
ar
X

iv
:2

40
3.

06
60

8v
1

 [
cs

.D
S]

 1
1

M
ar

 2
02

4

Balanced Substructures in Bicolored Graphs

P. S. Ardraa,∗, R. Krithikaa, Saket Saurabhb,c, Roohani Sharmad

aIndian Institute of Technology Palakkad, Palakkad, India
bThe Institute of Mathematical Sciences, Chennai, India

cUniversity of Bergen, Bergen, Norway
dMax Planck Institute for Informatics, Saarland Informatics

Campus, Saarbrucken, Germany

Abstract

An edge-colored graph is said to be balanced if it has an equal number of edges
of each color. Given a graph G whose edges are colored using two colors and
a positive integer k, the objective in the Edge Balanced Connected
Subgraph problem is to determine if G has a balanced connected subgraph
containing at least k edges. We first show that this problem is NP-complete
and remains so even if the solution is required to be a tree or a path. Then,
we focus on the parameterized complexity of Edge Balanced Connected
Subgraph and its variants (where the balanced subgraph is required to be a
path/tree) with respect to k as the parameter. Towards this, we show that if a
graph has a balanced connected subgraph/tree/path of size at least k, then it
has one of size at least k and at most f(k) where f is a linear function. We use
this result combined with dynamic programming algorithms based on color
coding and representative sets to show that Edge Balanced Connected
Subgraph and its variants are FPT. Further, using polynomial-time reduc-
tions to the Multilinear Monomial Detection problem, we give faster
randomized FPT algorithms for the problems. In order to describe these re-
ductions, we define a combinatorial object called relaxed-subgraph. We define
this object in such a way that balanced connected subgraphs, trees and paths
are relaxed-subgraphs with certain properties. This object is defined in the

∗Corresponding author
Email addresses: 111914001@smail.iitpkd.ac.in (P. S. Ardra),

krithika@iitpkd.ac.in (R. Krithika), saket@imsc.res.in (Saket Saurabh),
rsharma@mpi-inf.mpg.de (Roohani Sharma)

The second author is supported by SERB CRG grant number CRG/2022/007751.

Preprint submitted to Elsevier March 12, 2024

http://arxiv.org/abs/2403.06608v1

spirit of branching walks known for the Steiner Tree problem and may be
of independent interest.

Keywords: red-blue graphs, balanced connected subgraphs, balanced trees,
balanced paths, parameterized complexity

1. Introduction

Ramsey Theory is a branch of Combinatorics that deals with patterns in
large arbitrary structures. In the context of edge-colored graphs where each
edge is colored with one color from a finite set of colors, a fundamental prob-
lem in the area is concerned with the existence of monochromatic subgraphs
of a specific type. Here, monochromatic means that all edges of the subgraph
have the same color. For simplicity, we discuss only undirected graphs where
each edge is colored either red or blue. Such a coloring is called a red-blue
coloring and a graph associated with a red-blue coloring is referred to as a
red-blue graph. In this work, we study questions related to the existence of
and finding balanced subgraphs instead of monochromatic subgraphs, where
by a balanced subgraph we mean one which has an equal number of edges of
each color. These problems come under a subarea of Ramsey Theory known
as Zero-Sum Ramsey Theory. Here, given a graph whose vertices/edges are
assigned weights from a set of integers, one looks for conditions that guaran-
tee the existence of a certain subgraph having total weight zero. For example,
one may ask when is a graph whose all the edges are given weight -1 or 1
guaranteed to have a spanning tree with total weight of its edges 0. This is
equivalent to asking when a red-blue graph is guaranteed to have a balanced
spanning tree. Necessary and sufficient conditions have been established for
complete graphs, triangle-free graphs and maximal planar graphs [1]. In the
same spirit, one may ask a more general question like when is a red-blue
graph G guaranteed to have a balanced connected subgraph of size (number
of edges) k. An easy necessary condition is that there are at least k/2 red
edges and at least k/2 blue edges in G. This condition is also sufficient (as we
show in the proof of Theorem 3) if G is a complete graph (or more generally
a split graph). However, we do not think that such a simple characterization
will exist for all graphs. This brings us to the following natural algorithmic
question concerning balanced connected subgraphs.

2

Edge Balanced Connected Subgraph Parameter: k
Input: A red-blue graph G and a positive integer k
Question: Does G have a balanced connected subgraph of size at least
k?

When the subgraph is required to be a tree or a path, the corresponding
variants of Edge Balanced Connected Subgraph are called Edge
Balanced Tree and Edge Balanced Path, respectively. We show that
these problems are NP-complete.

• (Theorems 1, 2, 4) Edge Balanced Connected Subgraph, Edge
Balanced Tree and Edge Balanced Path are NP-complete.

In fact, Edge Balanced Connected Subgraph and Edge Balanced
Tree remain NP-complete on bipartite graphs, planar graphs and chordal
graphs. However, Edge Balanced Connected Subgraph is polynomial-
time solvable on split graphs (Theorem 3). Yet, Edge Balanced Path is
NP-complete even on split graphs.

Note that if a graph has a balanced connected subgraph/tree/path of
size at least k, then it is not guaranteed that it has one of size equal to
k. This brings us to the following combinatorial question: if a graph has a
balanced connected subgraph/tree/path of size at least k, then can we show
that it has a balanced connected subgraph/tree/path of size equal to f(k)
for some function f? We answer these questions in the affirmative and show
the existence of such a function which is linear in k.

• (Theorems 5, 6, 7) If a graph has a balanced connected subgraph/tree
of size at least k, then it has one of size at least k and at most 3k + 3.
Further, if a graph has a balanced path of size at least k, then it has a
balanced path of size at least k and at most 2k.

Therefore, in order to find a balanced connected subgraph/tree/path of size
at least k, it suffices to focus on the problem of finding a balanced connected
subgraph/tree/path of size exactly k. This leads us to the following problem.

Exact Edge Balanced Connected Subgraph Parameter: k
Input: A red-blue graph G and a positive integer k
Question: Does G have a balanced connected subgraph of size k?

As before, when the connected subgraph is required to be a tree or a
path, the corresponding variants of Exact Edge Balanced Connected
Subgraph are called Exact Edge Balanced Tree and Exact Edge
Balanced Path, respectively. These problems are also NP-complete and

3

so we study them from the perspective of parameterized complexity.
In this framework, the key notion is that of a parameterized problem

which is a decision problem where each input instance is associated with
a non-negative integer ℓ called the parameter. A parameterized problem is
said to be fixed-parameter tractable if it can be solved in f(ℓ)nO(1) time for
some computable function f where n is the input size. Algorithms with such
running times are called FPT algorithms or parameterized algorithms and
the complexity class FPT denotes the set of all parameterized problems that
are fixed-parameter tractable. For convenience, the running time f(ℓ)nO(1)

of a parameterized algorithm where f is a super-polynomial function is writ-
ten as O∗(f(ℓ)). A kernelization or kernel for a parameterized problem is a
polynomial-time algorithm that transforms an arbitrary instance of the prob-
lem to an equivalent instance of the same problem whose size is bounded by
some computable function g of the parameter of the original instance. A ker-
nel is a polynomial kernel if g is a polynomial function and we say that the
problem admits a polynomial kernel. A polynomial parameter transformation
from problem Π1 to Π2 is a polynomial-time algorithm that transforms an
arbitrary instance of Π1 to an equivalent instance of Π2 such that the param-
eter of the resulting instance is bounded by some polynomial function of the
parameter of the original instance. A parameterized problem is FPT if and
only if it is decidable and has a kernel. Therefore, the set of parameterized
problems that admit polynomial kernels is contained in the class FPT and it
is believed that this subset relation is strict. Polynomial parameter transfor-
mations are useful in ruling out polynomial kernels. For more information
on parameterized complexity, we refer to the book by Cygan et al. [2].

Focussing onExact Edge Balanced Connected Subgraph/ Tree/-
Path with respect to the solution size k as the parameter, we give random-
ized FPT algorithms for solving the three problems using reductions to the
Multilinear Monomial Detection problem (defined in Section 5).

• (Theorems 8, 9, 10) Exact Edge Balanced Connected Sub-
graph/ Tree/Path can be solved by a randomized algorithm in
O∗(2k) time.

Many problems reduce toMultilinear Monomial Detection [3] and
the current fastest algorithm solving it is a randomized algorithm that runs in
O∗(2k) time [3, 4, 5]. The reductions that we give to Multilinear Mono-
mial Detection use a combinatorial object called relaxed-subgraph. This
object is defined in the spirit of branching walks known for the Steiner
Tree problem [6]. We define this object in such a way that balanced con-

4

nected subgraphs, trees and paths are relaxed-subgraphs with certain prop-
erties. Then, using the color-coding technique [2, 7] and representative sets
[2, 8, 9], we give deterministic dynamic programming algorithms for the prob-
lems.

• (Theorems 11, 12, 13) Exact Edge Balanced Connected Sub-
graph/ Tree can be solved in O∗((4e)k) time and Exact Edge
Balanced Path can be solved in O∗(2.619k) time.

The method of representative sets is a generic approach for designing efficient
dynamic programming based parameterized algorithms that may be viewed
as a deterministic-analogue to the color-coding technique. Representative
sets have been used to obtain algorithms for several parameterized problems
[8] and our algorithm adds to this list.

Road Map. The NP-completeness of the problems are given in Section 3.
In Section 4, the combinatorial results related to the existence of small bal-
anced connected subgraphs, trees and paths are proven. Section 5 discusses
the deterministic and randomized algorithms for the problems. Section 6
concludes the work by listing some future directions.

Related Work. A variant of Exact Edge Balanced Connected Sub-
graph has recently been studied [10, 11, 12, 13, 14]. In order to state these
results using our terminology, we define the notion of vertex-balanced sub-
graphs of vertex-colored graphs. A coloring of the vertices of a graph using
red and blue colors is called a red-blue vertex coloring.

A subgraph of a vertex-colored graph is said to be vertex-balanced if
it has an equal number of vertices of each color. In the Exact Vertex
Balanced Connected Subgraph problem, the interest is in finding a
vertex-balanced connected subgraph on k vertices in the given graph asso-
ciated with a red-blue vertex coloring. This problem is NP-complete and
remains so on restricted graph classes like bipartite graphs, planar graphs,
chordal graphs, unit disk graphs, outer-string graphs, complete grid graphs,
and unit square graphs [10, 11]. However, polynomial-time algorithms are
known for trees, interval graphs, split graphs, circular-arc graphs and per-
mutation graphs [10, 11]. Further, the problem is NP-complete even when
the subgraph required is a path [10]. FPT algorithms, exact exponential-time
algorithms and approximation results for the problem are known from [11],
[13] and [14]. Observe that finding vertex-balanced connected subgraphs in

5

vertex-colored graphs reduces to finding vertex-balanced trees while the anal-
ogous solution in edge-colored graphs may have more complex structures.

