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Abstract
In parallel machine scheduling, we are given a set of jobs, together with a number of machines and
our goal is to decide for each job, when and on which machine(s) it should be scheduled in order
to minimize some objective function. Different machine models, job characteristics and objective
functions result in a multitude of scheduling problems and many of them are NP-hard, even for a
fixed number of identical machines. In this work, we give conditional running time lower bounds
for a large number of scheduling problems, indicating the optimality of some classical algorithms.
Most notably, we show that the algorithm by Lawler and Moore for 1||

∑
wjUj and P m||Cmax, as

well as the algorithm by Lee and Uzsoy for P 2||
∑

wjCj are probably optimal. There is still small
room for improvement for the 1|Rej ≤ Q|

∑
wjUj algorithm by Zhang et al., the algorithm for

1||
∑

Tj by Lawler and the FPTAS for 1||
∑

wjUj by Gens and Levner. We also give a lower bound
for P 2|any|Cmax and improve the dynamic program by Du and Leung from O

(
nP 2) to O (nP ),

matching this new lower bound. Here, P is the sum of all processing times. The same idea also
improves the algorithm for P 3|any|Cmax by Du and Leung from O

(
nP 5) to O (nP 2). While our

results suggest the optimality of some classical algorithms, they also motivate future research in
cases where the best known algorithms do not quite match the lower bounds.
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1 Introduction

Consider the problem of working on multiple research papers. Each paper j has to go to
some specific journal or conference and thus has a given due date dj . Some papers might be
more important than others, so each one has a weight wj . In order to not get distracted, we
may only work on one paper at a time and this work may not be interrupted. If a paper does
not meet its due date, it is not important by how much it misses it; it is either late or on time.
If it is late, we must pay its weight wj . In the literature, this problem is known as 1||

∑
wjUj

and it is one of Karp’s original 21 NP-hard problems [19]. The naming of 1||
∑
wjUj and

the problems referred to in the abstract will become clear when we review the three-field
notation by Graham et al. [14] in Section 2. Even when restricted to a fixed number of
identical machines, many combinations of job characteristics and objective functions lead
to NP-hard problems. For this reason, a lot of effort has been put towards finding either
pseudo-polynomial exact or polynomial approximation algorithms. Sticking to our problem
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2 On the Complexity of Scheduling Problems

1||
∑
wjUj , where we aim to minimize the weighted number of late jobs on a single machine,

there are e.g. an O (nW ) algorithm by Lawler and Moore [24] and an FPTAS by Gens and
Levner [13]. Here, W is the sum of all weights wj and n is the number of jobs.

In recent years, research regarding scheduling has made its way towards parameterized
and fine-grained complexity (see e.g. [2, 16, 21, 29, 30]), where one goal is to identify
parameters that make a problem difficult to solve. If those parameters are assumed to be
small, parameterized algorithms can be very efficient. Similarly, one may consider parameters
like the total processing time P and examine how fast algorithms can be in terms of these
parameters, while maintaining a sub-exponential dependency on n. That is our main goal in
this work. Most of our lower bounds follow from a lower bound for Subset Sum:

I Problem 1. Subset Sum

Instance: Items a1, . . . , an ∈ N, integer target T ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai = T .

Fine-grained running time lower bounds are often based on the Exponential Time Hypothesis
(ETH) or the Strong Exponential Time Hypothesis (SETH). Intuitively, the ETH conjectures
that 3-Sat cannot be solved in sub-exponential time and the SETH conjectures that the
trivial running time of O (2n) is optimal for k-Sat, if k tends to infinity. For details, see the
original publication by Impagliazzo and Paturi [17]. A few years ago, Abboud et al. gave
a beautiful reduction from k-Sat to Subset Sum [1]. Previous results based on the ETH
excluded 2o(n)T o(1)-time algorithms [18], while this new result based on the SETH suggests
that we cannot even achieve O

(
2δnT 1−ε):

I Theorem 2 (Abboud et al. [1]). For every ε > 0, there is a δ > 0 such that Subset Sum
cannot be solved in time O

(
2δnT 1−ε), unless the SETH fails.1

By revisiting many classical reductions in the context of fine-grained complexity, we transfer
this lower bound to scheduling problems like 1||

∑
wjUj . Although lower bounds do not have

the immediate practical value of an algorithm, it is clear from the results of this paper how
finding new lower bounds can push research into the right direction: Our lower bound for the
scheduling problem P2|any|Cmax indicated the possibility of an O (nP )-time algorithm, but
the best known algorithm (by Du and Leung [9]) had running time O

(
nP 2). A modification

of this algorithm closes this gap.
It should be noted that all lower bounds in this paper are conditional, that is, they rely

on some complexity assumption. However, all of these assumptions are reasonable in the
sense that a lot of effort has been put towards refuting them. And in the unlikely case that
they are indeed falsified, this would have big complexity theoretical implications.

This paper is organized as follows: We first give an overview on terminology, the related
lower bounds by Abboud et al. [2] and our results in Section 2. Then we examine scheduling
problems with a single machine in Section 3 and problems with two or more machines in
Section 4. Finally, we give a summary as well as open problems and promising research
directions in Section 5. Appendix A holds omitted proofs, Appendix B includes lower bounds
for strongly NP-hard problems and in Appendix C, we explore the implications of our
reductions for different objective functions.

1 Though it might seem unintuitive at first, it is not required that ε < 1.
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2 Preliminaries

In this section, we first introduce the Partition problem, a special case of Subset Sum from
which many of our reductions start. Then we recall common terminology from scheduling
theory and finally, we give a short overview of the recent and closely related work [2] by
Abboud et al. and then briefly state our main results.

Throughout this paper, log denotes the base 2 logarithm. Moreover, we write [n] for the
set of integers from 1 to n, i.e. [n] := {1, . . . , n}. If we consider a set of items or jobs [n] and
a subset S ⊆ [n], we use S = [n] \ S to denote the complement of S. The Õ-notation hides
poly-logarithmic factors.

2.1 Subset Sum and Partition
In this work, we provide lower bounds for several scheduling problems; our main technique are
fine-grained reductions, which are like polynomial-time reductions, but with more care for the
exact sizes and running times. With these reductions, we can transfer the (supposed) hardness
of one problem to another. Most of the time, our reductions start with an instance of Subset
Sum or Partition and construct an instance of some scheduling problem. Partition is the
special case of Subset Sum, where the sum of all items is exactly twice the target value:

I Problem 3. Partition
Instance: Items a1, . . . , an ∈ N.
Task: Decide whether there is a subset S ⊆ [n] such that

∑
i∈S ai =

∑
i∈S̄ ai.

In the following, we always denote the total size of all items by A :=
∑n
i=1 ai for Subset

Sum and Partition. Note that we can always assume that T ≤ A, since otherwise the
target cannot be reached, even by taking all items. Moreover, in the reduction by Abboud
et al. [1], A and T are quite close, in particular, we can assume that A = poly(n)T . Hence,
if we could solve Subset Sum in time O

(
2δnA1−ε) for some ε > 0 and every δ > 0, this

would contradict Theorem 2 for large enough n. For the details, we refer to Appendix A.

I Corollary 4. For every ε > 0, there is a δ > 0 such that Subset Sum cannot be solved in
time O

(
2δnA1−ε), unless the SETH fails.

Using a classical reduction from Subset Sum to Partition that only adds two large items,
we also get the following lower bound for Partition (for a detailed proof, see Appendix A):

I Theorem 5. For every ε > 0, there is a δ > 0 such that Partition cannot be solved in
time O

(
2δnA1−ε), unless the SETH fails.

2.2 Scheduling
In all scheduling problems we consider, we are given a number of machines and a set of n
jobs with processing times pj , j ∈ [n]; our goal is to assign each job to (usually) one machine
such that the resulting schedule minimizes some objective.2 So these problems all have a
similar structure: A machine model, some (optional) job characteristics and an objective
function. This structure motivates the use of the three-field notation introduced by Graham
et al. [14]. Hence, we denote a scheduling problem as a triple α|β|γ, where α is the machine

2 Depending on the scheduling problem, it may also be important in which order the jobs of a machine
are scheduled or whether there are gaps between the execution of consecutive jobs.
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model, β is a list of (optional) job characteristics and γ is the objective function. As is
usual in the literature, we leave out job characteristics like due dates that are implied by the
objective function, e.g. for 1||

∑
wjUj . In this work, we mainly consider the decision variants

of scheduling problems (as opposed to the optimization variants). In the decision problems,
we are always given a threshold denoted by y and the task is to decide whether there is a
solution with value at most y. Note that the optimization and the decision problems are – at
least in our context – equivalent: An algorithm for the decision problem can be used to find
a solution of the optimization problem with a binary search over the possible objective values
(which are always integral and bounded, here). Vice versa, an algorithm for the optimization
problem can also solve the decision problem.

In order to have a unified notation, given some job-dependent parameters g1, . . . , gn (e.g.
processing times), we let gmax := maxi∈[n] gi, gmin := mini∈[n] gi and G :=

∑
i∈[n] gi. We now

briefly go over the considered machine models, job characteristics and objective functions.
As the title of this work suggests, we consider problems with a fixed number of m parallel

identical machines, denoted by “Pm” if m > 1 or simply “1” if m = 1. In this setting, a job
has the same processing time on every machine.

In the case of rigid and moldable jobs, each job has a given “size” and must be scheduled
on that many machines or it may be scheduled on “any” number of machines, respectively,
needing a possibly different (usually lower) processing time when scheduled on multiple
machines. Sometimes, not all jobs are available at time 0, but instead each job j arrives at
its release date “rj”.3 Similarly, jobs might have deadlines dj (i.e. due dates that may not be
missed) and we must assure that “Cj ≤ dj” holds for every job j, where Cj is the completion
time of j. Additionally, every job j might have a weight wj and we are allowed to reject
(i.e., choose not to schedule) jobs of total weight at most Q; this constraint is denoted by
“Rej ≤ Q”.4

The arguably most popular objective in scheduling is to minimize the so-called makespan
“Cmax”, which is the largest completion time Cj among all jobs j, i.e. the time at which all
jobs are finished. In order to give the jobs different priorities, we can minimize the total
(weighted) completion time “

∑
wjCj” (“

∑
wjCj”). If there is a due date dj for each job, we

might be concerned with minimizing the (weighted) number of late jobs “
∑
Uj” (“

∑
wjUj”),

where Uj = 1 if j is late, i.e. Cj > dj and Uj = 0 otherwise. Similar objectives are the
maximum lateness “Lmax” and the maximum tardiness “Tmax” of all jobs, where the lateness
Lj of job j is the (uncapped) difference Cj−dj and the tardiness Tj is the (capped) difference
max{Cj − dj , 0}. Another objective, the total tardiness “

∑
Tj”, measures the tardiness of all

jobs together and the total late work “
∑
Vj” is the late work Vj := min{pj , Cj −dj} summed

over all jobs. Both objectives may also appear in combination with weights. Lastly, if release
dates rj are present, we might be interested in minimizing the maximum flow time “Fmax”,
the total flow time “

∑
Fj” or the weighted total flow time “

∑
wjFj”. These objectives are

similar to the previous ones; Fj , the flow time of job j, is defined as Fj := Cj − rj , i.e. the
time that passes between j’s release and completion.

