
Maximal Independent Vertex Set applied to Graph
Pooling

Stevan Stanovic1[0000−0001−9656−2080], Benoit Gaüzère2[0000−0001−9980−2641], and
Luc Brun1[0000−0002−1658−0527]

1 Normandie Univ, ENSICAEN, CNRS, UNICAEN, GREYC UMR 6072, 14000 Caen, France
{stevan.stanovic, luc.brun}@ensicaen.fr

2 Normandie Univ, INSA de Rouen, Univ. rouen, Univ. Le Havre, LITIS EA 4108, 76800
Saint-Étienne-du-Rouvray, France

benoit.gauzere@insa-rouen.fr

Abstract. Convolutional neural networks (CNN) have enabled major advances
in image classification through convolution and pooling. In particular, image
pooling transforms a connected discrete grid into a reduced grid with the same
connectivity and allows reduction functions to take into account all the pixels of
an image. However, a pooling satisfying such properties does not exist for graphs.
Indeed, some methods are based on a vertex selection step which induces an
important loss of information. Other methods learn a fuzzy clustering of vertex
sets which induces almost complete reduced graphs. We propose to overcome
both problems using a new pooling method, named MIVSPool. This method
is based on a selection of vertices called surviving vertices using a Maximal
Independent Vertex Set (MIVS) and an assignment of the remaining vertices to
the survivors. Consequently, our method does not discard any vertex information
nor artificially increase the density of the graph. Experimental results show an
increase in accuracy for graph classification on various standard datasets.

Keywords: Graph Neural Networks · Graph Pooling · Graph Classification ·
Maximal Independant Vertex Set.

1 Introduction

Convolutional neural networks (CNN) have enabled major advances in image classification.
An image can be defined as a connected discrete grid and this property enables to define
efficient convolution and pooling operations. Nevertheless, social networks, molecules
or traffic infrastructures are not represented by a grid but by graphs. Convolution and
pooling have been adapted to these structured data into Graph Neural Networks (GNN) [11].
The adaptation of convolution to graphs can be performed by using learned aggregation
functions which combine the value of each vertex with the ones of its neighborhood [6,7].
For graph pooling, the adaptation is mainly performed by selecting vertices [2,5,8,15]
or by learning a fuzzy clustering [13].

The work reported in this paper was supported by French ANR grant #ANR-21-CE23-0025
CoDeGNN

ar
X

iv
:2

20
8.

01
64

8v
1

 [
cs

.L
G

]
 2

 A
ug

 2
02

2

2 S. Stanovic et al.

CONV.

POOL.

READOUT

F
C

 2
56

Multilayer Perceptron

D
R

O
P.

0.

5

F
C

 1
28

F
C

 6
4

S
O

F
T.

Block 1 ...

READOUT

CONV.

POOL.

CONV.

POOL.

READOUT

Block K

Fig. 1: General architecture of our GNN. Each block is composed of a convolution
layer followed by a pooling layer. Features learned after each block are combined to
have several levels of description of the graph.

Score
Function

0.8
0.1
0.5
0.1
0.7

MIVS

1 0 0
1 0 0
0 1 0
0 0 1
0 0 1

Graph
G(l) Score s Matrix S

X(l+1) = S’T X(l)
A(l+1) = ST A(l) S

Graph
G(l+1)

Fig. 2: Proposed graph pooling. Each node is associated to a score (Section 3.2). Based
on this score, a MIVS is computed from which a reduction matrix S is derived.
Applying S to both feature and structure leads to a reduced graph G(l+1).

In this paper, we detail graph convolution and pooling as well as the construction
of the reduced graph in Section 2. Section 3 presents our method (Fig. 2) and explains
its differences from other pooling methods. We present in Section 4 our experiments
where we study different heuristics to select surviving vertices and the mean complexity
of our pooling algorithm. We finally compare our method to other pooling strategies on
standard datasets using an unified architecture (Fig. 1) in Section 4.