2. Preliminaries

Let [k] denote the set {1, 2, ..., k} for k ∈ N+. For standard graph-
theoretic terminology not stated here, we refer the reader to the book by
Diestel [15]. For an undirected graph G, V (G) denotes its set of vertices and
E(G) denotes its set of edges. The size of a graph is the number of its edges
and the order of a graph is the number of its vertices. An edge between ver-
tices u and v is denoted as {u, v} and u and v are called the endpoints of the
edge {u, v}. Two vertices u, v in V (G) are adjacent if {u, v} ∈ E(G). The
neighborhood of a vertex v, denoted by NG(v), is the set of vertices adjacent
to v. Similarly, two edges e, e′ in E(G) are adjacent if they have exactly one
common endpoint and the neighborhood of an edge e, denoted by NG(e), is
the set of edges adjacent to e. The degree of a vertex v is the size of NG(v). A
vertex is called an isolated vertex if its degree is 0. An edge with an endpoint
that has degree 1 is called a pendant edge. The notion of neighborhood is
extended to a set S ⊆ V (G) of vertices by defining NG(S) as (

⋃
v∈S N(v))\S.

We omit the subscript in the notation for neighborhood if the graph under
consideration is clear. For a set F ⊆ E(G) of edges, V (F) denotes the set
of endpoints of edges in F . For a set S ⊆ V (G) ∪ E(G), G− S denotes the
graph obtained by deleting S from G. For a set S ⊆ V (G) of vertices, the
subgraph of G induced on S is denoted by G[S]. For two sets S, T ⊆ V (G)
of vertices, E(S, T) denotes the set of edges with one endpoint in S and the
other endpoint in T .

A walk in G is a sequence (v1, . . . , vk) of vertices such that for each i ∈
[k − 1], {vi, vi+1} ∈ E(G). A path P in G is a walk (v1, . . . , vk) consisting of
distinct vertices. For a path P = (v1, . . . , vk), the set {v1, . . . , vk} is denoted
by V (P) and the set {{vi, vi+1} | i ∈ [k − 1]} is denoted by E(P). We say
that P starts at v1 and ends at vk. Vertices v1 and vk are called the endpoints
of P and edges {v1, v2} and {vk−1, vk} are called terminal edges of P . The
length of a path or walk is the number of edges in it. A graph is connected if
there is a path between every pair of its vertices. Given a graph G, its line
graph L(G) is defined as V (L(G)) = {e | e ∈ E(G)} and E(L(G)) = {{e, e′} |
e and e′ are adjacent in G}. It is well-known that a graph G without isolated
vertices is connected if and only if L(G) is connected. A tree is an undirected
connected acyclic graph. A clique is a set of pairwise adjacent vertices and a

6

complete graph is a graph whose vertex set is a clique. An independent set is
a set of pairwise non-adjacent vertices. A split graph is a graph whose vertex
set can be partitioned into a clique and an independent set.

3. NP-hardness Results

We first show the NP-hardness of Edge Balanced Connected Sub-
graph using a polynomial-time reduction from the well-known NP-hard
Steiner Tree problem [16, ND12]. In this problem, given a connected
graph G, a subset T ⊆ V (G) (called terminals) and a positive integer k,
the task is to determine if G has a subtree H (called a Steiner tree) with
T ⊆ V (H) and |E(T)| ≤ k. The idea behind the reduction is to color all
edges of G of the Steiner Tree instance blue and add exactly k red edges
incident to the terminals such that each terminal has at least one red edge
incident on it. Any balanced connected subgraph of size (at least) k of the
resulting graph is required to include all the red edges and hence includes all
the terminals which in turn corresponds to a Steiner tree of G.

Theorem 1. Edge Balanced Connected Subgraph is NP-complete.

Proof. It is easy to verify that Edge Balanced Connected Subgraph
is in NP. Consider an instance (G, T, k) of Steiner Tree. Let T =
{t1, t2, . . . , tℓ} be the terminal vertices. Without loss of generality assume
ℓ ≤ k and |E(G)| ≥ k. Now we construct an instance (H, 2k) of Edge
Balanced Connected Subgraph that is equivalent to (G, T, k). The
graph H is obtained from G as follows: for each t ∈ T we add a new vertex
t′ adjacent to t. Then we add k − ℓ new vertices adjacent to t1. Formally
V (H) = V (G)∪{t′ | t ∈ T}∪{t′ℓ+i | i ∈ [k−ℓ]} and E(H) = E(G)∪{{t, t′} |
t ∈ T}∪ {{t1, t

′
ℓ+i} | i ∈ [k− ℓ]}. Next we define a red-blue coloring of E(H)

as follows: edges in E(H)∩E(G) are colored blue and edges in E(H)\E(G)
are colored red. Let T ′ = V (H)\V (G) and E ′ = E(H) \ E(G).

Suppose (H, 2k) is a Yes-instance. Let H ′ be a balanced connected sub-
graph of H with at least 2k edges. Then, as H has exactly k red edges
(which is the set E ′), |E(H ′)| = 2k. Further, as V (E ′) = T ∪ T ′ it follows
that T ∪ T ′ ⊆ V (H ′). Now consider the subgraph H ′′ of G obtained from
H ′ by deleting vertices in T ′. Clearly, H ′′ has exactly k edges. As every
vertex in T ′ has degree 1 and NH(T

′) ⊆ V (G), H ′′ is connected. Further,
T ⊆ V (H ′′). Now any spanning tree of H ′′ is a Steiner tree with at most k
edges. Thus (G, T, k) is a Yes-instance.

7

Conversely, suppose (G, T, k) is a Yes-instance. Then let T ∗ be a subtree
of G containing T with |E(T ∗)| ≤ k. Let T ∗∗ be a subgraph of G, containing
T ∗ such that |E(T ∗∗)| = k. Note that T ∗∗ is also a subgraph of H and each
edge in this subgraph is blue. Define another subgraph H ′ of H containing
T ∗∗ as follows: V (H ′) = V (T ∗∗) ∪ T ′ and E(H ′) = E(T ∗∗) ∪ E ′. Clearly,
H ′ is a balanced connected subgraph of H of size 2k. Thus, (H, 2k) is a
Yes-instance.

As the variant of the Steiner Tree problem where a tree on exactly k
edges is required is also NP-complete we have the following result.

Theorem 2. Edge Balanced Tree is NP-complete.

As the reduction described in Theorem 1 is a polynomial parameter trans-
formation, the infeasibility of the existence of polynomial kernels for Steiner
Tree parameterized by the solution size (i.e., the size of the tree) [2, 17] ex-
tend to Edge Balanced Connected Subgraph and Edge Balanced
Tree as well. Further, since Steiner Tree has no subexponential FPT
algorithm assuming the Exponential Time Hypothesis, it follows that Edge
Balanced Connected Subgraph and Edge Balanced Tree also do
not admit subexponential FPT algorithms. Moreover, the reduction in The-
orem 1 preserves planarity, bipartiteness and chordality. This property along
with the NP-completeness of Steiner Tree (and its variant) on bipartite
graphs [16], planar graphs [18] and chordal graphs [19] imply that Edge
Balanced Connected Subgraph and Edge Balanced Tree are NP-
complete on planar graphs, chordal graphs and bipartite graphs as well.

3.1. Complexity in Split Graphs

Next, we consider Edge Balanced Connected Subgraph on split
graphs. Let (G, k) be an instance. An easy necessary condition for G to have
a balanced connected subgraph of size (at least) k is that there are at least
k/2 red edges and at least k/2 blue edges in G. We show that this condition
is also sufficient if G is a split graph leading to the following result.

Theorem 3. Edge Balanced Connected Subgraph is polynomial-
time solvable on split graphs.

Proof. Let (G, k) be an instance where G is a split graph whose vertex set
is partitioned into clique C and independent set I. Let ER be the set of red
edges and EB be the set of blue edges in G. If |ER| <

k
2
or |EB| <

k
2
, then

8

(G, k) is a No-instance. Otherwise, |ER| ≥
k
2
and |EB| ≥

k
2
. We show that

(G, k) is a Yes-instance.
Let v be a vertex in C. Define sets X = {x | x ∈ C, {v, x} ∈ ER} and

Y = {y | y ∈ C, {v, y} ∈ EB}. We will now construct a balanced connected
subgraph H of G in each of the following four cases.

• Case 1: |X| ≥ k
2
and |Y | ≥ k

2

Consider any set SX of k
2
vertices from X and any set SY of k

2
vertices

from Y . Then, the subgraph H of G with V (H) = SX ∪ SY ∪ {v}
and E(H) = E(v, SX) ∪ E(v, SY) is the required balanced connected
subgraph.

• Case 2: |X| < k
2
and |Y | < k

2

Initialize E ′ = ∅. Let |X| = k1 and |Y | = k2. First, we add all edges
in E(v,X) ∪ E(v, Y) to E ′. Observe that C ⊆ V (E ′). Next, we add
k
2
− k1 edges from ER \E(v,X) and k

2
− k2 edges from EB \E(v, Y) to

E ′. Then, the subgraph H of G with E(H) = E ′ and V (H) = V (E ′)
is the required balanced connected subgraph.

• Case 3: |X| ≥ k
2
and |Y | < k

2

First, we add all edges in E(v, Y) to E ′. Next, we add edges in E(Y, I)∩
EB to E ′ one by one until |E ′ ∩ EB| = k

2
or E(Y, I) ∩ EB ⊆ E ′.

Similarly, we add edges in (E(v, I)∪E(Y, Y))∩EB to E ′ one by one until
|E ′∩EB| =

k
2
or (E(v, I)∪E(Y, Y))∩EB ⊆ E ′. Then, we add edges in

E(X, Y)∩EB to E ′ one by one until |E ′∩EB| =
k
2
or E(X, Y)∩EB ⊆ E ′.

When we add such an edge {x, y} with x ∈ X, y ∈ Y , we also add the
edge {x, v} (which is guaranteed to be in ER) to E ′. At the end of this
procedure, observe that |E ′ ∩ ER| ≤

k
2
and |E ′ ∩ EB| =

k
2
. Finally, we

add some set of k
2
− |E ′ ∩ ER| edges from E(v,X) to E ′. Then, the

subgraph H of G with E(H) = E ′ and V (H) = V (E ′) is the required
balanced connected subgraph.