Some of these objectives (and job characteristics) only appear in the appendix. It should
be noted that the objective functions are partially ordered in complexity (see e.g. [23]).
In Appendix C, we revisit the reductions between objective functions in the context of
fine-grained complexity.

3 This is not to be confused with online scheduling; we know the rj ’s in advance.
4 This is usually denoted by Rej ≤ R, but since we will use R for the sum of all release dates, we denote

the total rejection weight by Q.
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2.3 The Scheduling Lower Bounds by Abboud et al.

In their more recent work [2], Abboud et al. show lower bounds for the problems 1||
∑
wjUj ,

1|Rej ≤ Q|
∑
Uj , 1|Rej ≤ Q|Tmax, 1|rj , Rej ≤ Q|Cmax, P2||Tmax, P2||

∑
Uj , P2|rj |Cmax

and P2|level-order|Cmax.5 From those problems, only 1||
∑
wjUj appears in the main part

of this paper, but Appendix C also contains results for 1|Rej ≤ Q|
∑
Uj , 1|Rej ≤ Q|Tmax,

P2||Tmax and P2||
∑
Uj . As we will see however, the results by Abboud et al. are not

directly comparable to our results.
Standard dynamic programming approaches often give running times like O (nP ); on

the other hand, it is usually possible to try out all subsets of jobs, yielding an exponential
running time like O (2npolylog(P )) (see e.g. the work by Jansen et al. [18]). The intuitive
way of thinking about our lower bounds is that we cannot have the best of both worlds, i.e.:
“An algorithm cannot be sub-exponential in n and sub-linear in P at the same time.” To be
more specific, most of our lower bounds have this form: For every ε > 0, there is a δ > 0
such that the problem cannot be solved in time O

(
2δnP 1−ε).

However, note that algorithms with running time Õ (n+ P ) or Õ (n+ pmax) are not
excluded by our bounds, as they are not sub-linear in P . But in a setting where n and P
(resp. pmax) are roughly of the same order, such algorithms would be much more efficient
than the dynamic programming approaches. In particular, they would be near-linear in n
instead of quadratic. This is where the lower bounds from the more recent paper [2] by
Abboud et al. come into play, as they have the following form: There is no ε > 0 such that
the problem can be solved in time Õ

(
n+ pmaxn

1−ε), unless the ∀∃-SETH fails. These lower
bounds can successfully exclude algorithms with an additive-type running time Õ (n+ pmax).
Algorithms with running time Õ (n+ pmaxn) may still be possible, but they would only be
near-quadratic instead of near-linear in the n ≈ pmax setting. It should be mentioned that
the lower bounds by Abboud et al. [2] rely on the ∀∃-SETH and as noted by them, this
assumption is stronger than the SETH, even strictly stronger, if we assume the NSETH,
yet another hardness assumption. For the sake of completeness, we give a detailed proof in
Appendix A. Moreover, it should be noted that our lower bounds also include parameters
other than pmax, e.g. the largest due date dmax or the threshold for the objective value y.

2.4 Our Results

The main contribution of this work is two-fold: On the one hand, we give plenty of lower
bounds for classical scheduling problems with a fixed number of machines. These lower
bounds all either rely on the ETH, SETH or the (min,+)-conjecture6 and are shown by
revisiting classical reductions in the context of fine-grained complexity, i.e., we pay much
attention to the parameters of the constructed instances. On the other hand, we show
how the dynamic programming algorithms for P2|any|Cmax and P3|any|Cmax by Du and
Leung [9] can be improved. Most notably, we show the following (for the precise statements,
we refer to the upcoming sections):

The algorithm by Lawler and Moore [24] is probably optimal for 1||
∑
wjUj and Pm||Cmax.

The algorithm by Lee and Uzsoy [26] is probably optimal for P2||
∑
wjCj .

5 In “level-order” problems, the jobs are ordered hierarchically and all jobs of one level have to be finished
before jobs of higher levels can be scheduled.

6 Under the (min, +)-conjecture, the (min, +)-convolution problem cannot be solved in sub-quadratic
time, see [7] for details.
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The algorithm by Zhang et al. [34] for 1|Rej ≤ Q|
∑
wjUj , the algorithm by Lawler [22]

for 1||
∑
Tj and the FPTAS by Gens and Levner [13] for 1||

∑
wjUj are nearly optimal,

but there is still some room for improvement.
P2|any|Cmax can be solved in time O (nP ) and this is probably optimal.
P3|any|Cmax can be solved in time O

(
nP 2), which greatly improves upon the O

(
nP 5)-

time algorithm by Du and Leung [9].
Note that our SETH-based lower bounds mainly show that improvements for some pseudo-
polynomial algorithms are unlikely. For problems that are strongly NP-hard, pseudo-
polynomial algorithms cannot exist, unless P=NP [5]. We still give lower bounds under
SETH for some strongly NP-hard scheduling problems, as they exclude algorithms that are
sub-exponential but super-polynomial in n. However, since these results are clearly not as
strong as those for the weakly NP-hard problems, they can be found in Appendix B.

3 Problems With One Machine

In this section, we consider problems on a single machine. For these problems, the main
task is to order the jobs. First, consider again the problem 1||

∑
wjUj of minimizing the

weighted number of late jobs on a single machine. With a reduction very similar to the one
by Karp [19], we get the following lower bound:7

I Theorem 6. For every ε > 0, there is a δ > 0 such that 1||
∑
wjUj cannot be solved in

time O
(
2δn(dmax + y + P +W )1−ε), unless the SETH fails.

Proof. Let a1, . . . , an be a Partition instance and let T = 1
2
∑n
i=1 ai. Construct an instance

of 1||
∑
wjUj by setting pj = wj = aj , dj = T for each j ∈ [n] and y = T . The idea is that

the jobs corresponding to items in one of the partitions can be scheduled early (i.e. before
the uniform due date T ). For a formal proof regarding the correctness of the reduction, see
Appendix A.

With this reduction, we get N := n jobs. We have P =
∑n
i=1 ai = A and hence

K := dmax + y + P + W = T + T + A + A = poly(n)A = ncA. The reduction itself takes
time O (N). Assuming that we can solve 1||

∑
wjUj in time O

(
2δNK1−ε) for some ε > 0

and every δ > 0, we could also solve Partition in time:

O (N) +O
(
2δNK1−ε) = O (n) +O

(
2δn(ncA)1−ε) ≤ O (2δnncA1−ε)

= O
(

2δn+c log(n)A1−ε
)

≤ O
(
22δnA1−ε)

The last step holds for large enough n; for smaller n, we can solve the problem efficiently,
anyway, as n is then bounded by a constant. Now, to contradict Theorem 5, we can set
ε′ := ε and for every δ′ > 0, we have δ = δ′

2 > 0. So by assumption, we can solve Partition
in time O

(
22δnA1−ε) = O

(
2δ′nA1−ε′

)
. J

Using the algorithm by Lawler and Moore [24], 1||
∑
wjUj is solvable in time O (nW ) or

O (nmin{dmax, P}). Our O
(
2δn(dmax + y + P +W )1−ε)-time lower bound suggests the

7 It should be noted that some of the parameters in our lower bounds could be omitted, as they are
overshadowed by others. For example, we can assume w.l.o.g. that dmax ≤ P for 1||

∑
wjUj , since we

can assume a schedule to be gap-less and hence due dates larger than P could be set to P . But having
all the parameters in the lower bound makes the comparison with known upper bounds easier.



K. Jansen and K. Kahler 7

optimality of both variants, as we cannot hope to reduce the linear dependency on W , dmax
or P without getting a super-polynomial dependency on n. As noted above, Abboud et al. [2]
exclude Õ

(
n+ pmaxn

1−ε)-time algorithms; Hermelin et al. [16] exclude algorithms with
running time Õ

(
n+ wmaxn

1−ε), and Õ (n+ w1−ε
maxn

)
and Õ

(
nO(1) + d1−ε

max
)
(all three under

the stronger ∀∃-SETH).
One interesting property of 1||

∑
wjUj is that its straightforward formulation as an

Integer Linear Program has a triangular structure that collapses to a single constraint when
all due dates are equal (see e.g. Lenstra and Shmoys [28]). This shows that the problem is
closely related to Knapsack:

I Problem 7. Knapsack
Instance: Item values v1, . . . , vn ∈ N, item sizes a1, . . . , an ∈ N, knapsack capacity T ∈ N

and threshold y.
Task: Decide whether there is a subset S of items with

∑
j∈S aj ≤ T and

∑
j∈S vj ≥ y.

Cygan et al. [7] conjectured that the (min,+)-Convolution problem cannot be solved in
sub-quadratic time (this is known as the (min,+)-conjecture) and showed that this conditional
lower bound transfers to Knapsack, excluding O

(
(n+ T )2−δ) algorithms. As noted by

Mucha et al. [31], these results also hold when we swap the role of sizes and values. As we
can discard items with too large value vi, a lower bound depending on the largest item value
vmax directly follows from Corollary 9.6 in [31]:

I Corollary 8. For any constant δ > 0, there is no O
(

(n+ vmax)2−δ
)
-time exact algorithm

for Knapsack, unless the (min,+)-conjecture fails.

We show that the conditional hardness of Knapsack transfers to 1||
∑
wjUj :

I Theorem 9. For any constant δ > 0, the existence of an exact algorithm for 1||
∑
wjUj

with running time O
(
(n+ wmax)2−δ) refutes the (min,+)-conjecture.

Proof. We give a reduction from Knapsack to 1||
∑
wjUj . Consider an instance v1, . . . , vn,

a1, . . . , an, T , y of Knapsack. We construct jobs with pj = aj , wj = vj and dj = T for
every j ∈ [n]. The threshold is set to y′ =

∑n
j=1 vj − y. As this is also a very classical

reduction, we leave the proof of correctness to the appendix.
Suppose that there is an O

(
(n+ wmax)2−δ)-time algorithm for 1||

∑
wjUj . Since wmax =

vmax in the reduction and the reduction takes time O (n), we could then solve Knapsack in
timeO (n)+O

(
(n+ wmax)2−δ) = O

(
(n+ vmax)2−δ

)
, which is a contradiction to Corollary 8,

unless the (min,+)-conjecture fails. J

Lower bounds such as this one also imply lower bounds for approximation schemes, as
setting the accuracy parameter ε small enough yields an exact solution. The above result
implies the following (see Appendix A for the proof):

I Corollary 10. For any constant δ > 0, the existence of an O
(
(n+ 1

2nε )2−δ)-time approx-
imation scheme for the optimization version of 1||

∑
wjUj refutes the (min,+)-conjecture.

As the currently fastest FPTAS by Gens and Levner [13] runs in time O
(
n2(log(n) + 1

ε )
)
,

there is still a small gap. This relation between exact and approximation algorithms might
also be an interesting subject of further investigation, as many other scheduling problems
admit approximation schemes and exact lower bounds.

We wish to mention two other results, the proofs of which can also be found in Appendix A.
The first result concerns 1||

∑
Tj :
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I Theorem 11. For every ε > 0, there is a δ > 0 such that 1||
∑
Tj cannot be solved in time

O
(
2δnP 1−ε), unless the SETH fails.