2 Related Work

GNNs are neural networks applied to graphs. Inspired by CNNs, they are like the latter
based on convolution and pooling operations. Let us note that convolution operation
should be permutation equivariant. Intuitively, this condition states that a convolution
operation may be permuted with a permutation of the graph’s nodes.

Convolution operations diffuse the information by a message passing mechanism
which allows to learn a representation for each node by aggregating the information of
their n-hop neighborhood. Optimized according to a particular task, the resulting nodes’
features can be used as input of a node classifier or regressor. According to [1], current
aggregation functions correspond mainly to low-pass filters.

Maximal Independent Vertex Set applied to Graph Pooling 3

2.1 Graph Pooling

Considering graph level tasks like graph classification, we need to compute a graph
representation as a fixed sized vector by summing node’s representation. This operation
is called global pooling. Global pooling realizes an aggregation of all the vertices of
a graph and summarizes it in a single vector. Such aggregation must be permutation
invariant and is usually performed using basic operators like a sum, mean, maximum or
more complex ones [14].

However, global pooling performed on all the vertices of a graph leads to sum up
an unbounded amount of information (proportional to the graph’s size) into a fixed
size vector and thus potentially induces a large amount of information loss. Many
authors [8,13] have proposed to decompose GNNs in several steps alternating convolution
and pooling to reduce the graph size while averaging vertices values. Such methods
are called hierarchical pooling. The choice of the number of vertices for the reduced
graph can be fixed or adapted according to the original graph’s size with a ratio. The
hierarchical pooling, like the convolution operation should be permutation equivariant.

Notations. For any pooling layer l, we consider a graph G(l) = (V(l), E(l)) where
V(l) and E(l) are respectively the set of vertices and the set of edges of the graph. Let
nl = |V(l)|, we can define A(l) ∈ Rnl×nl the adjacency matrix associated to the graph
G(l) where A

(l)
ij = 1 if it exists an edge between the vertices i and j, 0 otherwise. We

also note X(l) ∈ Rnl×fl the feature matrix of the graph G(l) where fl is the dimension
of nodes’ attributes.

Construction of the set of surviving vertices. It exists multiple methods to reduce
the size of a graph within the GNN framework. However, most of these methods lead
to the construction of a reduction matrix S(l) ∈ Rnl×nl+1 where nl and nl+1 are
respectively the sizes of the original and the reduced graph. This matrix is used to define
the attributes and the adjacency matrix of the reduced graph. Each surviving vertex i
contributing to its own cluster, we suppose that S(l)

i,i = 1.
Construction of attributes and adjacency matrix. The reduction matrix S(l) is

the basis of the construction of the reduced graph. Based on S(l), the following two
equations allow this construction:

X(l+1) = S(l)>X(l) (1)

This last equation defines the attribute of each surviving vertex vi as a weighted sum of
the attributes of the vertices vj of G(l) such that S(l)

ji 6= 0.

A(l+1) = S(l)>A(l)S(l) (2)

Equation (2) can be rewritten as follows for any pair of surviving vertex (i, j):

(S(l)>A(l)S(l))i,j =

nl∑
k,l

A
(l)
k,lS

(l)
k,iS

(l)
l,j (3)

Two surviving vertices are therefore adjacent in the reduced graph if they are adjacent
in the initial graph (A

(l)
i,j = S

(l)
i,i = S

(l)
j,j = 1). Moreover, surviving vertices i and j are

4 S. Stanovic et al.

adjacent in the reduced graph if it exists a pair of non-surviving adjacent vertices (k, l)
assigned respectively to i and j (A(l)

k,l = S
(l)
k,i = S

(l)
l,j = 1).

Families of methods. Pooling methods can be divided in two families. First family
consists of methods based on the selection of surviving vertices on a given criteria. This
criteria can be the result of a combinatorial algorithm [2] or a learning step like in Top-k
methods [5,8]. The second family regroups methods based on a node’s clustering as in
DiffPool [13]. Each cluster is associated to a surviving vertex.