• Case 4: |X| < k
2
and |Y | ≥ k

2

The construction of H is similar to the one in Case 3.
As the above mentioned cases are exhaustive and in each of them, we have
found a procedure to find a balanced connected subgraph H (which is guar-
anteed to exist), it follows that Edge Balanced Connected Subgraph
is polynomial-time solvable on split graphs.

Now, we move on to Edge Balanced Path and show that it is NP-
hard on split graphs by giving a polynomial-time reduction from Longest
Path. In the Longest Path problem, given a graph G and a positive

9

integer k, the task is to find a path P in G of length k. It is known that
Longest Path is NP-hard [16, ND29] and remains so on split graphs even
when the starting vertex u0 of the path is given as part of the input [16,
GT39]. The reduction may be viewed as attaching a red path of length k
(consisting of new internal vertices) starting from u0 to the graph G (whose
edges are colored blue) of the Longest Path instance. Then, by adding
certain additional edges (colored blue), we get a red-blue split graph.

Theorem 4. Edge Balanced Path is NP-complete on split graphs.

Proof. It is easy to verify that this problem is in NP. Let (G, u0, k) be
an instance of Longest Path where G is a split graph whose vertex set
is partitioned into clique C and independent set I. Suppose u0 ∈ C (the
construction when u0 ∈ I is similar). We construct an instance (H, 2k) of
Edge Balanced Path that is equivalent to (G, u0, k). The graph H is
obtained from G as follows. Initialize V (H) = V (G) and E(H) = E(G).
Add new vertices {u1, u2, . . . , uk} that form the path P ∗ = (u1, u2, . . . , uk)
to G such that u1 is adjacent to u0. Let S = {u2i | 1 ≤ i ≤ ⌊k

2
⌋}. Add edges

between every pair of vertices in S. Also, make every vertex in C adjacent
to every vertex in S. Observe that V (H) is partitioned into clique C ∪ S
and independent set I ∪ (V (P ∗) \ S). Color E(H) such that all edges in
(E(H) ∩ E(P ∗)) ∪ {u0, u1} are red and the remaining edges are blue. This
completes the construction of H . Let ER denote the set of red edges and EB

denote the set of blue edges in H . Observe that |ER| = k.
Suppose (G, u0, k) is a Yes-instance. Then there exists a path P =

(u0, x1, x2, . . . , xk) in G of length k starting with vertex u0. Now, the path
P ′ = (uk, . . . , u1, u0, x1, x2, . . . , xk) is a balanced path in H on 2k vertices.
Thus (H, 2k) is a Yes-instance. Conversely, suppose (H, 2k) is a Yes-
instance. Let P ′ be a path in H that has k red edges and k blue edges.
Observe that P ∗ is a subpath of P ′ as |ER| = k. Then, the graph obtained
by deleting V (P ∗) from P ′ is a path P in G starting at u0. Further, P has
k edges. Thus (G, u0, k) is a Yes-instance.

As Longest Path parameterized by the solution size (i.e., the size of
the path) in general graphs does not admit a polynomial kernel [2, 20] and
the reduction described (which is adaptable for general graphs) is a poly-
nomial parameter transformation, it follows that Edge Balanced Path
does not admit polynomial kernels. Further, it is known that, assuming the
Exponential Time Hypothesis, Longest Path has no subexponential FPT

10

algorithm in general graphs. Hence, Edge Balanced Path also does not
admit subexponential FPT algorithms.

4. Small Balanced Paths, Trees and Connected Subgraphs

In this section, we prove the combinatorial result that if a graph has a
balanced connected subgraph/tree/path of size at least k, then it has one of
size at least k and at most f(k) where f is a linear function. We begin with
balanced paths.

Theorem 5. Let G be a red-blue graph and k ≥ 2 be a positive integer.
Then, if G has a balanced path of length at least 2k, then G has a smaller
balanced path of length at least k.

Proof. Let EB be the set of blue edges and ER be the set of red edges in G.
Consider a balanced path P in G with at least 2k edges. If the terminal edges
e and e′ are of different colors, then delete e and e′ to get a smaller path of
length at least k. Otherwise, let P = (v1, v2, . . . , vℓ) where ei denotes the edge
{vi, vi+1} for each i ∈ [ℓ − 1]. Without loss of generality, let e1, eℓ−1 ∈ ER.
Define the function h : E(P) → N as follows.

h(ei) =

1, if i = 1

h(ei−1) + 1, if i > 1 and ei ∈ ER

h(ei−1)− 1, if i > 1 and ei ∈ EB

Let E ′ be the edges e in P with h(e) = 0. Clearly, |E ′| ≥ 1 as P is balanced
and so h(eℓ−1) = 0. We claim that |E ′| > 1. Suppose |E ′| = 1. Then, as
eℓ−1 ∈ ER, h(eℓ−1) = h(eℓ−2) + 1 implying that h(eℓ−1) = −1. As h(e1) =
1 and h(eℓ−1) = −1, it follows that there is an edge ei with i 6= ℓ and
h(ei) = 0. This contradicts that |E ′| = 1. Hence, |E ′| > 1. Let ei denote
an edge with i < ℓ − 1 and h(ei) = 0. Then, the subpaths P1 and P2 with
E(P1) = {e1, . . . , ei} and E(P2) = {ei+1, . . . , eℓ−1} are two balanced paths
strictly smaller than P . Further, as |E(P)| ≥ 2k, either |E(P1)| ≥ k or
|E(P2)| ≥ k.

Now, we move to the analogous result for balanced trees.

Theorem 6. Let G be a red-blue graph and k ≥ 2 be a positive integer.
Then, if G has a balanced tree with at least 3k + 2 edges, then G has a
smaller balanced tree with at least k edges.

11

Proof. Let EB be the set of blue edges and ER be the set of red edges in
G. Consider a balanced tree T in G with at least 3k + 2 edges. If T is a
path, then by Theorem 5, we obtain the desired smaller tree which is a path.
If T has pendant edges e and e′ of different colors, then delete e and e′ to
get a smaller tree on at least k edges. Otherwise, without loss of generality,
let all pendant edges of T be in ER. Let n denote |V (T)|. Root T at an
arbitrary vertex of degree at least 3. For a vertex v ∈ V (T), let Tv denote
the subtree of T rooted at v. Let u be a vertex with maximum distance from
the root such that |V (Tu)| >

n
3
. Let u1, . . . , uℓ be the children of u. Observe

that for each i ∈ [ℓ], |V (Tui
)| ≤ n

3
. Let i be the least integer in [ℓ] such that

n
3
≤ |

⋃
1≤j≤i

V (Tuj
)| ≤ 2n

3
. Let S denote

⋃
1≤j≤i

V (Tuj
) and R denote V (T) \ S.

As n
3
≤ |S| ≤ 2n

3
, we have n

3
≤ |R| ≤ 2n

3
. Further, since n ≥ 3k + 3, we have

n
3
≥ k + 1. Hence, k + 1 ≤ |S|, |R| ≤ n− 1. Consider the following cases.

Case 1: T [S ∪ {u}] or T [R] is balanced. Then, the lemma holds trivially.
Case 2: T [S ∪{u}] or T [R] has more edges from ER than from EB. Suppose
T [R] has more edges from ER than from EB. Initialize T ∗ to be T [R]. As
T [R] has at least k+1 vertices (and therefore at least k edges), it has at least
k/2 edges from ER. Add the edges of T [S ∪ {u}] to T ∗ in the breadth-first
order until T ∗ becomes balanced. We claim that T 6= T ∗. Suppose T = T ∗.
Then, let e be the edge that was added last to T ∗. Clearly, e is a pendant
edge and is in ER. The edge e was added as T ∗− e is not balanced. Further,
the number of edges in T ∗ − e from EB is less than the number of edges
from ER. Otherwise, the addition process would have terminated earlier.
However, if |E(T ∗ − e) ∩ EB| < |E(T ∗ − e) ∩ ER|, e ∈ ER and T = T ∗, then
it follows that T is not balanced leading to a contradiction.
Case 3: T [S ∪ {u}] and T [R] have lesser edges from ER than from EB. As
E(T [S∪{u}]) and E(T [R]) partition E(T), this case implies that T has more
edges from EB than from ER contradicting that T is balanced.

Finally, we prove the result for balanced connected subgraphs. For this,
we use line graphs, vertex-balanced subgraphs and vertex-balanced trees of
vertex-colored graphs.

Theorem 7. Let G be a red-blue graph and k ≥ 2 be a positive integer.
Then, if G has a balanced connected subgraph with at least 3k+3 edges, then
G has a smaller balanced connected subgraph with at least k edges.

Proof. Define a red-blue coloring on V (L(G)) as follows: for each vertex x in
L(G) corresponding to a red (blue) edge {u, v} in G, color x using red (blue).

12

Suppose G has a balanced connected subgraph G′ with ℓ ≥ k edges. Then,
L(G′) (which is a subgraph of L(G)) is connected and has exactly ℓ vertices
with half of them colored red and the rest colored blue. That is, L(G) has a
vertex-balanced connected subgraph of order ℓ. Suppose L(G) has a vertex-
balanced connected subgraph H on ℓ vertices. Let G′ denote the subgraph
of G defined as E ′ = E(G′) = {{u, v} ∈ E(G) | e ∈ V (H), e = {u, v}} and
V (G′) = V (E ′). Then, G′ is a balanced connected subgraph of G with ℓ
edges.

Now, it remains to show that if L(G) has a vertex-balanced connected
subgraph (equivalently, a balanced tree T) with at least 3k + 3 vertices,
then L(G) has a smaller vertex-balanced connected subgraph (equivalently,
a balanced tree T ∗) with at least k vertices. The proof of this claim is similar
to the proof of Theorem 6.

Observe that due to Theorems 5, 6 and 7, it suffices to give FPT algo-
rithms for Exact Edge Balanced Connected Subgraph/Tree/Path
in order to obtain FPT algorithms for Edge Balanced Connected Sub-
graph/Tree/Path.

5. FPT Algorithms

We now describe parameterized algorithms for Exact Edge Balanced
Connected Subgraph/Tree/Path.

5.1. Randomized Algorithms

In this section, we show that Exact Edge Balanced Connected
Subgraph, Exact Edge Balanced Path and Exact Edge Balanced
Tree admit randomized algorithms that runs in O∗(2k) time. We do so by
reducing the problems to Multilinear Monomial Detection. In order
to define this problem, we state some terminology related to polynomials from
[3]. Let X denote a set of variables. A monomial of degree d is a product
of d variables from X , with multiplication assumed to be commutative. A
monomial is called multilinear if no variable appears twice or more in the
product. A polynomial P (X) over Z+ is a linear combination of monomials
with coefficients from Z+. A polynomial contains a certain monomial if the
monomial appears with a non-zero coefficient in the linear combination that
constitutes the polynomial. Polynomials can be represented as arithmetic
circuits which in turn can be represented as directed acyclic graphs. In the

13

Multilinear Monomial Detection problem, given an arithmetic circuit
(represented as a directed acyclic graph) representing a polynomial P (X)
over Z+ and a positive integer k, the task is to decide whether P (X) contains
a multilinear monomial of degree at most k.

