree. The multivariate tree (Murthy et al., 1994; Yıldız & Alpaydın, 2005) is a generalization
in which the gating is linear,

gm(x) = wTx (3)
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which allows arbitrary oblique splits. If we relax the linearity assumption on gm(·), we have the
multivariate nonlinear tree, e.g. in Guo & Gelfand (1992), gm(·) is defined as a multilayer percep-
tron. If the above assumptions are not fixed for the entire tree but depend on the node m, we have
the omnivariate tree (Yıldız & Alpaydın, 2001).

Regardless of the gating and the leaf response functions, inducing optimal decision tree is a difficult
problem (Rokach & Maimon, 2005). Finding the smallest decision tree that perfectly classifies a
given set of input is NP-hard (Hancock et al., 1996). Thus, typically, decision trees are constructed
greedily.

Essentially decision tree induction consists of two steps:

1) Growing the tree: Starting from the root node, at each node m, we search for the best decision
function gm(x) that splits the data that reaches the node m. If the split provides an improvement
in terms of a measure (e.g. entropy), we keep the split, and recursively repeat the process for the
children ml and mr. If the split does not provide any improvement, then m is kept as a leaf and ρm
is assigned accordingly.

2) Pruning the tree: Once the tree is grown, we can check if reducing the tree complexity by replacing
subtrees with leaf nodes leads to an improvements on a separate development set. This is done to
avoid overfitting and improve generalization of the tree.

2 PRELIMINARIES

2.1 SOFT DECISION TREES

Soft decision trees (İrsoy et al., 2012; Jordan & Jacobs, 1994) build on top of multivariate linear
trees by softening the selection among the two children using a sigmoidal gating function, instead
of a hard selection. This allows the response function to be continuous with respect to input x.

More formally, a soft decision tree models the response as the following recursive definition:

ym(x) =

{
ρm if m is a leaf
gm(x)yml(x) + (1− gm(x))ymr(x) otherwise

(4)

where gm(x) = σ(wT
mx) with σ(·) being the standard sigmoid (logistic) function.

Soft decision trees are trained incrementally in a similar fashion to hard trees. Every node is re-
cursively split until a stopping criterion is reached. Best split is found by gradient descent on the
splitting hyperplane of a parent and the response values of the two children.

2.2 BUDDING TREES

Budding trees (İrsoy et al., 2014) generalize soft trees further by softening the notion of being a
leaf as well. Every node (called a bud node) is part internal node and part leaf. For a node m the
degree of how much of m is a leaf is defined by the leafness parameter γm ∈ [0, 1], which is a
binary variable for traditional decision trees (γm ∈ {0, 1}). This allows the response function to be
continuous with respect to the parameters, including the structure of a tree.

Formalization of the response function of a budding tree can thus be recursively defined as follows:

ym(x) = (1− γm)
[
gm(x)yml(x) + (1− gm(x))ymr(x)

]
+ γmρm (5)

The recursion ends when a node with γm = 1 is encountered.

Because of the continuity of the parameter space, budding trees are not limited to the greedy in-
cremental optimization scheme of decision tree induction. Exploiting the continuity, we can em-
ploy backpropagation to compute gradients and use continuous nonlinear optimization methods (e.g.
stochastic gradient descent) to jointly train an entire tree.

Note that every budding tree can be converted to a soft decision tree in which every internal node
has γm = 0 and every leaf has γm = 1. This is done by recursively distributing the partial leaf
contributions γρ of internal nodes toward leaves. Therefore, one interpretation for budding tree
algorithm is that it is a way to train soft decision trees. This also means that activation (selection)
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(a) (b)

Figure 1: (a) Operation of a budding tree which (softly) selects a single path across the tree. (b) Op-
eration of a distributed tree where it can (softly) select multiple paths.

of a single path in a budding tree can be considered as an activation of a single leaf node. This will
simplify the remainder of the discussion.

3 DISTRIBUTED TREES

Even though the budding tree provide a means for hierarchical representation learning, the resulting
representations are local. Because of its definition, the response of a budding tree is a convex com-
bination of all leaves. This provides a soft selection among the leaves that is akin to a hierarchical
softmax, and limits the representational power—If we use hard thresholds instead of soft sigmoidal
thresholds, it essentially selects one of the leaves. Thus, it partitions the input space into as many
parts as the number of leaves in the tree, which results in a representation power that is linear in the
number of nodes.