Methods of the second group use a fixed number of clusters. Hence, learning S(l)

does not allow these methods to take into account the variable size and topology of
the graphs. Moreover, due to training, such methods produce dense matrices S(l) with
few nonzero values. Equation (3) shows that the matrix A(l+1) is then dense and the
corresponding graph has a density close to 1 (i.e. will be a complete graph or almost
complete graph). Consequently, the structure of the graph is not respected. We say that
S(l) is complete.

For Top-k methods, we define the reduction matrix S(l) as the restriction of the
identity matrix Inl

to the column indices idx corresponding to the surviving vertices:

S(l) = [Inl
]:,idx (4)

Given a surviving vertex i in the original graph, we have thus S(l)
i,φ(i) = 1, where

φ(i) denotes the column index of i in the reduced matrix S(l). All other entries of
S(l) are set to 0. The matrix S(l) is called selective since it selects the attributes of
the surviving vertices and removes those of non-surviving vertices. Moreover, in this
case, rows of S(l) corresponding to non-surviving vertices are equal to 0 and two
surviving vertices will be adjacent if and only if they were adjacent before the reduction.
This last point may induce the creation of disconnected reduced graphs. Moreover,
the drop of non-survivors’ features leads to an important loss of information. Let us
note that MVPool [15] increases the density of the graph by considering power 2 or
3 of the adjacency matrix in order to limit the disconnections of the reduced graph. It
additionally adds edges to the reduced graph through an additional layer called Structure
Learning.

An alternative solution consists to drop Equation (2) and to perform a Kron reduction [2]
in order to connect all pairs of surviving vertices adjacent to a same removed vertex.
This reduction increases the density of the graph and a sparsification step is required.
This last point can creates a disconnected reduced graph. Moreover, the time complexity
of the Kron reduction is approximately O((nl

2)
3), due to the inversion of a part of the

Laplacian matrix of G(l).
Let us finally note that it exists a graph pooling method which uses an approximation

of a Maximum Independent Vertex Set called MEWIS [10]. The layer used to compute
this approximation significantly increases the complexity of the whole GNN. Moreover,
the approximated result provided by this layer does not guarantee that the resulting set
of selected vertices is even maximal.

Unlike other methods, we propose to preserve the structure of the original graph
as well as the attribute information. We satisfy these properties thanks to a selection
of surviving vertices distributed equally on the graph and with an assignment of non-
surviving vertices to surviving vertices. We named our pooling method MIVSPool.

Maximal Independent Vertex Set applied to Graph Pooling 5

0.9
0.5

0.4

0.8

0.3

0.4

0.2

0.3

0.1

0.6
0.5

0.3
0.7

0.5
0.7

0.3

(a) original graph

0.9
0.5

0.4

0.8

0.3

0.4

0.2

0.3

0.1

0.6
0.5

0.3
0.7

0.5
0.7

0.3

(b) after first iteration

0.9
0.5

0.4

0.8

0.3

0.4

0.2

0.3

0.1

0.6
0.5

0.3
0.7

0.5
0.7

0.3

(c) after second iteration

Fig. 3: Evolution of MIVS algorithm on a graph from the NCI1 dataset (Section 4.1).
Number inside each vertex corresponds to its score s. Candidate, Survivor and Non-
Survivor vertices are respectively denoted by: vf, vf, vf.

3 Proposed Method

3.1 Maximal Independent Vertex Set (MIVS)

Before describing the algorithm, we introduce the notion of Maximal Independent Set
and show how this notion can be applied to graph vertices.

Maximal Independent Set. Let X be a finite set and N a neighborhood function.
A subset J of X is independent if:

∀(x, y) ∈ J 2 : x /∈ N (y) (5)

J is a subset of X such that for any (x, y) ∈ J 2, x and y are not neighbors. The
elements of J are called the surviving elements.