Proposition 1. [3, 4, 5] Let P (X) be a polynomial over Z+ represented by a
circuit. The Multilinear Monomial Detection problem for P (X) can
be decided in randomized O∗(2k) time and polynomial space.

Our reductions fromExact Edge Balanced Connected Subgraph/
Tree/Path to Multilinear Monomial Detection crucially use the
notions of a color-preserving homomorphism (also known as an edge-colored
homomorphism in the literature [21]) and relaxed-subgraphs.

Definition 1. Given graphs G and H with red-blue edge colorings colG :
E(G) → {red, blue} and colH : E(H) → {red, blue}, a color-preserving
homomorphism from H to G is a function h : V (H) → V (G) satisfying the
following properties.

• For each pair u, v ∈ V (H), if {u, v} ∈ E(H), then {h(u), h(v)} ∈
E(G).

• For each edge {u, v} in H, colH({u, v}) = colG({h(u), h(v)}).

Definition 2. Given a red-blue graph G, a relaxed-subgraph is a pair S =
(H, h) where H is a red-blue graph and h is a color-preserving homomorphism
from H to G.

The vertex set of a relaxed-subgraph S = (H, h) is V (S) = {h(a) ∈
V (G) | a ∈ V (H)} and the edge set of S is {{h(a), h(b)} ∈ E(G) | {a, b} ∈
E(H)}. We treat the vertex and edge sets of a relaxed-subgraph as multi-
sets. The size of S is the number of edges in H (equivalently, the size of
E(S)). S is said to be connected if H is connected and S is said to be
balanced if H has an equal number of red edges and blue edges. S is said to
be a relaxed-path if H is a path and a relaxed-tree if H is a tree.

Next, we have the following observation that states that relaxed-subgraphs
with certain specific properties correspond to balanced connected subgraphs,
trees and paths.

Observation 1. The following hold for a red-blue graph G.

14

• G has a balanced connected subgraph of size k if and only if there is a
balanced connected relaxed-subgraph S of size k such that E(S) consists
of distinct elements.

• G has a balanced path of size k if and only if there is a balanced relaxed-
path (P, h) of size k where h is injective.

• G has a balanced tree of size k if and only if there is a balanced relaxed-
tree (T, h) of size k where h is injective.

Proof. The forward direction of the three claims are easy to verify. If G has
a balanced connected subgraph/tree/path Q of size k, then S = (Q, h) where
h : V (Q) → V (G) is the identity map is the required balanced connected
relaxed-subgraph/tree/path of size k. Consider the converse of the first claim.
Suppose there is a balanced connected relaxed-subgraph S = (H, h) of size
k such that E(S) consists of distinct elements. Consider the subgraph G′ of
G with V (G′) = V (S) and E(G′) = E(S). Then, G′ is connected as H is
connected and |E(G′)| = |E(S)| = k as E(S) consists of distinct elements.
Further, since H is balanced, G′ is balanced. Hence, G has a balanced
connected subgraph of size k. The proofs of other two claims are similar.

Now, we are ready to describe the randomized algorithms for Exact
Edge Balanced Connected Subgraph/Tree/Path based on Obser-
vation 1. First, we consider Exact Edge Balanced Connected Sub-
graph.

Theorem 8. Exact Edge Balanced Connected Subgraph admits a
randomized O∗(2k)-time algorithm.

Proof. Consider an instance (G, k). Let ER denote the set of red edges and
EB denote the set of blue edges in G. In order to obtain an instance of
Multilinear Monomial Detection that is equivalent to (G, k), we will
define a polynomial P over the variable set {xe | e ∈ E(G)} satisfying the
following properties.

• For each balanced connected relaxed-subgraph S = (H, h) of size k
there exists a monomial in P that corresponds to S. We say that a
monomial M corresponds to S, if M =

∏
e∈E(S)

xe.

• Each multilinear monomial in P corresponds to some balanced con-
nected relaxed-subgraph S of size k where E(S) has distinct elements.

If P is such a polynomial, then from Observation 1, G has a balanced
connected subgraph of size k if and only if P has a multilinear monomial

15

of degree k. This way, after the construction of P , we reduce the problem
to Multilinear Monomial Detection and use Proposition 1. In order
to construct P , we first construct polynomials Pj(e, r, b) for each e ∈ E(G),
j ∈ [k] and 0 ≤ r, b ≤ k

2
with r + b ≥ 1. Monomials of Pj(e, r, b) will

correspond to connected relaxed-subgraphs S = (H, h) of size j such that H
has r red edges, b blue edges and e ∈ E(S). The construction of Pj(e, r, b) is
as follows. For an edge e ∈ E(G),

P1(e, 1, 0) =

{
xe, if e ∈ ER

0 otherwise.
and P1(e, 0, 1) =

{
xe, if e ∈ EB

0 otherwise.
.

Also, Pj(e, r, b) = 0 if j 6= r + b. Now, if e ∈ ER and r+ b > 1, then we have

Pj(e, r, b) =
∑

e′∈NG(e),ℓ<j

r′+r′′=r,b′+b′′=b

Pℓ(e
′, r′, b′)Pj−ℓ(e, r

′′, b′′) +
∑

e′∈NG(e)

xePj−1(e
′, r − 1, b)

and if e ∈ EB and r + b > 1, then we have

Pj(e, r, b) =
∑

e′∈NG(e),ℓ<j

r′+r′′=r,b′+b′′=b

Pℓ(e
′, r′, b′)Pj−ℓ(e, r

′′, b′′) +
∑

e′∈NG(e)

xePj−1(e
′, r, b− 1).

We now show that every multilinear monomial of Pj(e, r, b) corresponds
to a connected relaxed-subgraph S = (H, h) of size j such that H has r
red edges and b blue edges with E(S) consisting of distinct elements where
e ∈ E(S). We prove this claim by induction on j. The base case is easy to
verify. Consider the induction step. Suppose e = {u, v} ∈ ER (the other case
is symmetric). Let M be a multilinear monomial of Pj(e, r, b) where j > 1.

• Case 1: M = xeM
′ where M ′ is a multilinear monomial of Pj−1(e

′, r−
1, b) such that e′ ∈ NG(e). Let e′ = {v, w}. By induction, M ′ corre-
sponds to a connected relaxed-subgraph S ′ = (H ′, h′) of size j−1 such
that e′ ∈ E(S ′). Further, H ′ has r − 1 red edges and b blue edges.
Also, v ∈ V (h′(H ′)). Let z = h′−1(v). Observe that z is well-defined
due to the multilinearity of M . Note that E(S ′) consists of distinct
elements and e /∈ E(S ′). Let H denote the graph obtained from H ′

by adding a new vertex z′ adjacent to z with the edge {z, z′} colored
red. Let h : V (H) → V (G) denote the homomorphism obtained from
h′ by extending its domain to include z′ and setting h(z′) = u. Then,
S = (H, h) is a connected relaxed-subgraph that M corresponds to.

16

• Case 2: M = M1M2 whereM1 is a multilinear monomial of Pj1(e
′, r′, b′)

and M2 is a multilinear monomial of Pj2(e, r
′′, b′′) such that e′ ∈ NG(e),

j1, j2 < j, r′′ ≤ r and b′′ ≤ b. Let e′ = {v, w}. By induction, M1

corresponds to a connected relaxed-subgraph S1 = (H1, h1) of size j1
such that e′ ∈ E(S1). Similarly, M2 corresponds to a connected relaxed-
subgraph S2 = (H2, h2) of size j2 such that e ∈ E(S2). Further, H1 has
r′ red edges, b′ blue edges and H2 has r′′ red edges and b′′ blue edges.
Also, v ∈ V (h1(H1))∩V (h2(H2)) and E(S1)∩E(S2) = ∅. Without loss
of generality, assume that V (H1) ∩ V (H2) = ∅ as this can be achieved
by a renaming procedure. Let z1 = h−1

1 (v) and z2 = h−1
2 (v). Observe

that z1 and z2 are well-defined due to the multilinearity of M1 and
M2. Now, rename z1 in S1 and z2 in S2 as z. Let H denote the graph
with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). Observe
that H is a connected graph. Let h : V (H) → V (G) denote the
homomorphism obtained from h1 and h2 by extending the domain to
the union of the domains of h1 and h2. Then, S = (H, h) is a connected
relaxed-subgraph that M corresponds to.

We next show that if there is a connected relaxed-subgraph S = (H, h) of
size j with r red edges, b blue edges and such that e = {u, v} ∈ E(S), then
there is a monomial of Pj(e, r, b) that corresponds to it. We show this again
using induction on j. Suppose e ∈ ER (the other case is symmetric). The
base case is trivial. Consider the induction step (j ≥ 2). Let a = h−1(u),
b = h−1(v) and z denote the edge {a, b} of H .

• Case 1: H − z is connected. Then, S ′ = (H − z, h) is a connected
relaxed-subgraph of size j−1 with r−1 red edges and b blue edges and
contains an edge e′ ∈ NG(e). By induction, there is a monomial M ′

corresponding to S ′ in Pj−1(e
′, r−1, b). Then, the monomialM = xeM

′

which is in Pj(e, r, b) corresponds to S.
• Case 2: H − z is disconnected. Then H has two components Ha (con-
taining a) and Hb (containing b). Without loss of generality let Ha

have at least one edge. Let H ′
b denote the subgraph of H obtained

from Hb by adding the vertex a and edge {a, b}. Let j1 and j2 de-
note the number of edges in Ha and H ′

b, respectively. Let r
′ and r′′ be

the number of red edges in Ha and H ′
b, respectively. Similarly, let b′

and b′′ be the number of blue edges in Ha and H ′
b, respectively. Then

j = j1 + j2, r = r′ + r′′, b = b′ + b′′. Let ha and hb denote the color-
preserving homomorphism obtained from h by restricting the domain to
V (Ha) and V (H ′

b), respectively. Now, S1 = (Ha, ha) and S2 = (H ′
b, hb)

17

are connected relaxed-subgraphs with the following properties.
(i) The size of S1 is j1 and S1 has r′ red edges, b′ blue edges and there
is an edge e′ ∈ E(S1) incident on ha(a).
(ii) The size of S2 is j2 and S2 has r′′ red edges, b′′ blue edges and
e ∈ E(S2).
By induction, there is a monomial M1 in Pj1(e

′, r′, b′) that corresponds
to S1 and there is a monomial M2 in Pj2(e, r

′′, b′′) that corresponds to
S2. Then, the monomial M1M2 which is in Pj(e, r, b) corresponds to S.