There is an O
(
n4P

)
-time algorithm by Lawler [22] and while we can derive no statement

about the exponent of n, our lower bound suggests that an improvement of the linear factor P
is unlikely without getting a super-polynomial dependency on n. We have a similar situation
for the problem 1|Rej ≤ Q|Cmax:

I Theorem 12. For every ε > 0, there is a δ > 0 such that 1|Rej ≤ Q|Cmax cannot be solved
in time O

(
2δn(y + P +Q+W )1−ε), unless the SETH fails.

The lower bound can also be shown to hold for 1|Rej ≤ Q|
∑
wjUj (see Appendix C)

and this problem can be solved in time O (nQP ) with the algorithm by Zhang et al. [34].
This almost matches our lower bound: An algorithm with running time O (n(Q+ P )) might
still be possible, for example.

4 Problems With Multiple Machines

We now turn our attention to problems on two or more machines. For standard jobs, a
straightforward reduction from Partition yields the following result (for a formal proof, see
Appendix A):

I Theorem 13. For every ε > 0, there is a δ > 0 such that P2||Cmax cannot be solved in
time O

(
2δn(y + P )1−ε), unless the SETH fails.

This lower bound also applies to the harder objectives (e.g. Tmax) and in particular to
P2||

∑
wjUj (see Appendix C); the dynamic program by Lawler and Moore [24] (which is

also sometimes attributed to Rothkopf [33]) solves most common objectives like Cmax and
Tmax in time O (ny) but needs O

(
ny2) for P2||

∑
wjUj (see [28], in particular exercise 8.10).

So the gap is likely closed in the Cmax, Tmax, . . .-cases, but there is still a factor-y-gap for
the

∑
wjUj-objective.

In general, the dynamic program by Lawler and Moore [24] solves Pm||Cmax in a running
time of O

(
nmym−1) ≤ O (nmPm−1). Our matching lower bound for m = 2 gives rise to

the question whether the running time is optimal for general m > 1. In Appendix A, we
prove the following result:

I Theorem 14. There is no O
(
nmP

o
(

m
log2(m)

))
-time algorithm for Pm||Cmax, unless the

ETH fails.

So the algorithm by Lawler and Moore [24] is indeed almost optimal, as we can at best
hope to shave off logarithmic factors in the exponent (assuming the weaker assumption
ETH). Since the algorithm not only works for Cmax, one might ask whether we can find
similar lower bounds for other objectives as well. For most common objective functions, we
answer this question positively in Appendix C, but it remains open for

∑
wjCj . Note that

the unweighted Pm||
∑
Cj is polynomial-time solvable [3].

An alternative dynamic program by Lee and Uzsoy [26] solves Pm||
∑
wjCj in time

O
(
mnWm−1). In order to get a matching lower bound (i.e. one that depends on the weights)

for m = 2, we examine another classical reduction:

I Theorem 15. For every ε > 0, there is a δ > 0 such that P2||
∑
wjCj cannot be solved in

time O
(
2δn(√y + P +W )1−ε), unless the SETH fails.
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Proof. We show that the lower bound for Partition can be transferred to P2||
∑
wjCj

using the reduction by Lenstra et al. [27] and Bruno et al. [3].
Given a Partition instance a1, . . . , an, we construct a P2||

∑
wjCj instance in the

following way: Define pj = wj = aj for all j ∈ [n] and set the limit y =
∑

1≤i≤j≤n ajai−
1
4A

2.
Of course, the idea of the reduction is that the limit y forces the jobs to be equally distributed
among the two machines (regarding the processing time). We formally prove the correctness
of the reduction in the appendix.

Assume that there is an algorithm that solves an instance of P2||
∑
wjCj in time

O
(
2δNK1−ε) for some ε > 0 and every δ > 0, where N := n and K := √y + P + W . By

the choice of y, we can see that

y =
∑

1≤i≤j≤n
ajai −

1
4A

2 ≤

∑
j∈[n]

aj

2

− 1
4A

2 = 3
4A

2 = O
(
A2) .

Since wj = pj = aj , we also have P = W = A. Hence, we have K = √y + P + W =
O (A+A+A) = O (A) and an algorithm with running time

O
(
2δNK1−ε) = O

(
2δnO (A)1−ε

)
= O

(
2δnc1−εA1−ε) = O

(
2δnA1−ε)

would contradict the lower bound for Partition from Theorem 5. Here, c covers the
constants in the O-term and the running time O (N) of the reduction vanishes. J

So the O (nW )-time algorithm by Lee and Uzsoy [26] is probably optimal for P2||
∑
wjCj ,

as we cannot hope to reduce the linear dependency on W without getting a super-polynomial
dependency on n.

We briefly turn our attention towards rigid jobs. Clearly, P2|size|Cmax is a generalization
of P2||Cmax (the latter problem simply does not have two-machine jobs), so we get the
following lower bound (for a formal proof, see Appendix A):

I Theorem 16. For every ε > 0, there is a δ > 0 such that P2|size|Cmax cannot be solved
in time O

(
2δn(y + P )1−ε), unless the SETH fails.

Similarly, the algorithm by Lawler and Moore [24] can be used to find a feasible schedule
for the one-machine jobs and the two-machine jobs can be scheduled at the beginning. This
gives an O (ny)-time algorithm for P2|size|Cmax, and the linear dependency on y cannot
be improved without getting a super-polynomial dependency on n, unless the SETH fails.
For other objectives, the problem quickly becomes more difficult: Already P2|size|Lmax is
strongly NP-hard, as well as P2|size|

∑
wjCj (for both results, see Lee and Cai [25]). It is

still open whether the unweighted version P2|size|
∑
Cj is also strongly NP-hard or whether

there is a pseudo-polynomial algorithm; this question has already been asked by Lee and
Cai [25], more than 20 years ago.

It is not hard to see that the hardness of P2||Cmax also transfers to moldable jobs (i.e.
P2|any|Cmax); we simply create an instance where it does not make sense to schedule any of
the jobs on two machines (for a formal proof, see Appendix A):

I Theorem 17. For every ε > 0, there is a δ > 0 such that P2|any|Cmax cannot be solved
in time O

(
2δn(y + P )1−ε), unless the SETH fails.

The problems P2|any|Cmax and P3|any|Cmax can be solved via dynamic programming,
as shown by Du and Leung [9] (a nice summary is given in the book by Drozdowski [8]).
We show that these programs can be improved to match our new lower bound for the
two-machine case:
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I Theorem 18. The problem P2|any|Cmax can be solved in time O (nP ) via dynamic
programming.

Proof. Assume that we are given processing times pj(k), indicating how long it takes to run
job j on k machines. The main difficulty is to decide whether a job is to be processed on
one or on two machines. Our dynamic program fills out a table F (j, t) for every j ∈ [n] and
t ∈ [y], where the entry F (j, t) is the minimum load we can achieve on machine 2, while we
schedule all the jobs in [j] and machine 1 has load t. To fill the table, we use the following
recurrence formula:

F (j, t) = min


F (j − 1, t− pj(1))
F (j − 1, t) + pj(1)
F (j − 1, t− pj(2)) + pj(2)

Intuitively speaking, job j is executed on machine 1 in the first case, on machine 2 in the
second case and on both machines in the third case. The initial entries of the table are
F (0, 0) = 0 and F (0, t) =∞ for every t ∈ [y].

There are ny ≤ n
∑n
j=1 max{pj(1), pj(2)} = O (nP ) entries we have to compute.8 Then,

we can check for every t ∈ [y] whether F (n, t) ≤ y. If we find such an entry, this directly
corresponds to a schedule with makespan at most y, so we can accept. Otherwise, there
is no such schedule and we can reject. The actual schedule can be obtained by traversing
backwards through the table; alternatively, we can store the important bits of information
while filling the table (this works exactly like in the standard knapsack algorithm). Note
that we might have to reorder the jobs such that the jobs executed on two machines are run
in parallel. But it can be easily seen that all two-machine jobs can be executed at the begin
of the schedule. Computing the solution and reordering does not change the running time in
O-notation, so we get an O (nP ) algorithm. J

As Theorem 17 shows, improving the dependency on P to sub-linear is only possible if we
get a super-polynomial dependency on n, unless the SETH fails. In a similar way, one can
also improve the dynamic program for three machines (the proof is given in Appendix A):

I Theorem 19. The problem P3|any|Cmax can be solved in time O
(
n2P

)
via dynamic

programming.

This improves upon the O
(
nP 5)-algorithm by Du and Leung [9]. Even though the same

approach could be applied to an arbitrary number of machines m in time O
(
nmPm−1),

the strong NP-hardness of Pm|any|Cmax for m ≥ 4 shows that the information on which
machine each job is scheduled is not enough to directly construct an optimal schedule in
those cases, unless P=NP (see Henning et al. [15] as well as Du and Leung [9]).

5 Conclusion

In this work, we examined the complexity of scheduling problems with a fixed number of
machines. Our conditional lower bounds indicate the optimality of multiple well-known
classical algorithms. For the problems P2|any|Cmax and P3|any|Cmax, we managed to
improve the currently best known algorithm, closing the gap for two machines.

8 The precise definition of P in this context does not matter for the running time in O-notation; we can
either add both pj(1) and pj(2) to the sum or just the larger of the two.
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As we have seen in the example of 1||
∑
wjUj , lower bounds for exact algorithms can be

quite easily used to obtain lower bounds for approximation schemes. We strongly believe
that the same technique can be used for other problems, either to show tightness results or
to indicate room for improvement.

For exact algorithms, there is a number of open problems motivated by our results:
First of all, there is still a gap between our lower bound and the algorithm by Lawler and
Moore [24]. So an interesting question is where the “true” complexity lies between m − 1
and o

(
m

log2(m)

)
in the exponent. Zhang et al. give an O (n(rmax + P ))-time algorithm for

1|rj , Rej ≤ Q|Cmax in their work [34]. Since rmax + P ≥ y w.l.o.g., it would be interesting
to find an O

(
2δn(rmax + P )1−ε) or O (2δny1−ε) lower bound for this problem. As noted by

Lenstra and Shmoys [28], the algorithm by Lawler and Moore [24] cannot be improved to
O
(
mnym−1) for the objective

∑
wjUj . So this algorithm would be quadratic in y for two

machines, while our lower bound excludes anything better than linear (and still polynomial
in n). Hence, it would be interesting to see whether there is a different algorithm with
running time O (ny). Similarly, there is an algorithm for 1|Rej ≤ Q|

∑
wjUj with running

time O (nQP )[34], while our lower bound suggests that an O (n(Q+ P ))-time algorithm
could be possible.

On another note, it would be interesting to extend the sub-quadratic equivalences by
Cygan et al. [7] and Klein [20] to scheduling problems. Finally, the question by Lee and
Cai [25] whether P2|size|

∑
Cj is strongly NP-hard or not is still open since 1999.
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A Omitted Proofs

In this section, we give the proofs that were omitted from the main part. These are mostly
reductions and the dynamic program for P3|size|Cmax, but we also show that the ∀∃-SETH
is probably a strictly stronger assumption than SETH.

A.1 SETH and ∀∃-SETH
Before we prove Proposition 23, we restate the SETH by Impagliazzo and Paturi [17] and
the ∀∃-SETH by Abboud et al. [2]:

I Conjecture 20 (Strong Exponential Time Hypothesis [17]). For every ε > 0, there is some
k ≥ 3 such that k-Sat cannot be solved in time O

(
2(1−ε)n).