An independent set J is said to be maximal when no element can be added to it
without breaking the independence property, i.e., when we have:

∀x ∈ X − J ,∃y ∈ J : x ∈ N (y) (6)

Equation (6) states that each non-surviving element has to be in the neighborhood of at
least one element of J . The elements of J are denoted as survivors.

Using Equation (5) and (6), we have a Maximal Independent Set. We note that it
is a maximal but not necessarily a maximum. Indeed, our Maximal Independent Set
J is not necessarily those whose cardinality is maximum with respect to all Maximal
Independent Sets of X .

If we interpret the construction of a Maximal Independent Set as a subsampling
operation, Equation (5) can be interpreted as a condition preventing the oversampling
(two adjacent vertices cannot be simultaneously selected) which thus guarantees an
uniform distribution of survivors. Conversely, Equation (6) prevents subsampling: Any
non-selected vertex is at a distance 1 from a surviving vertex.

Maximal Independent Vertex Set. A Maximal Independent Vertex Set (MIVS) [9]
of a graph G(l) = (V(l), E(l)) is therefore a Maximal Independent Set where the neighborhood

6 S. Stanovic et al.

is deduced from the edge set E(l). Adapting Equation (5) and (6), we select surviving
vertices V(l+1) as described below:

∀(v, v′) ∈ (V(l+1))2 : (v, v′) /∈ E(l) (7)

∀v ∈ V(l) − V(l+1),∃v′ ∈ V(l+1) : (v, v′) ∈ E(l) (8)

Equations (7) and (8) define the MIVS procedure and state that two surviving vertices
cannot be neighbors and a non-surviving vertex must have at least one survivor in
its neighborhood. Nevertheless, these two equations don’t explain how to select these
vertices.

Meer’s Algorithm. A simple method has been proposed by Meer [9] using an
iterative procedure assigning a uniform random variable U([0, 1]) to each vertex. In
this procedure, each surviving vertex corresponds at a local maximum of the random
variable with respect to its neighbors. According to Equation (7), vertices adjacent to
these survivors are labeled as non-survivors. Other vertices (not yet labeled) are labeled
candidates and the algorithm iterates the selection of surviving and non-surviving vertices
on this reduced vertex set (Fig. 3). The algorithm convergence is guaranteed since, at
each iteration, at least one candidate is labeled as a survivor. For each vertex vi, its
random variable is denoted by xi while Booleans pi and qi are True if vi is respectively
a survivor and a candidate. The stopping criterion of the algorithm is obtained when all
qi are False, i.e. when Equation (8) is satisfied. At the initialisation of the algorithm,
all pi are False and all qi are True and, for each iteration k, variables p(k)i and q(k)i are
updated by:

p
(k+1)
i = p

(k)
i ∨ (q

(k)
i ∧ (xi = max{xj |(vi, vj) ∈ E(l) ∧ q(k)j }))

q
(k+1)
i = ∧j|(vi,vj)∈E(l) p

(k+1)
j

(9)

In other words, a survivor at iteration k + 1 is a survivor at iteration k or is a candidate
whose random variable (xi) is greater than the ones of its candidate neighbors. A vertex
is candidate at iteration k + 1 if it is not adjacent to a survivor. We note that the
neighborhood includes the central vertex. This procedure only involves local computations
and is therefore parallelizable.

3.2 Adaptation of MIVS to deep learning

Scoring system. Using Meer’s algorithm [9], the uniform random variable U([0, 1])
plays an important role in the selection of the surviving vertex set. We propose to modify
this variable so that xi used in the algorithm is learnt and represents the relevance
of vertex vi. We obtain this last property by using an attention mechanism like in
SagPool [8] where a score vector s ∈ Rnl×1 is returned by a GCN [7]. Using this
score in our MIVS, we select a set of surviving vertices V(l+1) corresponding to local
maxima of the function of interest encoded by s. An uniform distribution of vertices on
the graph is guaranteed by the computation of the MIVS.