Finally, let P =
∑

e∈E(G)

Pk(e,
k
2
, k
2
). Every monomial in P has degree k. Then

from the arguments above, P is the desired polynomial. To compute P we
need to compute Pj(e, r, b) for each j, r, b ∈ [k] and each edge e ∈ E(G).
As these polynomials can be represented as a polynomial-sized arithmetic
circuit, the reduction runs in polynomial time.

Next, we move on to Exact Edge Balanced Tree.

Theorem 9. Exact Edge Balanced Tree admits a randomized O∗(2k)-
time algorithm.

Proof. Consider an instance (G, k). Let ER denote the set of red edges and
EB denote the set of blue edges in G. In order to obtain an instance of
Multilinear Monomial Detection that is equivalent to (G, k), we will
define a polynomial P over the variable set {yv : v ∈ V (G)} satisfying the
following properties.

• For each balanced relaxed-tree X = (T, h) of size k there exists a
monomial in P that corresponds to X . We say that a monomial M
corresponds to X , if M =

∏
v∈V (X)

yv.

• For each multilinear monomial M in P , there is a balanced relaxed-tree
X = (Q, h) of size k where h is injective that M corresponds to.

If P is such a polynomial, then from Observation 1, G has a balanced tree
of size k if and only if P has a multilinear monomial of degree k + 1. This
way, after the construction of P , we reduce the problem to Multilinear
Monomial Detection and use Proposition 1. In order to construct P ,
we first construct polynomials Pj(e, r, b) for each e ∈ E(G), j ∈ [k] and
0 ≤ r, b ≤ k

2
with r + b ≥ 1. Monomials of Pj(e, r, b) will correspond to

relaxed-trees X = (T, h) of size j such that T has r red edges, b blue edges
and e ∈ E(X). The construction of Pj(e, r, b) is as follows. For an edge

18

e ∈ E(G), we have P1(e, 1, 0) =

{
yuyv, if e = {u, v} ∈ ER

0 otherwise.
and similarly

P1(e, 0, 1) =

{
yuyv, if e = {u, v} ∈ EB

0 otherwise.
.

Also, Pj(e, r, b) = 0 if j 6= r + b. Now, for j > 1, if e = {u, v} ∈ ER, then

Pj(e, r, b) =
∑

e′,e′′∈NG(e)
u∈V (e′),v∈V (e′′)
r′<r,b′≤b,ℓ<j

Pℓ(e
′, r′, b′)Pj−1−ℓ(e

′′, r − 1− r′, b− b′)

+
∑

e′∈NG(e)
v∈V (e′)

yuPj−1(e
′, r − 1, b) +

∑

e′∈NG(e)
u∈V (e′)

yvPj−1(e
′, r − 1, b).

If e ∈ EB, then we have

Pj(e, r, b) =
∑

e′,e′′∈NG(e)
u∈V (e′),v∈V (e′′)
r′<r,b′≤b,ℓ<j

Pℓ(e
′, r′, b′)Pj−1−ℓ(e

′′, r − r′, b− 1− b′)

+
∑

e′∈NG(e)
v∈V (e′)

yuPj−1(e
′, r, b− 1) +

∑

e′∈NG(e)
u∈V (e′)

yvPj−1(e
′, r, b− 1).

We now show that every multilinear monomial of Pj(e, r, b) corresponds to
a relaxed-tree X = (T, h) of size j such that the T has r red edges and b blue
edges where h is injective. We prove this claim by induction on j. The base
case is easy to verify. Consider the induction step. Suppose e = {u, v} ∈ ER

(the other case is symmetric). Let M be a multilinear monomial of Pj(e, r, b)
where j > 1.

• Case 1: M = yuM
′ where M ′ is a multilinear monomial of Pj−1(e

′, r−
1, b) such that e′ ∈ NG(e). Let e′ = {v, w}. By induction, M ′ corre-
sponds to a relaxed-tree X ′ = (T ′, h′) of size j−1 such that e′ ∈ E(X ′).
Further, T ′ has r − 1 red edges and b blue edges. Also, v ∈ V (h′(T ′))
(by definition) and u /∈ V (h′(T ′)) (due to the multilinearity of M). Let
z′ denote h′(v). Let T denote the tree obtained from T ′ by adding new
vertex z adjacent to z′ and the edge {z, z′} colored red. Let h be the
homomorphism obtained from h′ by extending the domain to include
z with h(z) = u. Then, X = (T, h) is the relaxed-tree with the desired
properties that M corresponds to.

19

• Case 2: M = M1M2 whereM1 is a multilinear monomial of Pj1(e
′, r′, b′)

and M2 is a multilinear monomial of Pj2(e
′′, r′′, b′′) such that e′, e′′ ∈

NG(e), j1, j2 < j, r′′ ≤ r−1 and b′′ ≤ b. Let e′ = {u, t} and e′′ = {v, w}.
By induction, M1 corresponds to a relaxed-tree X1 = (T1, h1) of size j1
such that e′ ∈ E(X1). Further, T1 has r′ red edges and b′ blue edges.
Also, u ∈ V (h1(T1)). Similarly, M2 corresponds to a relaxed-tree X2 =
(T2, h2) of size j2 such that e ∈ E(X2). Further, T2 has r′′ red edges
and b′′ blue edges. Also, v ∈ V (h2(X2)). Without loss of generality
assume V (T1)∩ V (T2) = ∅ (one can achieve this property by renaming
vertices). Let T denote the graph with vertex set V (T1) ∪ V (T2) and
edge set E(T1)∪E(T2)∪{h

−1
1 (u), h−1

2 (v)}. Let h : V (T) → V (G) denote
the homomorphism obtained from h1 and h2 by extending the domain
to the union of the domains of h1 and h2. Due to the multilinearity
of M , it follows that h is injective. Then, X = (T, h) is the required
relaxed-tree that M corresponds to.

We next show that if there is a relaxed-tree X = (T, h) of size j with
r red edges, b blue edges and such that e = {u, v} ∈ E(X), then there is
a monomial of Pj(e, r, b) that corresponds to it. We show this again using
induction on j. Suppose e ∈ ER (the other case is symmetric). The base case
is trivial. Consider the induction step (j ≥ 2). Let a = h−1(u), b = h−1(v)
and z denote the edge {a, b} of T . Then T − z has two components Ta (con-
taining a) and Tb (containing b). Let ha and hb denote the homomorphism h
restricted to domains V (Ta) and V (Tb), respectively. Without loss of gener-
ality let Ta have at least one edge. Suppose Tb is edgeless. By induction, let
M ′ be the monomial corresponding to (Ta, ha). Then, yvM

′ is the monomial
in Pj(e, r, b) corresponding to (T, h). Next, consider the case when Tb is not
edgeless. Let j1 and j2 denote the number of edges in Ta and Tb, respectively.
Let r′ and r′′ be the number of red edges in Ta and Tb, respectively. Sim-
ilarly, let b′ and b′′ be the number of blue edges in Ta and Tb, respectively.
Then j − 1 = j1 + j2, r − 1 = r′ + r′′, b = b′ + b′′. Now, X1 = (Ta, ha) and
X2 = (Tb, hb) are relaxed-trees with the following properties.

• The size of X1 is j1 and Ta has r′ red edges, b′ blue edges and there is
an edge e′ ∈ E(X1) incident on ha(a).

• The size of X2 is j2 and Tb has r
′′ red edges, b′′ blue edges and there is

an edge e′′ ∈ E(X2) incident on hb(b).
By induction, there is a monomial M1 in Pj1(e

′, r′, b′) that corresponds to X1

and there is a monomial M2 in Pj2(e
′′, r′′, b′′) that corresponds to X2. Then,

the monomial M1M2 which is in Pj(e, r, b) corresponds to X .

20

Finally, let P =
∑

e∈E(G)

Pk(e,
k
2
, k
2
). Every monomial in P has degree k+1.

Then from the arguments above, P is the desired polynomial. To compute P
we need to compute Pj(e, r, b) for each j, r, b ∈ [k] and each edge e ∈ E(G).
As these polynomials can be represented as a polynomial-sized arithmetic
circuit, the reduction runs in polynomial time.

Finally, we consider Exact Edge Balanced Path.

Theorem 10. Exact Edge Balanced Path admits a randomizedO∗(2k)-
time algorithm.

Proof. Consider an instance (G, k). Let ER denote the set of red edges and
EB denote the set of blue edges in G. We will define a polynomial P over
the variable set {yv : v ∈ V (G)} satisfying the following properties.

• For each balanced relaxed-path X of size k there exists a monomial in
P that corresponds to X . We say that the monomial M corresponds
to X , if M =

∏
v∈V (X)

yv.

• For each multilinear monomial M in P , there is a balanced relaxed-
path X = (Q, h) of size k where h is injective that M corresponds
to.

If P is such a polynomial, then from Observation 1, G has a balanced
path of size k if and only if P has a multilinear monomial of degree k+1. This
way, after the construction of P , we reduce the problem to theMultilinear
Monomial Detection and use Proposition 1. In order to construct P ,
we first construct polynomials Pj(v, r, b) for each v ∈ V (G), j ∈ [k] and
0 ≤ r, b ≤ k

2
. Monomials of Pj(v, r, b) will correspond to relaxed-paths X =

(Q, h) of size j such that Q has r red edges and b blue edges and v = h(u1),
where u1 is the first vertex of Q. The construction of Pj(v, r, b) is as follows.
For a vertex v ∈ V (G), P0(v, 0, 0) = yv. Also, Pj(v, r, b) = 0 if j 6= r+ b. For
non-negative integers r, b with r + b ≥ 1 and a positive integer j, we have

Pj(v, r, b) =
∑

u∈N(v)
{u,v}∈ER

yvPj−1(u, r − 1, b) +
∑

u∈N(v)
{u,v}∈EB

yvPj−1(u, r, b− 1).

We now show that every multilinear monomial of Pj(v, r, b) corresponds
to a relaxed-path (Q, h) of size j such that Q has r red edges, b blue edges
and v is the vertex of G onto which the first vertex of Q is mapped under h

21

and h is injective. We show this using induction on j. The base case is easy
to verify. Consider the induction step. Let M be a multilinear monomial
of Pj(v, r, b). Then, M = yvM

′ where M ′ is a multilinear monomial of
Pj−1(u, r− 1, b). By induction hypothesis, M ′ corresponds to a relaxed-path
X ′ = (Q′, h′) such that h′ is injective with h′(z′) = u where z′ is the starting
vertex of Q′. Further, Q′ has r − 1 red edges, b blue edges or r red edges,
b− 1 blue edges. Let Q denote the path obtained from Q′ by adding a new
vertex z adjacent to z′ with the edge {z, z′} colored red (in the former case)
or blue (in the latter case). Let h be the homomorphism obtained from h′

by extending the domain to include z with h(z) = v. Clearly, h is injective
as h′ is injective and v /∈ V (Q′) (due to the multilinearity of M). Now, yvM

′

corresponds to the relaxed-path X = (Q, h). And, X is of size j such that
Q has r red edges, b blue edges and v is the vertex of G onto which the first
vertex of Q is mapped under h.