I Conjecture 21 (∀∃ Strong Exponential Time Hypothesis [2]). For every α ∈ (0, 1), ε > 0
there is some k ≥ 3 such that the problem of deciding whether

∀x1, . . . , xdαne∃xdαne+1, . . . , xn : φ(x1, . . . , xn) = true

cannot be solved in time O
(
2(1−ε)n) for any n-variable formula φ in conjunctive normal

form with k variables per clause.

We show the “strictly stronger” part of the claim using the Non-Deterministic Strong
Exponential Time Hypothesis (NSETH):

I Conjecture 22 (Non-Deterministic Strong Exponential Time Hypothesis [4]). For every ε > 0,
there exists a k such that there is no non-deterministic algorithm solving the complement of
k-Sat in time O

(
2(1−ε)n).

This conjecture is particularly useful for proving non-reducibility results: If there are non-
deterministic algorithms for a problem A and its complement A, both with running time
bounded by T , then we cannot prove a SETH-based lower bound for A that is higher than
T , assuming NSETH (see Corollary 2 in [4]). As noted by Abboud et al. [2], under NSETH,
∀∃-SETH is a stronger assumption than SETH. We provide a more detailed proof, here.

https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.48550/ARXIV.2001.06005
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1007/s10107-014-0830-9
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1007/978-1-4613-4383-7
https://doi.org/10.1287/mnsc.12.5.437
https://doi.org/10.1016/j.tcs.2010.02.006
https://doi.org/10.1016/j.tcs.2010.02.006


14 On the Complexity of Scheduling Problems

I Proposition 23. ∀∃-SETH implies SETH. But SETH does not imply ∀∃-SETH, unless
NSETH fails.

Proof. We prove the first part indirectly by showing how a faster-than-SETH algorithm for
k-Sat would imply a faster-than-∀∃-SETH algorithm for ∀∃-k-SAT. The second part is then
shown by providing non-deterministic algorithms for ∀∃-k-SAT and ∀∃-k-SAT, which under
NSETH rules out a corresponding reduction from k-Sat.

Now, assume that SETH does not hold (i.e. there is an ε > 0 such that k-Sat can be
solved in time O

(
2(1−ε)n) for every k) and consider an instance of ∀∃-k-SAT, consisting of

an α ∈ (0, 1), a number k ∈ N and a k-CNF formula φ(x1, . . . , xn) depending on n = n1 +n2
variables, where n1 = dαne ≤ αn+ 1 and n2 = n− n1 ≤ (1− α)n.

Given the formula φ, we go through all 2n1 assignments of the n1 ∀-quantified variables
and for each of them we fix the corresponding variables in φ, i.e. for every appearance of a
variable xj in some clause, we either remove that clause (since the clause is already satisfied)
or we remove the literal from the clause (since the literal is false). Going through all the
clauses takes time O

(
knk

)
, as we have O

(
nk
)
clauses and (at most) k literals per clause.

By fixing the n1 variables, we get a formula with n2 variables. Now, as we assumed SETH
to be false, we can solve this formula in time O

(
2(1−ε)n2

)
for some ε > 0 and large enough

(but constant) k.
In total, we need the following running time to solve the ∀∃-k-SAT-problem:

O
(

2n1(O
(
knk

)
+ 2(1−ε)n2

)
) ≤ O

(
2n1+k log(kn)+(1−ε)n2

)
= O

(
2n1+k log(kn)+n2−εn2

)
= O

(
2n+k log(kn)−εn2

)
= O

(
2n+k log(kn)−ε(n−n1)

)
= O

(
2n+k log(kn)−εn+εn1)

)
≤ O

(
2n+k log(kn)−εn+ε(αn+1)

)
= O

(
2n+k log(kn)−εn+εαn+ε

)
= O

(
2n(1+ k log(kn)+ε

n −ε+εα)
)

= O
(

2n(1−(− k log(kn)+ε
n +ε−εα))

)
So if we can assure that ε′ := −k log(kn)+ε

n + ε− εα > 0, we have contradicted the ∀∃-SETH.
This is exactly the case if ε− εα > k log(kn)+ε

n . Since α ∈ (0, 1) and ε > 0, we have ε > εα

and hence ε− εα > 0. And as k and ε are constant, the inequality n > k log(kn)+ε
ε−εα holds for

large enough n. If it does not hold, n has to be bounded by some constant and we can solve
the ∀∃-k-SAT problem efficiently, anyway. Hence, if SETH fails, ∀∃-SETH fails as well and
we have shown the first part of the claim.

For the second part, consider an instance of ∀∃-k-SAT, consisting of α ∈ (0, 1), k ∈ N
and φ(x1, . . . , xn) depending on n = n1 + n2 variables, where n1 = dαne ≤ αn + 1 and
n2 = n− n1 ≤ (1− α)n.

To define a non-deterministic algorithm for ∀∃-k-SAT, we proceed similar to the above
reduction: We try out all 2n1 assignments for the ∀-quantified variables and fix the corres-
ponding variables in the given formula in time O

(
knk

)
, as we need to go through all clauses
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and literals. We proceed to guess a satisfying assignment of the remaining n2 variables in
time O (n2). In total, using the bounds for n1, n2, this yields a non-deterministic algorithm
for ∀∃-k-SAT with running time

2n1(O
(
knk

)
+O (n2)) ≤ O

(
2n1+k log(nk)+log(n2)

)
≤ O

(
2αn+1+k log(nk)+log((1−α)n)

)
= O

(
2n(α+ k log(nk)+1+log((1−α)n)

n

)
= O

(
2n(1−(1−α− k log(nk)+1+log((1−α)n)

n

)
and setting ε := 1−α− k log(nk)+1+log((1−α)n)

n gives us the desired running time of O
(
2(1−ε)n),

but we have to again assure that ε > 0. This holds if and only if 1−α > k log(nk)+1+log((1−α)n)
n .

But again, 1 − α > 0 and if the inequality n > k log(nk)+1+log((1−α)n)
1−α does not hold, n is

bounded by some constant and the problem can be solved efficiently.
In a non-deterministic algorithm for ∀∃-k-SAT, we need to decide whether there exists

an assignment for the first n1 variables such that for every assignment of the remaining
n2 variables, the formula φ evaluates to false. Up to changes in the order of the steps, the
algorithm works almost identical to the above one: We first guess a feasible assignment for
the n1 variables in time O (n1) and then we try out all 2n2 assignments for the n2 variables
and evaluate the resulting formulas in time O

(
knk

)
by going through each clause and literal.

So we get the following running time:

O (n1) + 2n2O
(
knk

)
≤ O

(
2log(n1)+n2+k log(nk)

)
≤ O

(
2log(αn+1)+(1−α)n+k log(nk)

)
= O

(
2n( log(αn+1)+k log(nk)

n +(1−α)
)

= O
(

2n(1−(− log(αn+1)+k log(nk)
n +α))

)
Again, setting ε := − log(αn+1)+k log(nk)

n + α yields a running time of O
(
2(1−ε)n). We get

ε > 0 if and only if α > log(αn+1)+k log(nk)
n , which holds for large enough n. If the inequality

does not hold, we can also solve the problem efficiently, as n is then bounded by a constant.
Hence, there is an ε > 0 such that both ∀∃-k-SAT and ∀∃-k-SAT can be solved in time

O
(
2(1−ε)n) (we just take the smaller of the two), which implies that there is no O

(
2(1−ε)n)

lower bound via SETH, unless NSETH fails (see Corollary 2 in [4]). J

A.2 Weakly NP-hard Problems

We now give the proofs that did not make it into the main part of this paper. First of all,
we prove Corollary 4:

I Corollary 4. For every ε > 0, there is a δ > 0 such that Subset Sum cannot be solved in
time O

(
2δnA1−ε), unless the SETH fails.

Proof. It is important that A = poly(n)T = ncT for some constant c in the reduction by
Abboud et al. [1]. Assume that there is an ε > 0 such that for every δ > 0, Subset Sum can
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be solved in time O
(
2δnA1−ε). We have

O
(
2δnA1−ε) = O

(
2δn(ncT )1−ε) ≤ O (2δnncT 1−ε) = O

(
2δn+c log(n)T 1−ε

)
≤ O

(
22δnT 1−ε)

= O
(

2δ
′nT 1−ε

)
if we set δ′ := 2δ and assume that n is large enough so that δn ≥ c log(n). Otherwise, n
is bounded by a constant depending on δ and c. Note that we assume that we can solve
Subset Sum for any δ > 0. Hence, for every δ′, we can find a δ = δ′

2 and get a contradiction
to Theorem 2. J

To avoid repetitions, we now show a useful lemma that encapsulates the technical parts
in the computations of our lower bounds:

I Lemma 24. Suppose there is an O (poly(n))-time reduction from Subset Sum (or Parti-
tion) with n items and

∑n
i=1 ai = A to some scheduling problem α|β|γ with N = O (n) jobs

and parameter K = O (poly(n)A). Then for every ε > 0, there exists a δ > 0 such that α|β|γ
cannot be solved in time O

(
2δNK1−ε), unless the SETH fails.

Proof. For the sake of contradiction, assume that there exists an ε > 0 such that for every
δ > 0, α|β|γ can be solved in time O

(
2δNK1−ε). Now, consider an instance of Subset

Sum (or Partition) with n items and
∑n
i=1 ai = A. Using the reduction, we construct an

instance of α|β|γ with N = O (n) = c1n jobs and parameter K = O (poly(n)A) = c2n
c3A in

time O (poly(n)) = nc4 .
In order to contradict the lower bound for Subset Sum (or Partition), we set ε′ := ε

and consider some arbitrary but fixed δ′ > 0. Since we can – by assumption – solve α|β|γ in
time O

(
2δNK1−ε) for every δ > 0, we can also do so for δ = (δ′ − (c3+c4) log(n)

n ) n
c1n

, as long
as this is larger than 0. For this, we need that n is large enough so we get:(

δ′ − (c3 + c4) log(n)
n

)
n

c1n
> 0

δ′ − (c3 + c4) log(n)
n

> 0

n >
(c3 + c4) log(n)

δ′

Note that for smaller n, the inequality n ≤ (c3+c4) log(n)
δ′ means that n has to be bounded by

some function in δ′ and hence (since δ′ is fixed), we could solve Subset Sum (or Partition)
in polynomial time. So let us now assume that n is large enough so that δ > 0 and we can
use the supposed algorithm for α|β|γ. Using the reduction and this algorithm, we can then
solve the Subset Sum (or Partition) instance in time:

nc4 +O
(
2δNK1−ε) ≤ O (2δc1n(c2nc3+c4A)1−ε)

≤ O
(
2δc1nc2n

c3+c4A1−ε)
= O

(
2δc1n2(c3+c4) log(n)A1−ε

)
= O

(
2δc1n+(c3+c4) log(n)A1−ε

)
= O

(
2
(
δ′− (c3+c4) log(n)

n

)
n
c1n

c1n+(c3+c4) log(n)
A1−ε′

)
= O

(
2δ
′nA1−ε′

)
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So there exists a fixed ε′ > 0 such that for every fixed δ′ > 0, we can solve Subset Sum (or
Partition) in time O

(
2δ′nA1−ε′

)
, which contradicts the corresponding lower bound under

SETH and concludes the proof.
Analogously, we can also get a lower bound if K = O (poly(n)T ). We then get a

contradiction to Theorem 2, instead. J

I Theorem 5. For every ε > 0, there is a δ > 0 such that Partition cannot be solved in
time O

(
2δnA1−ε), unless the SETH fails.