To overcome this limit, we extend the budding tree to construct a distributed tree where the two
children of a node are selected by different and independent split conditions. Observe that the
source of locality in a budding tree comes from the convexity among leaves. Selecting one child
more means that it has to select the other less. We relax this constraint in the distributed tree by
untying the gating function that controls the paths for the two subtrees:

ym(x) = (1− γm)
[
gm(x)yml(x) + hm(x)ymr(x)

]
+ γmρm (6)

where gm(x) = σ(wT
m) and hm(x) = σ(vTm) are the conditions for the left and right children and

wm, vm respectively are the untied linear split parameters of the node m. Hence the conditions
for left and right subtrees are independent—we get the budding (and traditional) tree if hm(x) ≡
1− gm(x).

With this definition, a tree no longer generates local representations, but distributed ones. The
selection of one child is independent of the selection of the other, and for an input, multiple paths
can be traversed. Intuitively, a distributed tree becomes similar to a hierarchical sigmoid layer as
opposed to a hierarchical softmax. In the case of hard thresholds instead of soft, more than one
leaf node can be selected at the same time, implying any one of 2L possibilities, where L is the
number of leaves (as opposed to exactly one of L for the traditional local tree). This results in a
representation power exponential in the number of nodes.

The distributed tree still retains the hierarchy that exists in traditional decision trees and budding
trees. Essentially, each node m can still veto its entire subtree by not being activated. The activation
of a node m means that there is at least one leaf in the subtree that is relevant to this particular
input. With this interpretation, one can expect to see a hierarchy among the representations, relevant
features must be grouped together in subtrees.

4 EXPERIMENTS

In this section, we report quantitative experimental results for regression, binary, and multi-class
classification tasks.
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Table 1: Regression results

MSE Size
C4.5 Bud Dist C4.5 Bud Dist

ABA 54.13 41.61 41.79 44 35 24
ADD 24.42 4.68 4.56 327 35 27
BOS 34.21 21.85 18.28 19 19 33
CAL 31.18 24.01 23.26 300 94 47
COM 3.61 1.98 1.97 110 19 29
CON 26.89 15.62 15.04 101 38 43
8FH 41.69 37.83 37.89 47 13 21
8FM 6.89 5.07 5.02 164 17 15
8NH 39.46 34.25 34.53 77 27 43
8NM 6.69 3.67 3.61 272 37 37

Table 2: Binary classification results

Accuracy Size
C4.5 LDT Bud Dist C4.5 LDT Bud Dist

BRE 93.29 95.09 95.00 95.51 7 4 12 23
GER 70.06 74.16 68.02 70.33 1 3 42 39
MAG 82.52 83.08 86.39 86.64 53 38 122 40
MUS 94.54 93.59 97.02 98.24 62 11 15 35
PIM 72.14 76.89 67.20 72.26 8 5 68 35
POL 69.47 77.45 72.57 75.33 34 3 61 97
RIN 87.78 77.25 88.51 95.06 93 3 61 117
SAT 84.58 83.30 86.87 87.91 25 9 38 41
SPA 90.09 89.86 91.47 93.29 36 13 49 23
TWO 82.96 98.00 96.74 97.64 163 3 29 25