We next show that if there is a relaxed-path X = (Q, h) of size j with
r red edges, b blue edges such that v is the first vertex of this relaxed path,
then there is a monomial of Pj(v, r, b) that corresponds to it. We show this
again using induction on j. Let {a, b} be the first edge of Q. Let v = h(a)
and u = h(b). Suppose {v, u} ∈ ER (the other case is symmetric). Consider
X ′ = (Q′, h′) where V (Q′) = V (Q) \ {v}, E(Q′) = E(Q) \ {{a, b}} and h′ is
h with domain restricted to V (Q′). Then, X ′ is a relaxed-path with r − 1
red and b blue edges. By induction there is a monomial M corresponding to
it in the Pj−1(u, r − 1, b). Thus, yvM corresponds to X .

Finally, let P =
∑

v∈V (G)

Pk(v,
k
2
, k
2
). Every monomial in P has degree k +

1. Then from the arguments above, P is the desired polynomial. As the
polynomial P can be represented as a polynomial-sized arithmetic circuit,
the reduction runs in polynomial time.

5.2. Deterministic Algorithms

We first describe deterministic algorithms for Exact Edge Balanced
Connected Subgraph and Exact Edge Balanced Tree using the
color-coding technique [2, 7, 22].

Consider an instance (G, k) of Exact Edge Balanced Connected
Subgraph/Tree. Let m = |E(G)| and n = |V (G)|. Let ER denote the set
of red edges and EB denote the set of blue edges inG. Let σ : E(G) → [k] be a
coloring of edges ofG and τ : V (G) → [k+1] be a coloring of vertices ofG. We
now define L-edge-colorful subgraphs and L-vertex-colorful subgraphs. For

22

L ⊆ [k+ 1], a subgraph H ⊆ G is said to be L-edge-colorful if |E(H)| = |L|,⋃
e∈E(H) σ(e) = L and for every e 6= e′ ∈ E(H), σ(e) 6= σ(e′). Similarly, H is

said to be L-vertex-colorful if |V (H)| = |L|,
⋃

v∈V (H) τ(v) = L and for every

u 6= v ∈ V (H), τ(u) 6= τ(v). We describe dynamic programming algorithms
to find a [k]-edge-colorful balanced connected subgraph and a [k+1]-vertex-
colorful balanced tree in G (if they exist) in O∗(4k) time.

Lemma 1. If a red-blue graph G associated with coloring σ : E(G) → [k]
has a [k]-colorful balanced connected subgraph then such a subgraph can be
obtained in O∗(4k) time.

Proof. For L ⊆ [k], e ∈ E(G) and r, b ≤ k
2
, define Λ(e, L, r, b) to be 1 if

there is a connected L-edge-colorful subgraph H of G containing e such that
|E(H) ∩ ER| = r, |E(H) ∩ EB| = b and 0 otherwise. Clearly, G has a [k]-
edge-colorful balanced connected subgraph if and only if there is an edge
e ∈ E(G) such that Λ(e, [k], k

2
, k
2
) = 1. First observe that for L ⊆ [k],

|L| = 1 (L = {i}), Λ(e, i, 1, 0) = 1 if e is in ER and 0 otherwise. Similarly,
Λ(e, i, 0, 1) = 1 if e is in EB and 0 otherwise. Therefore, the entries Λ(e, i, r, b)
for i ∈ [k], e ∈ E(G), r + b ≤ 1 can be filled in polynomial time. Also,
Λ(e, L, r, b) = 0 if |L| 6= r + b or r = 0 with e ∈ ER or b = 0 with e ∈ EB.

Next, consider Λ(e, L, r, b) where |L| > 1 (and r + b > 1). We claim that
Λ(e, L, r, b) = 1 if and only if one of the following is true. Let e = {u, v}.

• Λ(e′, L\σ({u, v}), r− 1, b) = 1 where e′ ∈ N(e) and e ∈ ER.
• Λ(e′, L\σ({u, v}), r, b− 1) = 1 where e′ ∈ N(e) and e ∈ EB.
• Λ(e′, L′, r′, b′) = 1 and Λ(e′′, L\(L′ ∪ σ({u, v})), r − r′ − 1, b − b′) = 1
where e′, e′′ ∈ N(e), L′ ⊆ L\σ({u, v}), r′ ≤ r − 1, b′ ≤ b and e ∈ ER.

• Λ(e′, L′, r′, b′) = 1 and Λ(e′′, L\(L′ ∪ σ({u, v})), r − r′, b − b′ − 1) = 1
where e′, e′′ ∈ N(e), L′ ⊆ L\σ({u, v}), r′ ≤ r, b′ ≤ b− 1 and e ∈ EB.

Observe that if H is a solution to one of the above, then adding e to
H is required subgraph that makes Λ(e, L, r, b) as 1. Conversely, suppose
Λ(e, L, r, b) = 1. Then G has a L-colorful connected subgraph H such that
e ∈ E(H), |E(H)∩ER| = r and |E(H)∩EB| = b. Without loss of generality,
let e = {u, v} ∈ ER. Consider the graph H ′ obtained from H by deleting
e. Then, H ′ has at most two components. If H ′ is connected, then either
Λ(e′, L\σ({u, v}), r−1, b) = 1 or Λ(e′, L\σ({u, v}), r, b−1) = 1 for some edge
e′ ∈ E(H ′) ∩ N(e). Otherwise, H has two components and let Hu be the
one containing u and Hv be the one containing v. If Hu has no edge, then
Λ(e′, L\σ(e), r−1, b) = 1 for some e′ ∈ N(e)∩E(Hv). Similarly, if Hv has no

23

edge, then Λ(e′, L\σ(e), r−1, b) = 1 for some e′ ∈ N(e)∩E(Hu). Otherwise,
let L′ denote the set of colors σ(e) of edges e ∈ Hu. Then L\(L′ ∪ σ({u, v}))
is the set of colors of edges in Hv. Also Λ(e′, L′, r′, b′) = 1 where r′ = |ER ∩
E(Hu)| and b′ = |EB ∩E(Hu)| and Λ(e′′, L\(L′ ∪σ(e)), r− r′ − 1, b− b′) = 1.

The time taken to compute an entry Λ(e, L, r, b) is mk22k as we need to
go over choices e′, r′, b′ and L′ ⊆ L where |L| ≤ k, |E(G)| = m and r′, b′ ≤ k

2
.

As the number of entries Λ(e, L, r, b) is at most mk22k, the running time of
the algorithm is O∗(4k).

Standard derandomization techniques using perfect hash families [2, 7, 22]
leads to the following result.

Theorem 11. Exact Edge Balanced Connected Subgraph can be
solved in O∗((4e)k) time.

Proof. First, we use the results of [2, 7, 22] to construct a family Fm,k of
coloring functions σ : E(G) → [k] of size ekkO(log k) logm in ekkO(log k)m logm
time satisfying the following property: for every set E ′ ⊆ E(G) of size k,
there is a function σ ∈ Fm,k such that σ(e) 6= σ(e′) for any two distinct
edges e, e′ ∈ E ′. Now, for each function in Fm,k, we use the dynamic pro-
gramming algorithm given in Lemma 1 to find a [k]-edge-colorful balanced
connected subgraph, if one exists. The properties of Fm,k ensure that, if
there exists a balanced connected subgraph H ⊆ G on k edges, then there
exists f ∈ F that is injective on E(H) and, consequently, the algorithm finds
a [k]-edge-colorful balanced connected subgraph. Hence, we obtain a deter-
ministic algorithm which can solve Exact Edge Balanced Connected
Subgraph in O∗((4e)k) time.

Next, we show that Exact Edge Balanced Tree can be solved in
O∗((4e)k) time.

Lemma 2. Given a red-blue graph G associated with coloring τ : V (G) →
[k + 1], one can determine if G has a [k + 1]-vertex-colorful balanced tree in
O∗(4k) time.

Proof. For L ⊆ [k + 1], e ∈ E(G) and r, b ≤ k
2
, define Λ(e, L, r, b) to be 1 if

there is an L-vertex-colorful tree T of G containing e such that |E(T)∩ER| =
r, |E(T)∩EB| = b and 0 otherwise. Clearly, G has a [k+1]-colorful balanced
tree if and only if ∃e ∈ E(G) such that Λ(e, [k + 1], k

2
, k
2
) = 1. Observe that

Λ(e, L, r, b) = 0 if |L| 6= r+ b+1 and Λ(e, L, 1, 0) is 1 if and only if L = {i, j}

24

where e = {u, v} ∈ ER with τ(u) = i and τ(v) = j. Similarly, Λ(e, L, 0, 1) is
1 if and only if L = {i, j} where e = {u, v} ∈ EB with τ(u) = i and τ(v) = j.

Consider Λ(e, L, r, b) where r + b ≥ 1. Then, Λ(e, L, r, b) = 1 if and only
if one of the following holds. Let e = {u, v}.

• Λ(e′, L\τ(u), r − 1, b) = 1 where e′ ∈ N(e) and e ∈ ER.
• Λ(e′, L\τ(v), r − 1, b) = 1 where e′ ∈ N(e) and e ∈ ER.
• Λ(e′, L\τ(u), r, b− 1) = 1 where e′ ∈ N(e) and e ∈ EB.
• Λ(e′, L\τ(v), r, b− 1) = 1 where e′ ∈ N(e) and e ∈ EB.
• Λ(e′, L′, r′, b′) = 1 and Λ(e′′, L′′, r−r′−1, b−b′) = 1 where e′, e′′ ∈ N(e),
L′ ⊆ L\τ(u), L′′ = L \ L′, r′ ≤ r − 1, b′ ≤ b and e ∈ ER.

• Λ(e′, L′, r′, b′) = 1 and Λ(e′′, L′′, r−r′, b−b′−1) = 1 where e′, e′′ ∈ N(e),
L′ ⊆ L\τ(u), L′′ = L \ L′, r′ ≤ r, b′ ≤ b− 1 and e ∈ EB.

The time taken to compute an entry Λ(e, L, r, b) is mk22k+1 as we need to go
over choices e′, r′, b′ and L′ ⊆ L where |L| ≤ k+1, |E(G)| = m and r′, b′ ≤ k

2
.