Assignment of Non-Surviving Vertices. In order to construct our reduction matrix
S(l) and take all vertices information into account, we need to assign non-surviving

Maximal Independent Vertex Set applied to Graph Pooling 7

vertices. As a reminder, Equation (8) states that each non-survivor has at least a surviving
neighbor. Assuming that the score function encodes the relevance of each vertex, we
assign each non-surviving vertex to its surviving neighbor with the highest score. We
obtain a reduction matrix S(l) with nl+1 clusters corresponding to surviving vertices:

∀vj ∈ V(l) − V(l+1),∃!vi ∈ V(l+1)|S(l)ji = 1

with i = argmax(sk, (vk, vj) ∈ E(l) ∧ pNk)
(10)

where N is the number of iterations required to have a MIVS and s the score vector.
Construction of reduced attributes and adjacency matrix. The construction of

attributes of the reduced graph G(l+1) is obtained thanks to an average weighted by s
from the set of aggregated vertices to the surviving vertices:

X
(l+1)
i =

1∑
j|S(l)

ji =1
sj

∑
j|S(l)

ji =1

sjX
(l)
j (11)

Equation (11) allows to take into account the importance of each vertex in the computation
of the attributes of the reduced graph and put more attention on vertices with a high
score. As a consequence the learnt vector s can be interpreted as a relevance value. This
operation can be achieved by a transformation similar to Equation (1) by substituting
S(l) by the matrix S(l)′ = D2 D1 S

(l) withD1 = diag(s) andD2 = diag(1
1>D1S(l)).

The construction of the reduced adjacency matrixA(l+1) is obtained thanks to Equation (2).
Relaxation of MIVSPool. On some highly dense graphs, MIVSPool may provide a

decimation ratio lower than 0.5. In order to correct this point, we additionally introduce
MIVSPoolcomp. which is a MIVSPool where we force the addition of surviving vertices
using a Top-k so that the pooling ratio remains always equal to 0.5. Note that Equation (7)
is then no more valid while Equation (8) still holds.

4 Experiments

4.1 Datasets

To evaluate our MIVSPool, we test it on a benchmark of four standard datasets: D&D [4],
PROTEINS [3,4], NCI1 [12] and ENZYMES [3]. The statistics of datasets are reported
on Table 1. D&D and PROTEINS describe proteins and the aim is to classify them as
enzyme or non-enzyme. Nodes represent the amino acids and two nodes are connected

Dataset #Graphs #Classes Avg |V| Avg |E|
D&D 1178 2 284± 272 715± 694
PROTEINS 1113 2 39± 46 72± 84
NCI1 4110 2 29± 13 32± 14
ENZYMES 600 6 33± 15 62± 26

Table 1: Statistics of datasets

8 S. Stanovic et al.

by an edge if they are less than 6 Ångström apart. NCI1 describes molecules and
the purpose is to classify them as cancerous or non-cancerous. Each vertex stands for
an atom and edges between vertices represent bonds between atoms. ENZYMES is a
dataset of protein tertiary structures obtained from the BRENDA enzyme database.

4.2 Model Architecture and Training Procedure

The model architecture consists of K blocks made up of a GCN [7] convolution followed
by a graph pooling. A Readout layer is applied after each block using a concatenation
of the average and the maximum of vertices’ features matrix X(l). At the end of our
network, the K Readout are summed and the result is sent to a Multilayer Perceptron.
The latter is composed by three fully connected layers (respectively 256, 128 and 64 for
the number of hidden neurons) and a droupout of 0.5 is applied between the first two.
The classification is obtained by a Softmax layer (see Fig. 1).