Proof. We use a simple reduction from Subset Sum to Partition (a similar reduction from
Knapsack to Partition has been given by Karp [19]. Consider a Subset Sum instance
with items a1, . . . , an and target T . We construct a Partition instance by copying all items
a′i = ai for all i ∈ [n] and then adding the two items a′n+1 = T + 1 and a′n+2 = A+ 1− T to
the instance. Let N = n+ 2.

Given a solution S of the Subset Sum instance, we get the partitions S ∪ {a′n+2} and
S ∪ {a′n+1}, which both sum up to A+ 1. For the other direction, note that the sum of all
items is equal to 2A+ 2 and hence the items a′n+1 and a′n+2 cannot be in the same partition,
as they sum up to T + 1 +A+ 1− T = A+ 2. So given a solution S ∪ S of the Partition
instance, assume w.l.o.g. that a′n+1 is in S and a′n+2 is in S. Then in order for the items in
S to have a total sum of A+ 1, the other items in S need to have a total sum that is exactly
T . Hence, those items give us a solution of the original Subset Sum instance.

With K :=
∑
i∈[N ] a

′
i = A+ (T + 1) + (A+ 1− T ) = O (A) as parameter and N := n+ 2

jobs, Lemma 24 yields the claim, since the reduction takes time O (n).9 J

I Theorem 6. For every ε > 0, there is a δ > 0 such that 1||
∑
wjUj cannot be solved in

time O
(
2δn(dmax + y + P +W )1−ε), unless the SETH fails.

Proof. We only show the correctness of the reduction, here. The implication regarding the
lower bound has already been shown above. Let a1, . . . , an be a Partition instance and let
T = 1

2
∑n
i=1 ai. We construct an instance of 1||

∑
wjUj by setting pj = wj = aj , dj = T for

each j ∈ [n] and y = T . Remember that the idea was that the jobs corresponding to items
in one of the partitions can be scheduled early (i.e. before the uniform due date T ).

Formally, assume that there is a solution S of the given Partition instance. We schedule
the jobs corresponding to items in S first, in any order; after that, we schedule the rest of
the jobs (also in any order). Now the items in S sum up to T , so they finish exactly at T
and are all early. The other jobs are all late and have total weight T = y.

For the other direction, indirectly assume that there is no solution for the Partition
instance and consider any optimal schedule for the constructed instance. Without loss of
generality, there are no gaps in the schedule, as they can only increase the weighted number
of late jobs. Since there is no subset of items with total size exactly T , there is also no set of
jobs with total processing time exactly T . Let S be the set of jobs that are scheduled early
and note that

∑
j∈S pj < T . Now the schedule has total weighted number of late jobs

n∑
j=1

wjUj =
n∑
j=1

wj −
∑
j∈S

wj =
n∑
j=1

pj −
∑
j∈S

pj >

n∑
j=1

pj − T = T = y,

which means that an optimal schedule has value larger than y and hence the instance is
negative. J

9 Note that we only use the Subset Sum-part of Lemma 24. This way, we do not actually use a lemma
to prove a result that is used by the lemma itself.
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I Theorem 9. For any constant δ > 0, the existence of an exact algorithm for 1||
∑
wjUj

with running time O
(
(n+ wmax)2−δ) refutes the (min,+)-conjecture.

Proof. The lower bound has already been shown, so we only prove the correctness of the
reduction, here. Remember that given an instance v1, . . . , vn, a1, . . . , an, T , y of Knapsack,
we construct jobs with pj = aj , wj = vj and dj = T for every j ∈ [n]. The threshold is set
to y′ =

∑n
j=1 vj − y.

Let S ⊆ [n] be a solution of a given Knapsack instance, i.e.
∑
j∈S aj ≤ T and∑

j∈S vj ≥ y. In the constructed 1||
∑
wjUj instance, we schedule the jobs corresponding to

items in S first (in any order) and afterwards the jobs in S (also in any order). Now, since∑
j∈S aj ≤ T and pj = aj for every job j, we can see that all jobs corresponding to items in

S are early. The weighted number of late jobs in the schedule is therefore at most:

∑
j∈S

wj =
∑
j∈S

vj =
n∑
j=1

vj −
∑
j∈S

vj ≤
n∑
j=1

vj − y = y′

Hence, the constructed instance of 1||
∑
wjUj is positive.

Now, consider a solution of a constructed 1||
∑
wjUj instance, i.e. a schedule with weighted

number of late jobs at most y′. Let S ⊆ [n] be the set of jobs that are scheduled early.
Now, S is a solution of the original Knapsack instance, since

∑
j∈S aj =

∑
j∈S pj ≤ T

and
∑
j∈S vj =

∑n
j=1 vj −

∑
j∈S vj =

∑n
j=1 vj −

∑
j∈S wj ≥

∑n
j=1 vj − y′ =

∑n
j=1 vj −(∑n

j=1 vj − y
)

= y. So the original Knapsack instance is also positive. J

I Corollary 10. For any constant δ > 0, the existence of an O
(
(n+ 1

2nε )2−δ)-time approx-
imation scheme for the optimization version of 1||

∑
wjUj refutes the (min,+)-conjecture.

Proof. Suppose that for some δ > 0, there is a (1 + ε)-approximation algorithm that solves
the optimization version of 1||

∑
wjUj in time O

(
(n+ 1

2nε )2−δ). Since nwmax ≥ opt for
any given instance, setting ε := 1

1+nwmax
yields a solution with value z such that

opt ≤ z ≤ (1 + ε) opt = opt + opt
1 + nwmax

< opt +1.

Since all weights are integer, opt is also integer and hence, z = opt. So we just solved the op-
timization version of 1||

∑
wjUj exactly in time O

(
(n+ 1

2nε )2−δ) = O
(
(n+ 1+nwmax

2n )2−δ) ≤
O
(
(n+ 2nwmax

2n )2−δ) = O
(
(n+ wmax)2−δ). With that, we can also solve the decision prob-

lem in the same running time for any given threshold y and by Theorem 9, this refutes the
(min,+)-conjecture. J

I Theorem 11. For every ε > 0, there is a δ > 0 such that 1||
∑
Tj cannot be solved in time

O
(
2δnP 1−ε), unless the SETH fails.

Proof. The NP-hardness of 1||
∑
Tj is shown by Du and Leung [10], who reduce from the NP-

hard problem Even-Odd-Partition (or EO-Partition for short) via a restricted version
thereof (REO-Partition). While the hardness of EO-Partition is usually attributed to
Garey and Johnson [11], the first reduction in the literature (to the best of our knowledge)
is due to Garey, Tarjan and Wilfong [12]. We revisit the reductions in [12] and [10] to
prove Theorem 11.

I Problem 25. EO-Partition
Instance: Integers b1, . . . , b2n ∈ N with bi > bi+1 for each i ∈ [2n− 1].
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Task: Decide whether there is a subset S ⊆ [2n] such that
∑
i∈S bi =

∑
i∈S̄ bi and

|S ∩ {b2i−1, b2i}| = 1 for each i ∈ [n].

In other words, the items bi are strictly decreasing and consist of n pairs of items (b2i−1, b2i),
where the items of a pair may not be in the same partition.

The reduction from Partition to EO-Partition by to Garey, Tarjan and Wilfong [12]
is as follows: Given a Partition instance a1, . . . , an, we may assume that A =

∑
i∈[n] ai

is even because otherwise the instance is trivial. We set b2n = 1, b2i−1 = b2i + ai for each
i ∈ [n], and b2i = b2i+1 + 1 for each i ∈ [n− 1]. In other words, we start at the smallest item
(which also has the largest index) and set it to 1. Then we recursively define the other items,
step by step: If we stay in the same pair i, we add ai and if we go from one pair to the next,
we add only 1. Hence, the items increase throughout the construction and we get bi > bi+1
for each i ∈ [2n − 1]. Moreover, the difference between the larger item of a pair and the
smaller one is b2i−1 − b2i = ai for every pair i ∈ [n].

Suppose that the Partition instance is positive, i.e. we have a set S ⊆ [n] such that∑
i∈S ai =

∑
i∈S ai. Consider the set T = {j ∈ [2n] | (i ∈ S ∧ j = 2i− 1) ∨ (i ∈ S ∧ j = 2i)},

where we take all the odd-indexed (i.e. larger) items corresponding to items in S and the
even-indexed (i.e. smaller) items corresponding to items in S. It is not quite clear how large∑
j∈T bj is, but using the fact that b2i−1 − b2i = ai, we can see that∑
j∈T

bj −
∑
j∈T

bj = (
∑
i∈S

b2i−1 +
∑
i∈S

b2i)− (
∑
i∈S

b2i +
∑
i∈S

b2i−1)

=
∑
i∈S

(b2i−1 − b2i) +
∑
i∈S

(b2i − b2i−1)

=
∑
i∈S

ai −
∑
i∈S

ai

= 0

and hence, T and T are a valid partition.
For the other direction, suppose T , T is a solution of the EO-Partition instance. Define

a solution of the corresponding Partition instance as follows: S = {i ∈ [n] | b2i−1 ∈ T}.
Using essentially the same transformations as above, it follows that

∑
i∈S ai −

∑
i∈S ai =∑

j∈T bj −
∑
j∈T bj , which is equal to zero, by assumption. So S is indeed a solution of the

Partition instance.
Note that

∑
j∈[2n] bj = O

(
n2 + nA

)
, since the largest item b1 is bounded by O (n+A).

Furthermore, note that in the resulting EO-Partition instance we have
∑
i∈[n](b2i−1−b2i) =∑

i∈[n] ai and therefore may assume that this number is even in the following.
The REO-Partition problem was introduced by Du and Leung [10] and is very similar

to EO-Partition. However, in this version of the problem the input consist of integers
c1, . . . , c2n ∈ N with ci > ci+1 for each i ∈ [2n− 1], c2i > c2i+1 + δ for each i ∈ [n− 1], and
ci > n(4n+ 1)δ + 5n(c1 − c2n) for each i ∈ [2n], where δ = 1

2
∑
i∈[n](c2i−1 − c2i). So in this

restricted variant, the items of subsequent pairs have difference > δ and each item is larger
than some value depending on n, δ and the difference between the largest and smallest item.
The reduction by Du and Leung [10] from EO-Partition to REO-Partition is as follows:
Let ∆ = 1

2
∑
i∈[n](b2i−1 − b2i) = 1

2A and

c2i−1 = b2i−1+(9n2 + 3n− (i− 1))∆ + 5n(b1 − b2n)
c2i = b2i +(9n2 + 3n− (i− 1))∆ + 5n(b1 − b2n)
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for every i ∈ [n]. We know ∆ ∈ N as the sum is even, by a previous assumption. Note that
δ = ∆ since c2i−1 − c2i = b2i−1 − b2i holds for each i ∈ [n]. Moreover, ci > ci+1 for each
i ∈ [2n− 1] since bi > bi+1. We also have c2i > c2i+1 + δ for each i ∈ [n− 1], since we get an
additional ∆ = δ between subsequent pairs and since already b2i > b2i+1. Finally, we also
get ci > n(4n+ 1)δ + 5n(c1 − c2n) for each i ∈ [2n], as we will show. First note that

c1 − c2n = b1 + (9n2 + 3n− (1− 1))∆ + 5n(b1 − b2n)
− (b2n + (9n2 + 3n− (n− 1))∆ + 5n(b1 − b2n))

= b1 − b2n + (n− 1)∆

and hence:

n(4n+ 1)δ + 5n(c1 − c2n) = n(4n+ 1)∆ + 5n(b1 − b2n + (n− 1)∆)
= n(4n+ 1)∆ + 5n(n− 1)∆ + 5n(b1 − b2n)
= (n(4n+ 1) + 5n(n− 1))∆ + 5n(b1 − b2n)
= (4n2 + n+ 5n2 − 5n)∆ + 5n(b1 − b2n)
= (9n2 − 4n)∆ + 5n(b1 − b2n)
< b2n + (9n2 + 2n+ 1)∆ + 5n(b1 − b2n)
= b2n + (9n2 + 3n− (n− 1))∆ + 5n(b1 − b2n)
= c2n

So the inequality holds for the smallest item, which means that it holds for all items. We
can conclude that the constructed instance of REO-Partition is valid.