As the number of entries Λ(e, L, r, b) is at most mk22k+1, the running time
of the algorithm for a given T is O∗(4k).

Similar to Theorem 11, Lemma 2 along with derandomization using per-
fect hash families lead to the following result.

Theorem 12. Exact Edge Balanced Tree can be solved in O∗((4e)k)
time.

As the reader would have already observed, a simpler dynamic program-
ming algorithm along with derandomization using perfect hash families re-
sults in an algorithm for Exact Edge Balanced Path that runs in
O∗((2e)k) time. Subsequently, we describe a faster algorithm using repre-
sentative sets. We begin with some definitions and results related to repre-
sentative sets. For a finite set U , let

(
U

p

)
denote the set of all subsets of size

p of U . Given two families S1,S2 ⊆ 2U , the convolution of S1 and S2 is the
new family defined as S1 ∗ S2 = {X ∪ Y | X ∈ S1, Y ∈ S2, X ∩ Y = ∅}.

Definition 3. Let U be a set and S ⊆
(
U

p

)
. A subfamily Ŝ ⊆ S is said to

q-represent S (denoted as Ŝ ⊆q
rep S) if for every set Y ⊆ U of size at most

q such that there is a set X ∈ S with X ∩ Y = ∅, there is a set X̂ ∈ Ŝ with
X̂ ∩ Y = ∅. If Ŝ ⊆q

rep S, then Ŝ is called a q-representative family for S.

Representative families (also called representative sets) are transitive and
have nice union and convolution properties (Proposition 2).

25

Proposition 2. [2, Lemmas 12.26, 12.27 and 12.28] Let U be a fnite set.

1. Let S1,S2 ⊆
(
U

p

)
. If Ŝ1 ⊆

q
rep S1 and Ŝ2 ⊆

q
rep S2, then Ŝ1∪Ŝ2 ⊆

q
rep S1∪S2.

2. Let S ⊆
(
U

p

)
. If Ŝ ⊆q

rep S
′ and S ′ ⊆q

rep S, then Ŝ ⊆q
rep S.

3. Let S1 ⊆
(
U

p1

)
, S2 ⊆

(
U

p2

)
. If Ŝ1 ⊆k−p1

rep S1 and Ŝ2 ⊆k−p2
rep S2, then

Ŝ1 ∗ Ŝ2 ⊆
k−p1−p2
rep S1 ∗ S2.

A classical result due to Bollobás states that small representative families
exist [23] and Proposition 3 [2, 8, 9] shows that such families can be efficiently
computed.

Proposition 3. [2, 8, 9] There is an algorithm that given a family S ⊆
(
U

p

)
,

a rational 0 < x < 1 and integers p, k ≥ p, computes Ŝ ⊆k−p
rep S of size at

most x−p(1 − x)−(k−p)2o(k) in |S|(1 − x)−(k−p)2o(k) time. Further, if |S| =

O∗(x−p(1 − x)−(k−p)2o(k)) and x = p

2k−p
, then the construction of Ŝ takes

O∗((2k−p)2k−p

pp(2k−2p)2k−2p 2
o(k)) time, moreover, this running time is maximized when

p = (1− 1√
5
)k and is O∗(φ2k+o(k)) (which is O∗(2.619k)) where φ is the golden

ratio 1+
√
5

2
.

Now, we are ready to describe an algorithm for Exact Edge Balanced
Path using representative sets.

Theorem 13. Exact Edge Balanced Path can be solved in O∗(2.619k)
time.

Proof. Consider an instance (G, k). Let ER and EB denote the sets of red
and blue edges of G. For a pair of vertices u, v ∈ V (G) and non-negative

integers r and b with r + b ≥ 1, define the family P
(r,b)
uv as follows.

P(r,b)
uv = {X | X ⊆ V (G), |X| = r+b+1 and there is a path P from uto v with

V (P) = X, |ER ∩ E(P)| = r and |EB ∩ E(P)| = b}.

Now, it suffices to determine if P
(k
2
, k
2
)

uv is non-empty for some u, v ∈ V (G).

The families P
(r,b)
uv can be computed using the following formula. For r+b = 1,

P(1,0)
uv =

{
{{u, v}}, if {u, v} ∈ ER

∅, otherwise
and P(0,1)

uv =

{
{{u, v}}, if {u, v} ∈ EB

∅, otherwise

26

and, for r + b > 1,

P(r,b)
uv = (

⋃

{w,v}∈ER

(P(r−1,b)
uw ∗ {{v}}))

⋃
(

⋃

{w,v}∈EB

(P(r,b−1)
uw ∗ {{v}}))

The base case is easy to verify. Consider a path P such that V (P) ∈ P
(r,b)
uv .

Then, P has a subpath P ′ from u to a neighbour w of v. If {w, v} ∈ ER,

then P ′ has r − 1 red edges and b blue edges. Further, V (P ′) ∈ P
(r−1,b)
uw and

V (P) = V (P ′)∪{v} where v /∈ V (P ′). Otherwise, {w, v} ∈ EB and P ′ has r

red edges and b−1 blue edges. Now, V (P ′) ∈ P
(r,b−1)
uw and V (P) = V (P ′)∪{v}

where v /∈ V (P ′). On the other hand, for any element X ∈ P
(r,b−1)
uw such that

there is a vertex v with v /∈ X and {w, v} ∈ EB, we have X ∪ {v} ∈ P
(r,b)
uv .

Similarly, for any element X ∈ P(r−1,b)
uw such that there is a vertex v with

v /∈ X and {w, v} ∈ ER, we have X ∪ {v} ∈ P
(r,b)
uv . This justifies the formula

given for the computation of P
(r,b)
uv .

Clearly, a naive computation of P
(r,b)
uv is not guaranteed to result in an FPT

(in k) algorithm. Therefore, instead of computing P
(r,b)
uv , we only compute

P̂
(r,b)
uv ⊆

k−(r+b)
rep P

(r,b)
uv and use the fact that P̂

(k
2
, k
2
)

uv ⊆0
rep P

(k
2
, k
2
)

uv . If P
(k
2
, k
2
)

uv is

nonempty, then it contains a set X that is disjoint with ∅. As P̂
(k
2
, k
2
)

uv ⊆0
rep

P
(k
2
, k
2
)

uv , it follows that P̂
(k
2
, k
2
)

uv also has a set X̂ that is disjoint with ∅. In other

words, if P
(k
2
, k
2
)

uv is nonempty, then P̂
(k
2
, k
2
)

uv is also non-empty.

Now, we describe a dynamic programming algorithm to compute P̂
(k
2
, k
2
)

uv

for every u, v ∈ V (G). For r + b = 1, set P̂
(1,0)
uv = P

(1,0)
uv and P̂

(0,1)
uv = P

(0,1)
uv .

Clearly, P̂
(1,0)
uv ⊆k−1

rep P
(1,0)
uv and P̂

(0,1)
uv ⊆k−1

rep P
(0,1)
uv . Further, |P̂

(1,0)
uv |, |P̂

(0,1)
uv | ≤ 1

and this computation is polynomial time. Now, we proceed to computing
P̂

(r,b)
uv ⊆

k−(r+b)
rep P

(r,b)
uv for k ≥ r + b > 1 in the increasing order of r + b.

Towards this, we compute a new family P̃
(r,b)
uv as follows.

P̃(r,b)
uv = (

⋃

{w,v}∈ER

(P̂(r−1,b)
uw ∗ {{v}}))

⋃
(

⋃

{w,v}∈EB

P̂(r,b−1)
uw ∗ {{v}}))

Using the union and convolution properties of Propositions 2, we have the
following properties.

• (P̂
(r−1,b)
uw ∗ {{v}}) ⊆

k−(r+b)
rep (P

(r−1,b)
uw ∗ {{v}})

27

• (P̂
(r,b−1)
uw ∗ {{v}}) ⊆

k−(r+b)
rep (P

(r,b−1)
uw ∗ {{v}})

•

⋃
{w,v}∈ER

(P̂
(r−1,b)
uw ∗ {{v}}) ⊆

k−(r+b)
rep

⋃
{w,v}∈ER

(P
(r−1,b)
uw ∗ {{v}})

•

⋃
{w,v}∈EB

(P̂
(r,b−1)
uw ∗ {{v}}) ⊆

k−(r+b)
rep

⋃
{w,v}∈EB

(P
(r,b−1)
uw ∗ {{v}})

Now, once again by the union property of Proposition 2, we have P̃
(r,b)
uv ⊆

k−(r+b)
rep

P
(r,b)
uv . Further, |P̃

(r,b)
uv | = O∗(|P̂

(r−1,b)
uv |+ |P̂

(r,b−1)
uv |). Then, we use Proposition

3 to compute a family P̂(r,b)
uv ⊆k−(r+b)

rep P̃(r,b)
uv . By the transitivity property

of Proposition 2, it follows that P̂
(r,b)
uv ⊆

k−(r+b)
rep P

(r,b)
uv . The time taken to

compute the families P̂
(r,b)
uv for u, v ∈ V (G) and r, b ≤ k

2
is O∗(2.619k) from

Proposition 3 by substituting r+b+1 for p and k+1 for k. Thus, the overall
running time of the algorithm is O∗(2.619k).

6. Concluding Remarks

To summarize our work, we study the complexity of finding balanced
connected subgraphs, trees and paths in red-blue graphs. We give fixed-
parameter tractability results using color coding, representative sets and re-
ductions to Multilinear Monomial Detection. En route, we give com-
binatorial results on the existence of small balanced connected subgraphs,
trees and paths. We observe that these results also extend to vertex-balanced
connected subgraphs, trees and paths. As a result the algorithms described in
this work also generalize to solve the vertex-analogue of the problems. Note
that using line graphs, one can reduce Edge Balanced Connected Sub-
graph to Vertex Balanced Connected Subgraph, however, when
the solution is required to be a path or a tree, this reduction is not useful.
Determining the complexity of finding other balanced substructures is an
interesting direction of research. It is well-known (by a observation made
by Erdős) and easy to verify that a monochromatic spanning tree exists
in any red-blue complete graph. This fact has been generalized in several
directions. Gyárfas [24] and Füredi [25] independently showed that every r-
edge-coloring of the complete graph on n vertices results in a monochromatic
connected subgraph of size at least n/(r−1). Bollobás and Gyárfas [26] stud-
ied monochromatic 2-connected subgraphs and showed that every red-blue
complete graph on n ≥ 5 vertices has a monochromatic 2-connected subgraph
with at least n− 2 vertices. They also dealt with questions on the existence

28

of monochromatic q-connected subgraphs. Variants such as large monochro-
matic components of small diameter have also attracted attention recently
[27]. A similar combinatorial (and algorithmic) study on balanced spanning
trees, balanced spanning connected subgraphs and balanced q-connected sub-
graphs is worth investigating. Also, studying the problems on graphs that
are colored using more than two colors and on colored weighted graphs are
next natural questions in this context.