For the training procedure, we use Pytorch Geometric and we evaluate our neural
network with a 10-fold cross validation. We repeat this procedure ten times without
setting the seed. The dataset is split in three parts: 80% for the training set, 10% for the
validation set and 10% for the test set.

For the hyperparameters, we use the Adam optimizer, set the dimension of node
representation, the batch size and the number of epochs respectively at 128, 512 and
1000 and an early stopping is applied if the validation loss did not improved after
100 epochs. A grid search is used for the learning rate within

{
1e−3, 1e−4, 1e−5

}
,

the weight decay within
{
1e−3, 1e−4, 1e−5

}
and the number of blocks K in [3, 5] to

find the best configuration.

4.3 Ablation Studies

Scoring function. encodes the relevance of each vertex and as a direct influence on
the set of selected surviving vertices by MIVSPool. We vary it using a uniform random

Score function MIVSPoolrand MIVSPoolTop−k MIVSPoolSagPool MIVSPoolMV Pool

D&D 77.04± 0.63 77.10± 1.00 75.10± 0.76 77.38± 0.94
PROTEINS 75.15± 0.44 75.36± 0.60 75.11± 0.74 75.62± 0.47
NCI1 72.16± 0.55 73.82± 0.94 73.72± 0.71 72.97± 0.71
ENZYMES 45.80± 1.35 37.55± 1.94 38.68± 2.81 46.80± 1.53

Table 2: Study of MIVSPool according to the score function

Dataset Pooling 1 Pooling 2 Pooling 3 Pooling 4 Pooling 5
D&D 4.1± 0.6 3.6± 0.6 3.2± 0.6 - -
PROTEINS 3.1± 0.7 2.7± 0.6 2.3± 0.5 - -
NCI1 3.2± 0.5 2.9± 0.5 2.5± 0.5 2.3± 0.5 2.1± 0.3
ENZYMES 3.2± 0.6 2.7± 0.6 2.4± 0.5 - -

Table 3: Averaged number of iteration of MIVS for each pooling step.

Maximal Independent Vertex Set applied to Graph Pooling 9

variable U([0, 1]) like in Meer [9] (MIVSPoolrand), a trainable normalized projection
vector on the features X(l) like in [5] (MIVSPoolTop−k), a self-attention mechanism
thanks to a graph convolution like in SagPool [8] (MIVSPoolSagPool) and finally a
trainable multi-view system across structure and features graph information like in
MVPool [15] (MIVSPoolMV Pool). For trainable variations, Equation (11) allows to
propagate the training to the next convolution and, therefore, our pooling method is end-
to-end trainable. The results reported Table 2 show that the choice of the score function
has a minor influence on the accuracy. Note that, since Top-k and SagPool trainable
score functions don’t consider structural information, they consequently perform poorly
on ENZYMES. However, the use of the MVPool trainable score function allows to
obtain the best accuracy on three datasets with comparable standard deviations to other
heuristics. In the rest of our article, we choose to take MIVSPoolMV Pool as a reference
that we denote MIVSPool.

Average number of iterations required by MIVSPool for each pooling step.
Table 3 presents the mean number of iterations for each dataset and each pooling
step computed over 10 epochs. Note that the number of pooling steps is determined
using K-folds for each dataset. Despite an important difference between graph sizes
among datasets (Table 1), we note that the number of iterations is comparable between
them and less than 5. Knowing that an iteration of MIVS on a graph G = (V, E)
requires about |V|dmax computations, where dmax is the maximum degree of G, the
computation of MIVS on one of the graphs of our three datasets is bounded by 5|V|dmax.
This complexity is less than the one needed by the Kron transformation (Section 2.1).