It is not hard to verify that a solution of the EO-Partition instance can be transformed to
a solution of the REO-Partition instance and vice-versa by just selecting the corresponding
cj (respectively bj).

If we consider the two reductions one after another and use previously observed bounds
for b1,

∑
j∈[2n] bj and ∆, we get:∑

j∈[2n]

ci =
∑
j∈[2n]

(bj + (9n2 + 3n− (j − 1))∆ + 5n(b1 − b2n))

≤ 2n((9n2 + 3n)∆ + 5n(b1 − b2n)) +
∑
j∈[2n]

bj

= O
(
n3∆

)
+O

(
n2b1

)
+
∑
j∈[2n]

bj

= O
(
n3A

)
+O

(
n3 + n2A

)
+O

(
n2 + nA

)
= O

(
n3A

)
In the last step, Du and Leung construct a 1||

∑
Tj instance from the REO-Partition

instance. For the details, see the paper [10]. What is important for our lower bound are the
parameter sizes of the 1||

∑
Tj instance, namely the number of jobs and the total processing

time. The due dates are trivially bounded by the total processing time, which makes them
less interesting in a lower bound. An examination of the construction (page 487) gives the
following parameters:

N := 3n+ 1 jobs and
total processing time K := P =

∑
i∈[2n] ci + (n+ 1)(4n+ 1)δ = O

(
n3A

)
= O (poly(n)A).

Since the reduction is polynomial in n, we can use Lemma 24 to conclude the proof. J
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I Theorem 12. For every ε > 0, there is a δ > 0 such that 1|Rej ≤ Q|Cmax cannot be solved
in time O

(
2δn(y + P +Q+W )1−ε), unless the SETH fails.

Proof. Consider an instance a1, . . . , an, T of Subset Sum. We create an instance of
1|Rej ≤ Q|Cmax n jobs, pj = wj = aj for every j ∈ [n], y = T and Q = A− T . We can now
see that there is a subset of items that sums up to T , if and only if there is a subset of jobs
that is scheduled in time T , the rest of the jobs is rejected and total weight of rejected jobs
is at most A− T .

In the constructed instance, we have N := n jobs and using K := y + P + Q + W =
T +A+A−T +A = O (A) as parameter with Lemma 24 proves the claim, since the reduction
takes time O (n). J

I Theorem 13. For every ε > 0, there is a δ > 0 such that P2||Cmax cannot be solved in
time O

(
2δn(y + P )1−ε), unless the SETH fails.

Proof. We show that the lower bound O
(
2δnA1−ε) for Partition can be transferred to

P2||Cmax. Let a1, . . . , an be a Partition instance. Construct the P2||Cmax instance by
setting pj = aj for every j ∈ [n] and y = 1

2A. It is easy to see that there is a partition of
the items into two subsets of equal sum, if and only if the jobs can be split among the two
machines such that each one gets assigned jobs with total processing time y.

Since the constructed instance has N := n jobs and takes time linear in n, we can prove
the claim by using K := y + P = 1

2A+A = O (A) as parameter in Lemma 24. J

I Theorem 14. There is no O
(
nmP

o
(

m
log2(m)

))
-time algorithm for Pm||Cmax, unless the

ETH fails.

Proof. We assume that m > 1, as the problem is trivial on a single machine. In [6], Chen
et al. show that the known approximation schemes for Pm||Cmax are essentially optimal. In

particular, they also show that there is no 2
O
(
m

1
2−δ
√
|I|
)
-time exact algorithm for any δ > 0,

unless the ETH fails. This is done by a reduction from 3-Sat via 3-Dimensional-Matching
to Pm||Cmax.

For us, the crucial part about these reductions is that we can choose m arbitrarily and if
the original 3-Sat formula has n′ variables, the Pm||Cmax instance has O (n′ +m) jobs and
total processing time bounded by P ≤ n′mO

(
n′ log(m)

m

)
.

This can be seen in the paper by Chen et al. [6] on page 666, where a job is constructed
for each of the O (n′) matches and elements in addition to at most m dummy jobs and one
huge job. The processing time of the huge job is set to 6m3(m + 1)

∑9q+τ
i=1 αi minus the

total processing time of the other constructed jobs, where q = n′

m , τ = O
(
n′ log(m)

m

)
and

α = 6m4 + 6m3 + 6m2. Note that in the reduction it is assumed that q is integer, so n′ ≥ m.
This is achieved by adding dummy elements to the 3-Dimensional-Matching instance.
Hence, the total processing time is equal to 6m3(m+ 1)

∑9q+τ
i=1 αi, which can be bounded by

n′m
O
(
n′ log(m)

m

)
= 2log(n′)2

O
(
n′ log2(m)

m

)
= 2
O
(

log(n′)+n′ log2(m)
m

)
= 2
O
(
n′ log2(m)

m

)
,

using

m ≤ n′ =⇒ m

log(m) ≤
n′

log(n′) =⇒ m

log2(m)
≤ n′

log(n′)

⇐⇒ log(n′) ≤ n′ log2(m)
m

,
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where the first implication follows because the function k
log(k) is monotone for values k ≥ 2

(and we assumed m – and hence also n′ – to be larger than 1).

Now, suppose that we have an O
(
nmP

o
(

m
log2(m)

))
-time algorithm solving Pm||Cmax.

Using the reduction by Chen et al. [6], which has a running time poly(n) = nc, we could
then solve 3-Sat in time:

O
(
nc + nmP

o
(

m
log2(m)

))
≤ 2O(log(n′))

(
2
O
(
n′ log2(m)

m

))o( m
log2(m)

)

≤ 2O(log(n′))2o(n
′)

= 2O(log(n′))+o(n′)

= 2o(n
′)

This contradicts the ETH and proves the theorem. J

I Theorem 15. For every ε > 0, there is a δ > 0 such that P2||
∑
wjCj cannot be solved in

time O
(
2δn(√y + P +W )1−ε), unless the SETH fails.

Proof. We only show the correctness of the reduction, here. The fact that the lower bound
follows from the reduction has already been shown. Remember that given a Partition
instance a1, . . . , an, we construct a P2||

∑
wjCj instance in the following way: Let pj =

wj = aj for each j ∈ [n] and set the limit y =
∑

1≤i≤j≤n ajai −
1
4A

2.
Note that the execution order of the jobs on one specific machine does not influence the

sum of weighted completion times for that machine, since pj = wj for all jobs j: This follows
from the observation that

∑
j∈[k] wjCj =

∑
j∈[k] pj(

∑
i≤j pi) =

∑
1≤i≤j≤k pjpi holds for any

k jobs running on one machine. Before we prove the correctness of the construction, consider
a schedule of jobs {1, . . . , n} = S ∪ S with wj = pj , where jobs in S are scheduled on the
first machine and jobs in S are scheduled on the second machine. We wish to show that
the total weighted completion time of this schedule is

∑n
j=1 wjCj −

∑
j∈S wj

∑
j∈S pj =∑

1≤i≤j≤n pjpi−
∑
j∈S wj

∑
j∈S pj . If all jobs were scheduled on the first machine, the value

would be just
∑

1≤i≤j≤n pjpi, as argued above. Again, this does not depend on the order of
the jobs, but let us assume that the jobs in S are scheduled first. Moving them to the second
machine reduces the total weighted completion time by

∑
j∈S wj

∑
j∈S pj , as the completion

time of each job in S is reduced by
∑
j∈S pj and the completion time of the jobs in S stays

the same.
Now, consider a solution S ∪ S of Partition. We schedule the jobs corresponding to

items in S on the first machine and the rest on the second machine, in arbitrary order. By
the previous observations, this schedule has total weighted completion time:∑

1≤i≤j≤n
pjpi −

∑
j∈S

wj
∑
j∈S

pj =
∑

1≤i≤j≤n
ajai −

∑
j∈S

aj
∑
j∈S

aj

=
∑

1≤i≤j≤n
ajai −

1
2A

1
2A

=
∑

1≤i≤j≤n
ajai −

1
4A

2

So this schedule meets the threshold y =
∑

1≤i≤j≤n ajai −
1
4A

2.
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For the other direction, it is only important to see that we have the term
∑

1≤i≤j≤n ajai

in the total weighted completion time no matter what and that the selection of jobs S we
put on the second machine determines the second part

∑
j∈S aj

∑
j∈S aj that is subtracted

from the first term. Since the total sum A =
∑n
i=1 ai =

∑
j∈S aj +

∑
j∈S aj is fixed, the

maximum of the product
∑
j∈S aj

∑
j∈S aj is attained when

∑
j∈S aj =

∑
j∈S aj . This is

also exactly the case where the value is equal to 1
4A

2. In all other cases, the product is
smaller and hence subtracting less from

∑
1≤i≤j≤n ajai gives us an objective value larger

than y. With this observation, clearly the jobs must be split such that the jobs on machine 1
have the same total processing time as the jobs on machine 2, which is only possible if the
corresponding Partition instance is positive. J

I Theorem 16. For every ε > 0, there is a δ > 0 such that P2|size|Cmax cannot be solved
in time O

(
2δn(y + P )1−ε), unless the SETH fails.

Proof. We show that the lower bound O
(
2δn(y + P )1−ε) for P2||Cmax can be transferred to

P2|size|Cmax. Construct the P2|size|Cmax instance from the P2||Cmax instance by setting
the size to 1 for each job. The correctness for this reduction is trivial and neither the number
of jobs nor the total processing time or threshold changes, so the lower bound for P2||Cmax
directly applies to P2|size|Cmax and we can conclude that there is no algorithm that solves
P2|size|Cmax in O

(
2δn(y + P )1−ε), unless the SETH fails. J

I Theorem 17. For every ε > 0, there is a δ > 0 such that P2|any|Cmax cannot be solved
in time O

(
2δn(y + P )1−ε), unless the SETH fails.