Acknowledgements. The second author is supported by SERB CRG grant
number CRG/2022/007751.

References

[1] Y. Caro, A. Hansberg, J. Lauri, C. Zarb,
On zero-sum spanning trees and zero-sum connectivity, Electron.
J. Comb. 29 (1) (2022). doi:10.37236/10289.
URL https://doi.org/10.37236/10289

[2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms,
Springer, 2015. doi:10.1007/978-3-319-21275-3.
URL https://doi.org/10.1007/978-3-319-21275-3

[3] I. Koutis, R. Williams, LIMITS and applications of group algebras for parameterized problems
ACM Trans. Algorithms 12 (3) (2016) 31:1–31:18.
doi:10.1145/2885499.
URL https://doi.org/10.1145/2885499

[4] I. Koutis, Faster algebraic algorithms for path and packing problems,
in: L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, I. Walukiewicz (Eds.), Automata, Languages and
Programming, 35th International Colloquium, ICALP 2008, Reyk-
javik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Al-
gorithms, Automata, Complexity, and Games, Vol. 5125 of Lec-
ture Notes in Computer Science, Springer, 2008, pp. 575–586.
doi:10.1007/978-3-540-70575-8_47.
URL https://doi.org/10.1007/978-3-540-70575-8_47

29

https://doi.org/10.37236/10289
https://doi.org/10.37236/10289
https://doi.org/10.37236/10289
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/2885499
https://doi.org/10.1145/2885499
https://doi.org/10.1145/2885499
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47
https://doi.org/10.1007/978-3-540-70575-8_47

[5] R. Williams, Finding paths of length k in O∗(2k) time, Inf. Process.
Lett. 109 (6) (2009) 315–318. doi:10.1016/j.ipl.2008.11.004.
URL https://doi.org/10.1016/j.ipl.2008.11.004

[6] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion,
Algorithmica 65 (4) (2013) 868–884.
doi:10.1007/s00453-012-9630-x.
URL https://doi.org/10.1007/s00453-012-9630-x

[7] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–
856. doi:10.1145/210332.210337.
URL https://doi.org/10.1145/210332.210337

[8] F. V. Fomin, D. Lokshtanov, F. Panolan, S. Saurabh,
Efficient computation of representative families with applications in parameterized and exact
J. ACM 63 (4) (2016) 29:1–29:60. doi:10.1145/2886094.
URL https://doi.org/10.1145/2886094

[9] H. Shachnai, M. Zehavi, Representative families: A unified tradeoff-based approach,
J. Comput. Syst. Sci. 82 (3) (2016) 488–502.
doi:10.1016/j.jcss.2015.11.008.
URL https://doi.org/10.1016/j.jcss.2015.11.008

[10] S. Bhore, S. Chakraborty, S. Jana, J. S. B. Mitchell, S. Pandit, S. Roy,
The balanced connected subgraph problem, in: S. P. Pal, A. Vijayaku-
mar (Eds.), Algorithms and Discrete Applied Mathematics - 5th Interna-
tional Conference, CALDAM 2019, Kharagpur, India, February 14-16,
2019, Proceedings, Vol. 11394 of Lecture Notes in Computer Science,
Springer, 2019, pp. 201–215. doi:10.1007/978-3-030-11509-8_17.
URL https://doi.org/10.1007/978-3-030-11509-8_17

[11] S. Bhore, S. Jana, S. Pandit, S. Roy,
Balanced connected subgraph problem in geometric intersection graphs,
in: Y. Li, M. Cardei, Y. Huang (Eds.), Combinatorial Optimization
and Applications - 13th International Conference, COCOA 2019,
Xiamen, China, December 13-15, 2019, Proceedings, Vol. 11949
of Lecture Notes in Computer Science, Springer, 2019, pp. 56–68.
doi:10.1007/978-3-030-36412-0_5.
URL https://doi.org/10.1007/978-3-030-36412-0_5

30

https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1016/j.ipl.2008.11.004
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1007/s00453-012-9630-x
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/2886094
https://doi.org/10.1145/2886094
https://doi.org/10.1145/2886094
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-11509-8_17
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1007/978-3-030-36412-0_5
https://doi.org/10.1007/978-3-030-36412-0_5

[12] B. Darties, R. Giroudeau, J. König, V. Pollet,
The balanced connected subgraph problem: Complexity results in bounded-degree and bounded-diameter
in: Y. Li, M. Cardei, Y. Huang (Eds.), Combinatorial Optimization
and Applications - 13th International Conference, COCOA 2019,
Xiamen, China, December 13-15, 2019, Proceedings, Vol. 11949 of
Lecture Notes in Computer Science, Springer, 2019, pp. 449–460.
doi:10.1007/978-3-030-36412-0_36.
URL https://doi.org/10.1007/978-3-030-36412-0_36

[13] Y. Kobayashi, K. Kojima, N. Matsubara, T. Sone, A. Yamamoto,
Algorithms and hardness results for the maximum balanced connected subgraph problem,
in: Y. Li, M. Cardei, Y. Huang (Eds.), Combinatorial Optimization
and Applications - 13th International Conference, COCOA 2019,
Xiamen, China, December 13-15, 2019, Proceedings, Vol. 11949 of
Lecture Notes in Computer Science, Springer, 2019, pp. 303–315.
doi:10.1007/978-3-030-36412-0_24.
URL https://doi.org/10.1007/978-3-030-36412-0_24

[14] T. Martinod, V. Pollet, B. Darties, R. Giroudeau, J. König,
Complexity and inapproximability results for balanced connected subgraph problem,
Theor. Comput. Sci. 886 (2021) 69–83.
doi:10.1016/j.tcs.2021.07.010.
URL https://doi.org/10.1016/j.tcs.2021.07.010

[15] R. Diestel, Graph Theory, 4th Edition, Vol. 173 of Graduate texts in
mathematics, Springer, 2012.

[16] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, 1979.

[17] M. Dom, D. Lokshtanov, S. Saurabh,
Kernelization lower bounds through colors and ids, ACM Trans.
Algorithms 11 (2) (2014) 13:1–13:20. doi:10.1145/2650261.
URL https://doi.org/10.1145/2650261

[18] M. R. Garey, D. S. Johnson, The rectilinear steiner tree problem in NP complete,
SIAM Journal of Applied Mathematics 32 (1977) 826–834.
doi:10.1137/0132071.
URL https://doi.org/10.1137/0132071

31

https://doi.org/10.1007/978-3-030-36412-0_36
https://doi.org/10.1007/978-3-030-36412-0_36
https://doi.org/10.1007/978-3-030-36412-0_36
https://doi.org/10.1007/978-3-030-36412-0_24
https://doi.org/10.1007/978-3-030-36412-0_24
https://doi.org/10.1007/978-3-030-36412-0_24
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1016/j.tcs.2021.07.010
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1145/2650261
https://doi.org/10.1137/0132071
https://doi.org/10.1137/0132071
https://doi.org/10.1137/0132071

[19] K. White, M. Farber, W. R. Pulleyblank,
Steiner trees, connected domination and strongly chordal graphs,
Networks 15 (1) (1985) 109–124. doi:10.1002/net.3230150109.
URL https://doi.org/10.1002/net.3230150109

[20] H. L. Bodlaender, R. G. Downey, M. R. Fellows, D. Hermelin,
On problems without polynomial kernels, J. Comput. Syst. Sci. 75 (8)
(2009) 423–434. doi:10.1016/j.jcss.2009.04.001.
URL https://doi.org/10.1016/j.jcss.2009.04.001

[21] R. C. Brewster, R. Dedic, F. Huard, J. Queen,
The recognition of bound quivers using edge-coloured homomorphisms,
Discret. Math. 297 (1-3) (2005) 13–25.
doi:10.1016/j.disc.2004.10.026.
URL https://doi.org/10.1016/j.disc.2004.10.026

[22] M. Naor, L. J. Schulman, A. Srinivasan,
Splitters and near-optimal derandomization, in: 36th Annual Sym-
posium on Foundations of Computer Science, Milwaukee, Wisconsin,
USA, 23-25 October 1995, IEEE Computer Society, 1995, pp. 182–191.
doi:10.1109/SFCS.1995.492475.
URL https://doi.org/10.1109/SFCS.1995.492475

[23] B. Bollobás, On generalized graphs, Acta Mathematica Hungarica 16 (3-
4) (1965) 447–452. doi:10.1007/BF01904851.
URL https://doi.org/10.1007/BF01904851

[24] A. Gyárfás, Partition coverings and blocking sets of hypergraphs,
Comm. Comput. Automat. Inst. Hungar. Acad. Sci. 71 (1977) 62.

[25] Z. Füredi, Maximum degree and fractional matchings in uniform hypergraphs,
Comb. 1 (2) (1981) 155–162. doi:10.1007/BF02579271.
URL https://doi.org/10.1007/BF02579271

[26] B. Bollobás, A. Gyárfás, Highly connected monochromatic subgraphs,
Discret. Math. 308 (9) (2008) 1722–1725.
doi:10.1016/j.disc.2006.01.030.
URL https://doi.org/10.1016/j.disc.2006.01.030

[27] E. Carlson, R. R. Martin, B. Peng, M. Ruszinkó,
Large monochromatic components of small diameter, J. Graph Theory

32

https://doi.org/10.1002/net.3230150109
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.jcss.2009.04.001
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.1016/j.disc.2004.10.026
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1109/SFCS.1995.492475
https://doi.org/10.1007/BF01904851
https://doi.org/10.1007/BF01904851
https://doi.org/10.1007/BF01904851
https://doi.org/10.1007/BF02579271
https://doi.org/10.1007/BF02579271
https://doi.org/10.1007/BF02579271
https://doi.org/10.1016/j.disc.2006.01.030
https://doi.org/10.1016/j.disc.2006.01.030
https://doi.org/10.1016/j.disc.2006.01.030
https://doi.org/10.1002/jgt.22739

99 (2) (2022) 247–250. doi:10.1002/jgt.22739.
URL https://doi.org/10.1002/jgt.22739

33

https://doi.org/10.1002/jgt.22739
https://doi.org/10.1002/jgt.22739

	Introduction
	Preliminaries
	NP-hardness Results
	Complexity in Split Graphs

	Small Balanced Paths, Trees and Connected Subgraphs
	FPT Algorithms
	Randomized Algorithms
	Deterministic Algorithms

	Concluding Remarks