4.4 Comparison of MIVSPool according to other methods

We compare our method to three state-of-art methods: gPool [5], SagPool [8] and
MVPool-SL [15]. Results in Table 4 show that MIVSPoolcomp. and MIVSPool obtain
the highest or second highest accuracies on D&D, PROTEINS and ENZYMES. This
point confirms the efficiency of MIVSPool and the fact that some configurations (highly
connected graphs) may induce low decimation rate by MIVSPool which slightly decreases
the accuracy. For NCI1, the highest accuracy is obtained by MVPool-SL [15], MIVSPoolcomp.
being ranked second. Let us note that the mean vertex’s degree in this dataset is 2.15±
0.11 with many graphs being almost linear. On such simplified topology considering
two hops has done by MVPool-SL allows to recover the structure of the reduced graph.

Dataset gPool [5] SagPool [8] MVPool-SL [15] MIVSPool MIVSPoolcomp.

D&D 75.76± 0.82 75.92± 0.92 77.26± 0.37 77.38± 0.94 77.88± 0.73
PROTEINS 73.49± 1.44 74.30± 0.62 75.04± 0.67 75.62± 0.47 75.81± 0.75
NCI1 71.66± 1.04 72.86± 0.68 74.79± 0.58 72.97± 0.71 73.44± 0.68
ENZYMES 36.93± 2.45 35.30± 1.80 39.45± 2.57 46.80± 1.53 45.60± 2.37

Table 4: Comparison of MIVSPool according to other hierarchical methods. Highest
and second highest accuracies are respectively in bold and blue.

10 S. Stanovic et al.

5 Conclusion

Our graph pooling method MIVSPool is based on a selection of surviving vertices
thanks to a Maximal Independent Vertex Set (MIVS) and an assignment of non-surviving
vertices to surviving ones. Unlike state-of-art methods, our method allows to preserve
the totality of graph information during its reduction.

Acknowledgements: The work was performed using computing resources of CRIANN
(Normandy, France).

References

1. Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: Analyzing the
expressive power of graph neural networks in a spectral perspective. In: International
Conference on Learning Representations (2021)

2. Bianchi, F.M., Grattarola, D., Livi, L., Alippi, C.: Hierarchical representation learning in
graph neural networks with node decimation pooling. IEEE Trans. Neural Networks Learn.
Syst. 33(5), 2195–2207 (2022)

3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J., Kriegel, H.P.:
Protein function prediction via graph kernels. Bioinformatics 21(suppl 1), 47–56 (2005)

4. Dobson, P.D., Doig, A.J.: Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology 330(4), 771–783 (2003)

5. Gao, H., Ji, S.: Graph u-nets. In: international conference on machine learning. pp. 2083–
2092. PMLR (2019)

6. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs.
Advances in neural information processing systems 30, 1024–1034 (2017)

7. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks.
In: International Conference on Learning Representations (ICLR) (2017)

8. Lee, J., Lee, I., Kang, J.: Self-attention graph pooling. In: International conference on
machine learning. pp. 3734–3743. PMLR (2019)

9. Meer, P.: Stochastic image pyramids. Computer Vision, Graphics, and Image Processing
45(3), 269–294 (1989)

10. Nouranizadeh, A., Matinkia, M., Rahmati, M., Safabakhsh, R.: Maximum entropy weighted
independent set pooling for graph neural networks. ArXiv abs/2107.01410 (2021)

11. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural
network model. IEEE transactions on neural networks 20(1), 61–80 (2008)

12. Wale, N., Watson, I.A., Karypis, G.: Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems 14(3), 347–375
(2008)

13. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J.: Hierarchical
graph representation learning with differentiable pooling. Advances in neural information
processing systems 31, 4805–4815 (2018)

14. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for
graph classification. Proceedings of the AAAI Conference on Artificial Intelligence 32(1),
4438–4445 (2018)

15. Zhang, Z., Bu, J., Ester, M., Zhang, J., Li, Z., Yao, C., Huifen, D., Yu, Z., Wang,
C.: Hierarchical multi-view graph pooling with structure learning. IEEE Transactions on
Knowledge and Data Engineering (2021), in Press

	Maximal Independent Vertex Set applied to Graph Pooling