Proof. We show that the lower bound O
(
2δn(y + P )1−ε) for P2||Cmax can be transferred

to P2|any|Cmax. Construct the P2|any|Cmax instance by setting pj,1 = pj,2 = pj for every
j ∈ [n]. Any schedule for P2||Cmax also represents a schedule for P2|any|Cmax and since
no advantage can be achieved by scheduling any job on two machines, a feasible schedule
for P2|any|Cmax is also feasible for P2||Cmax. Again, this does not change the size of the
instance and hence the lower bound for P2||Cmax directly applies to P2|any|Cmax so we
can conclude that there is no algorithm that solves the problem in time O

(
2δn(y + P )1−ε),

unless the SETH fails. J

I Theorem 19. The problem P3|any|Cmax can be solved in time O
(
n2P

)
via dynamic

programming.

Proof. For three machines, the main idea of the dynamic program stays the same; the
recurrence formula just becomes a bit more complicated. We create a field F (j, t1, t2), which
tells us the minimum load we can get on machine 3, if we schedule all the jobs in [j] such
that machine 1 and 2 have load t1 and t2, respectively. In analogy to the dynamic program
for two machines, we define the recurrence formula:

F (j, t1, t2) = min



T (j − 1, t1 − pj(1), t2)
T (j − 1, t1, t2 − pj(1))
T (j − 1, t1, t2) + pj(1)
T (j − 1, t1 − pj(2), t2 − pj(2))
T (j − 1, t1 − pj(2), t2) + pj(2)
T (j − 1, t1, t2 − pj(2)) + pj(2)
T (j − 1, t1 − pj(3), t2 − pj(3)) + pj(3)
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The cases correspond to scheduling job j on machine 1, on machine 2, on machine 3, on
machine 1 and 2, on machine 1 and 3, on machine 2 and 3 and finally on all three machines.
Again, the initial entries are F (0, 0, 0) = 0 and F (0, t1, t2) =∞ for every t1, t2 ∈ [y].

This time, we need to compute O
(
nP 2) entries; the actual distribution of our jobs

among the machines can be obtained in the standard way, i.e. by remembering how we
obtained every entry or by going backwards through the table. However, in this case, it
is not directly clear that this distribution of jobs yields a feasible schedule with makespan
at most y. Fortunately, as Du and Leung [9] observed, there is a canonical schedule in the
case of three machines: The jobs are swapped such that there are only two-machine jobs on
machines 1 and 2 and on machines 2 and 3. Then, the three-machine jobs are moved to the
beginning of the schedule, followed by the two-machine jobs on machine 1 and 2. Finally,
the two-machine jobs on machine 2 and 3 are executed at the end of the schedule and the
one-machine jobs are executed in between. Using this canonical schedule and the distribution
of the jobs to machines, we can obtain the actual schedule (i.e. with starting times). J

B Strongly NP-Hard Problems

In this section, we show all our SETH-based lower bounds for strongly NP-hard problems.
It is important to note that unless P=NP, these problems cannot have pseudo-polynomial
algorithms [5]. However, our lower bounds do not only exclude pseudo-polynomial algorithms;
algorithms with a super-polynomial but sub-exponential dependency on n (and a linear
dependency on the other parameters) are also impossible under SETH. So even though these
results are not as strong as those for weakly NP-hard problems, they might still be of interest
for parameterized or approximation algorithms.

Jobs With Due Dates
Our lower bound from Theorem 11 for 1||

∑
Tj also implies a lower bound for 1||

∑
wjTj

(see Corollary 34). But with a more elaborate reduction that actually uses (though only two)
different weights, we get a stronger lower bound for 1||

∑
wjTj , the problem of minimizing

the total weighted tardiness on a single machine.

I Theorem 26. For every ε > 0, there is a δ > 0 such that 1||
∑
wjTj cannot be solved in

time O
(

2δn
(
dmax + P +W +√y

)1−ε), unless the SETH fails.

Proof. We revisit the reduction by Lenstra et al. [27] from Subset Sum to 1||
∑
wjTj .

Consider a Subset Sum instance a1, . . . , an, T . We set N = n+ 1, pj = wj = aj , dj = 0
for each j ∈ [n], pN = 1, wN = 2, dN = T + 1, and y =

∑
1≤i≤j≤n aiaj +A− T . Again, the

idea is that the newly added job n acts as a barrier at time T and the solution to the Subset
Sum instance mapped to the 1||

∑
wjTj instance and job N have to be scheduled before

T + 1.
Suppose the Subset Sum instance is positive, i.e. there is a subset S of items summing

up to exactly T . Schedule the jobs corresponding to S first, then job N and finally the rest
of the jobs. If we ignore job N for a moment, we have only the n jobs with pj = wj = aj ,
so their total weighted completion time is equal to

∑
1≤i≤j≤n aiaj , which is also the total

weighted tardiness, since the due dates of these jobs are all zero. Now, adding job N to
the schedule at time T increases the tardiness of every job in S by 1. This increase by 1 is
multiplied by the weight of each job in S and we get a total increase of A− T , since that is
the sum of the weights of the jobs in S. So the total weighted tardiness of the constructed
schedule is equal to

∑
1≤i≤j≤n aiaj +A− T = y and hence the instance is positive.



K. Jansen and K. Kahler 25

For the other direction, assume that we are given a schedule with total weighted tardiness
at most y. Consider two cases: If job N is scheduled after T , say at time T + k with k > 0,
then the minimum total weighted tardiness is achieved by having no gaps in the schedule, i.e.
there are jobs with total processing time T + k scheduled before job N and jobs with total
processing time A − T − k are scheduled after. Now, the total weighted tardiness of this
schedule is

∑
1≤i≤j≤n aiaj + (A− T − k) + 2k =

∑
1≤i≤j≤n aiaj +A− T + k > y, since the

jobs after job N are delayed by one time unit and have total weight A− T − k and job N is
late by k time units and has weight 2. This is a contradiction, so job N has to be scheduled
at time T . Now we know from the observations in the proof of the first direction that a
gap-less schedule with job N scheduled at time T has total weighted tardiness exactly y.
And if there is a gap, the total weighted tardiness strictly increases. Hence, we can conclude
that there can be no gap and that the jobs scheduled before job N have a total processing
time exactly T and the corresponding items form a solution of the Subset Sum instance.

Since the constructed instance has N = n+ 1 jobs and moreover dmax = T + 1, P = A+ 1,
W = A+ 2 and

y =
∑

1≤i≤j≤n
aiaj +A− T ≤

n∑
i=1

ai n∑
j=1

aj

+O (T ) =
n∑
i=1

(aiA) +O (T )

≤ O
(
A2)+O (T )

≤ O
(
T 2)

setting K := dmax + P + W + √y = T + 1 + A + 1 + A + 2 + O (T ) = O (A) and using
Lemma 24 finishes the proof. Note that the reduction is polynomial in n. J

Jobs With Release Dates
We consider the problem 1|rj |

∑
wjCj , where we aim to minimize the total weighted comple-

tion time subject to having release dates rj for every job. With a classical reduction from
Subset Sum, we get the following lower bound:

I Theorem 27. For every ε > 0, there is a δ > 0 such that 1|rj |
∑
wjCj cannot be solved

in time O
(

2δn
(
rmax + P +W +√y

)1−ε), unless the SETH fails.

Proof. We revisit the reduction by Rinnooy Kan [32], who reduces from Subset Sum. Let
a1, . . . , an, T be a Subset Sum instance. Construct a 1|rj |

∑
wjCj instance by setting

N = n + 1, pj = wj = aj , rj = 0 for each j ∈ [N − 1] and pN = 1, wN = 2, rN = T,

y =
∑

1≤i≤j≤n aiaj +A+ T + 2. The idea is that the split job N has to be scheduled at
its release date T and there cannot be any gaps in the schedule. The job N then acts as a
barrier between jobs corresponding to items from the Subset Sum solution and the rest.

For the first direction, assume that there is a subset S that is a solution of our Subset
Sum instance. Schedule the jobs corresponding to items in S before T , then schedule the
split job N and finally the rest of the jobs. If we ignore the split job for a second, the total
weighted completion time of this schedule is

∑
1≤i≤j≤n aiaj , regardless of the order of jobs

(this follows again from the fact that pj = wj for all the jobs). Now, if we add the split job,
we get its completion time T + 1, multiplied with its weight 2; moreover, all jobs scheduled
after it are delayed by 1. These delays are in turn multiplied by the weights (which are equal
to their processing times). Hence, the total weighted completion time becomes:

N∑
i=1

wjCj =
∑

1≤i≤j≤n
aiaj + 2(T + 1) +A− T =

∑
1≤i≤j≤n

aiaj +A+ T + 2 = y
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So our constructed schedule meets the target y and is therefore feasible.
For the other direction, consider any schedule for the constructed instance with total

weighted completion time at most y and distinguish two cases:
If the split job N is scheduled directly at time T , there cannot be a gap before job N .

Otherwise, the weighted completion time is

N∑
i=1

wjCj ≥
∑

1≤i≤j≤n
aiaj + 2(T + 1) +A− T + 1 > y,

since the load of the jobs scheduled after job N is at least A − T + 1 because of the gap.
So this sub-case leads to a contradiction. If there is no gap, the jobs scheduled before job
N have total processing time exactly T and the corresponding items are a solution of the
original Subset Sum instance.

For the second case, assume that job N starts after its release date T , say at time T + k,
where k > 0. Without loss of generality, we can also assume that there is no gap in the
schedule before the execution of job N , since such a gap would only increase the weighted
completion time. So there are jobs with processing time T + k scheduled before N and jobs
with processing time A− (T + k) scheduled after job N . Thus, the total weighted completion
time of the schedule is

N∑
i=1

wjCj ≥
∑

1≤i≤j≤n
aiaj + 2(T + k + 1) +A− (T + k) =

∑
1≤i≤j≤n

aiaj +A+ T + 2 + k,

which is strictly larger than y, a contradiction.
As job N cannot be scheduled before T because of its release date, we have to end up in

the first case, where we find a solution of the original Subset Sum instance.
By construction, we have rmax = T , P = A+ 1 and W = A+ 2. Moreover, we show that

y ≤ O
(
T 2):

y =
∑

1≤i≤j≤n
aiaj +A+ T + 2 ≤

n∑
i=1

ai n∑
j=1

aj

+O (T ) =
n∑
i=1

aiA+O (T )

≤ O
(
A2 + T

)
= O

(
T 2)

Now, since the constructed instance has N = n + 1 jobs and the reduction is polynomial
in n, setting K := rmax + P + W +√y = T + A + 1 + A + 2 + O (T ) = O (A) and using
Lemma 24 proves the claim. J

A similar idea also works for 1|rj |Tmax, where we aim to minimize the maximum tardiness
and have additional release dates. Again, a classical reduction from Subset Sum gives us a
lower bound:

I Theorem 28. For every ε > 0, there is a δ > 0 such that 1|rj |Tmax cannot be solved in
time O

(
2δn(dmax + rmax + P + y)1−ε), unless the SETH fails.

Proof. Lenstra et al. [27] show the NP-hardness of 1|rj |Lmax by a reduction from Knapsack
(which is a generalization of Subset Sum: If for each item weight and profit are the same,
the problems are equivalent). We revisit this reduction to prove Theorem 28. Note that the
reduction by Lenstra et al. is supposedly for the Lmax-version, but the same reduction also
works for Tmax. This is because Tmax and Lmax are the same in the constructed instance,
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since there is a job with dj = rj + pj . Hence, the maximum lateness cannot be negative and
has to be equal to the maximum tardiness.