Table 3: Multi-class classification results

Accuracy Size
C4.5 LDT Bud Dist C4.5 LDT Bud Dist

BAL 61.91 88.47 92.44 96.36 6 3 29 28
CMC 50.00 46.65 53.23 52.87 25 3 28 51
DER 94.00 93.92 93.60 95.84 16 11 11 20
ECO 77.48 81.39 83.57 83.83 10 11 24 58
GLA 56.62 53.38 53.78 55.41 21 9 21 55
OPT 84.85 93.73 94.58 97.13 121 31 40 92
PAG 96.72 94.66 96.52 96.63 24 29 37 27
PEN 92.96 96.60 98.14 98.98 170 66 54 124
SEG 94.48 91.96 95.64 96.97 42 33 33 76
YEA 54.62 56.67 59.32 59.20 25 22 41 42
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We use ten regression (ABAlone, ADD10, BOSton, CALifornia, COMp, CONcrete, puma8FH,
puma8FM, puma8NH, puma8NM), ten binary classification (BREast, GERman, MAGic, MUSk2,
PIMa, POLyadenylation, RINgnorm, SATellite47, SPAmbase, TWOnorm) and ten multiclass classi-
fication (BALance, CMC, DERmatology, ECOli, GLAss, OPTdigits, PAGeblock, PENdigits, SEG-
ment, YEAst) data sets from the UCI repository (Bache & Lichman, 2013), as in İrsoy et al. (2014).
We compare distributed trees with budding trees and the C4.5 for regression and classification tasks.
Linear discriminant tree (LDT) which is a hard, multivariate tree (Yıldız & Alpaydın, 2005) is used
as an additional baseline for the classification tasks.

We adopt the following experimental methodology: We first separate one third of the data set as
the test set over which we evaluate the final performance. With the remaining two thirds, we apply
5 × 2-fold cross validation. Hard trees (including the linear discriminant tree) use the validation
set as a pruning set. Distributed and budding trees use the validation set to tune the learning rate
and λ. Statistical significance is tested with the paired t-test for the performance measures, and
the Wilcoxon Rank Sum test for the tree sizes, both with significance level α = 0.05. The values
reported are results on the test set not used for training or validation (model selection). Significantly
best results are shown in boldface in the figures.

Table 1 shows the mean squared errors and the number of nodes of the C4.5, budding tree and dis-
tributed tree on the regression data sets. Distributed trees perform significantly better on five data
sets (add10, boston, california, concrete, puma8fm), whereas budding tree performs better on one
(puma8nh), the remainder four being ties. In terms of tree sizes, both the distributed tree and the bud-
ding tree has three wins (abalone, add10, california and comp, puma8fh, puma8nh, respectively),
the remaining four are ties. Note that at the end of the training, because of the stochasticity of the
training, both distributed trees and budding trees have nodes that are almost leaf (having γ ≈ 1).
These nodes can be pruned to get smaller trees with negligible change in the overall response func-
tion.

Table 2 shows the percentage accuracy of C4.5, LDT, budding and distributed trees on binary clas-
sification data sets. In terms of accuracy, LDT has four wins (german, pima, polyadenylation,
twonorm), distributed tree has five wins (magick, musk2, ringnorm, satellite, spambase) and the
remaining one (breast) is a tie. On its four win, LDT produces very small trees (and on three, it
produces the smallest trees). This suggests that with proper regularization, it would be possible to
improve the performance of budding and distributed trees. In terms of tree sizes, LDT has six wins
(breast, polyadenylation, ringnorm, satellite, spambase, twonorm) and C4.5 has one (german) with
the remaining three ties.

Table 3 shows the percentage accuracy of C4.5, LDT, budding and distributed trees on multiclass
classification data sets. Distributed tree is significantly better on five data sets (balance, dermatol-
ogy, optdigits, pendigits, segment), and the remaining five are ties. In terms of tree sizes, again LDT
produces smaller trees with four wins (balance, cmc, glass, optdigits), and budding tree has one win
(pendigits).

5 CONCLUSIONS

In this work we propose the model of the distributed trees which overcomes the locality of traditional
trees and can learn distributed representations of the data. It does this by allowing multiple root-to-
leaf path (soft) selections over a tree structure, as opposed to (soft) selection of a single path as
done by budding and traditional trees. This increases their representational power from linear to
exponential in the number of nodes. Quantitative evaluation on several data sets shows that this
increase is indeed helpful in terms of predictive performance.

Even though the selection of left and right subtrees is independent in a distributed tree, it still pre-
serves the hierarchy in its tree structure as in traditional decision trees and budding trees. This is
because an activation close to zero for a node has the ability to veto its entire subtree, and a firing
node means that it believes that there is some relevant node in that particular subtree. This induces
the tree to gather relevant features together in subtrees, becoming finer and finer grained as it splits
down further.

Previously we have proposed using decision trees autoencoders (İrsoy & Alpaydın, 2014) and we
believe that distributed trees too can be considered as alternative to layers of perceptrons for deep
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learning in that they can learn hierarchical distributed representations of the input in its different
levels.
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