Consider a Subset Sum instance a1, . . . , an, T . We set N = n + 1, rj = 0, pj = aj ,

dj = A+ 1 for each j ∈ [n], rN = T, pN = 1, dN = T + 1, and y = 0. Once more, the idea
is that the newly added job N acts as a barrier at time T and the solution to the Subset
Sum instance mapped to the 1|rj |Tmax instance has to be scheduled before T .

For the first direction, assume we have a subset S of items summing up to T . Then we
can schedule all the jobs corresponding to the items in S before T (with processing time T ),
then the job N (with processing time 1) and then the rest of the jobs (with total processing
time A − T ). So we get a schedule in which each job makes its due- and release date, i.e.
one with objective value y = 0.

For the other direction, assume we are given a schedule with objective value y ≤ 0. This
means that no job can be late, which has two consequences: Job N with processing time
1 has to be scheduled exactly at time T to meet its release date T and its due date T + 1.
Moreover, all other jobs have to be finished before their uniform due date A+ 1. Since their
total processing time is equal to A and the remaining space is also equal to A, there can be
no gap in the schedule. Instead, the jobs are perfectly divided into a set of jobs S that are
scheduled before time T and the rest of the jobs. So the jobs in S have total processing time
T and and correspond to a subset of the items summing up to T in the original Subset Sum
instance.

Since N = n + 1, rmax = T , y = 0 and P = dmax = A + 1, using parameter K :=
dmax + rmax + P + y = A + 1 + T + A + 1 + 0 = O (A) with Lemma 24 proves the claim.
Note that the reduction is linear in n. J

Jobs With Deadlines
In the problem 1|Cj ≤ dj |

∑
wjCj , we aim to minimize the total weighted completion time

subject to deadlines dj . With a classical reduction from Subset Sum, we get the following
result:

I Theorem 29. For every ε > 0, there is a δ > 0 such that 1|Cj ≤ dj |
∑
wjCj cannot be

solved in time O
(

2δn
(
dmax + P +W +√y

)1−ε), unless the SETH fails.

Proof. We revisit the reduction by Lenstra et al. [27] from Subset Sum to 1|Cj ≤ dj |
∑
wjCj .

Consider a Subset Sum instance a1, . . . , an, T . We setN = n+1, pj = wj = aj , dj = A+1
for each j ∈ [n], pN = 1, wN = 0, dN = T + 1, and y =

∑
1≤i≤j≤n aiaj + A− T . Once

again, the idea is that the newly added job N acts as a barrier at time T and the solution to
the Subset Sum instance mapped to the 1|Cj ≤ dj |

∑
wjCj instance and job N have to be

scheduled before T + 1.
Suppose we are given a subset S of items summing up to exactly T . Then we can schedule

the corresponding jobs first, then job N and finally the rest of the jobs. All jobs meet their
deadline, the total weighted completion time without job N is

∑
1≤i≤j≤n aiaj and adding

job N delays the later jobs by one time unit, resulting in an increase of A− T in the total
weighted completion time, since that is that is the total weight of these jobs. Hence, we have
a feasible schedule with total weighted completion time

∑
1≤i≤j≤n aiaj +A− T = y.

For the other direction, suppose we are given a schedule with total weighted completion
time at most y and consider two cases: If job N is scheduled at time T − k with k > 0, even
a gap-less schedule has total weighted completion time

∑
1≤i≤j≤n aiaj + (A− T + k) > y,

since now jobs with total weight A− T + k are delayed by the job N . If – on the other hand
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– job N is scheduled at time T , a gap-less schedule has total weighted completion time y (see
above) and only a gap-less one. Hence, we get a subset of jobs with total completion time
exactly T , which corresponds to a solution of the Subset Sum instance.

Since the reduction is polynomial in n and we have N = n+ 1, dmax = T + 1, P = A+ 1,
W = A and √y = O (T ) (see the proof of Theorem 26), using K := dmax + P +W +√y =
T + 1 +A+ 1 +A+O (T ) = O (A) as parameter with Lemma 24 proves the claim. J

C Implications for Other Objective Functions

In this section, we make use of the fact that the common objective functions are partially
ordered in complexity. Using classical reductions, we can transfer our lower bounds to a wide
range of other scheduling problems.

We now revisit classical reductions between the usual objective functions in the context
of fine-grained complexity. Reductions like these can e.g. be found in the work by Lawler
et al. [23]. The content of the following lemma is also visualized in Figure 1. Moreover, all
SETH-based lower bounds – including those from this section – are summarized in Table 1.

I Lemma 30. Consider machine model α and additional constraints β. We have:
1. If γ = Cmax and γ′ = Tmax or γ =

∑
Cj and γ′ =

∑
Tj or γ =

∑
wjCj and γ′ =

∑
wjTj ,

there exists a reduction from α|β|γ to α|β|γ′, where we only introduce zero-due-dates, i.e.
d′j = 0 for every j ∈ [n].

2. If γ = Cmax and γ′ = Fmax or γ =
∑
Cj and γ′ =

∑
Fj or γ =

∑
wjCj and γ′ =

∑
wjFj ,

there exists a reduction from α|β|γ to α|β|γ′, where we only introduce zero-release-dates,
i.e. r′j = 0 for every j ∈ [n].

3. If γ =
∑
Cj and γ′ =

∑
wjCj or γ =

∑
Tj and γ′ =

∑
wjTj or γ =

∑
Uj and

γ′ =
∑
wjUj or γ =

∑
Vj and γ′ =

∑
wjVj or γ =

∑
Fj and γ′ =

∑
wjFj , there exists

a reduction from α|β|γ to α|β|γ′, where we only introduce unit-weights, i.e. w′j = 1 for
every j ∈ [n].

4. If γ = Tmax and γ′ = Lmax, there exists a reduction from α|β|γ to α|β|γ′, where we do
not change anything about the instance.

5. If γ = Lmax and γ′ =
∑
Tj , γ′ =

∑
Uj or γ′ =

∑
Vj , there exists a reduction from α|β|γ

to α|β|γ′, where we only increase the due dates by y, i.e. d′j = dj + y for every j ∈ [n]
and set the target value to zero, i.e. y′ = 0.

Note that in all of these reductions, only the mentioned parameters are modified. Everything
else about the instance (e.g. the number of jobs n) stays the same. The running time of each
reduction is polynomial in n.

Proof. For part 1, we observe that setting the due date of every job j ∈ [n] to zero means
that its completion time Cj is identical to its tardiness Tj :

Tj = max{Cj − dj , 0} = max{Cj , 0} = Cj

Hence, minimizing Tmax,
∑
Tj and

∑
wjTj is equivalent to minimizing Cmax,

∑
Cj and∑

wjCj , respectively.
Part 2 is similar: Setting a release date rj to zero means that the flow time Fj of job j is

equal to its completion time Cj .
Part 3 is obvious: Weighting all jobs equally is equivalent to having no weights at all.

Having the weights all set to 1 also means that the objective value does not change.
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Cmax LmaxTmax

∑
Cj

∑
wjCj

∑
Uj

∑
wjUj

∑
Tj

∑
wjTj

∑
Vj

∑
wjVjFmax

∑
Fj

∑
wjFj

dj := 0

r
j := 0

dj := dj + y

d
j := d

j + y

dj
:= dj

+ y

wj := 1

wj := 1

wj := 1

wj := 1

rj
:= 0

wj := 1

d
j := 0

d
j := 0

rj
:=

0

Figure 1 Classical reductions between objective functions (see e.g. [23] and the very useful website
http://schedulingzoo.lip6.fr/about.php).

For part 4, observe that any schedule that minimizes the maximum lateness Lmax also
minimizes the maximum tardiness and that we only have non-negative y-values in the
Tmax-problem.10

For part 5, observe that the original instance of α|β|γ has a schedule with maximum
lateness Lmax ≤ y if and only if in the instance with delayed due dates d′j = dj + y no job is
late. No job being late is equivalent to

∑
Tj ,

∑
Uj and

∑
Vj all being zero.

All of the reductions are polynomial in n, since we only need to construct new jobs with
not too large parameters. J

α β γ Lower Bound Ref.
P 2 − Cmax O

(
2δn(y + P )1−ε) thm. 13

P 2 size Cmax O
(
2δn(y + P )1−ε) thm. 16

P 2 any Cmax O
(
2δn(y + P )1−ε) thm. 17

P 2
−

size

any

Lmax

Tmax
O
(
2δn(y + P + f(D))1−ε) cor. 32

P 2
−

size

any

∑
Uj∑
Vj∑
Tj

O
(
2δn(dmax + P + f(y))1−ε) cor. 32

P 2
−

size

any

∑
wjUj∑
wjVj∑
wjTj

O
(
2δn(dmax + P + f(wmax, y))1−ε) cor. 32

10The possibility of negative y-values in the Lmax-problem prevents the same “reduction” from working
in the other direction.

http://schedulingzoo.lip6.fr/about.php
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P 2
−

size

any

Fmax O
(
2δn(y + P + f(R))1−ε) cor. 32

P 2 −
∑

wjCj O
(
2δn(√y + P + W )1−ε) thm. 15

P 2 −
∑

wjTj O
(
2δn(√y + P + W + f(D))1−ε) cor. 33

P 2 −
∑

wjFj O
(
2δn(√y + P + W + f(R))1−ε) cor. 33

1 Rej ≤ Q Cmax O
(
2δn(y + P + Q + W )1−ε) thm. 12

1 Rej ≤ Q
Lmax

Tmax
O
(
2δn(y + P + Q + W + f(D))1−ε) cor. 31

1 Rej ≤ Q

∑
Uj∑
Vj∑
Tj

O
(
2δn(dmax + P + Q + W + f(y))1−ε) cor. 31

1 Rej ≤ Q

∑
wjUj∑
wjVj∑
wjTj

O
(
2δn(dmax + P + Q + W + f(y, wmax))1−ε) cor. 31

1 Rej ≤ Q Fmax O
(
2δn(y + P + Q + W + f(R))1−ε) cor. 31

1 −
∑

Tj O
(
2δnP 1−ε) thm. 11

1 −
∑

wjTj O
(
2δn(P + f(wmax))1−ε) cor. 34

1 −
∑

wjUj O
(
2δn(dmax + y + P + W )1−ε) thm. 6

1 rj
∑

wjCj O
(
2δn(P + W + rmax +√y)1−ε) thm. 27

1 rj
∑

wjTj O
(
2δn(P + W + rmax +√y + f(D))1−ε) cor. 35

1 -
∑

wjFj O
(

2δn
(
rmax + P + W +√y + f(D)

)1−ε
)

cor. 35

1 rj Tmax O
(
2δn(dmax + rmax + P + y)1−ε) thm. 28

1 rj Lmax O
(
2δn(dmax + rmax + P + y)1−ε) cor. 36

1 rj

∑
Uj∑
Vj∑
Tj

O
(
2δn(dmax + rmax + P + f(y))1−ε) cor. 36

1 rj

∑
wjUj∑
wjVj∑
wjTj

O
(
2δn(dmax + rmax + P + f(y, wmax))1−ε) cor. 36

1 −
∑

wjTj O
(
2δn(P + dmax + W +√y)1−ε) thm. 26

1 Cj ≤ dj
∑

wjCj O
(
2δn(P + dmax + W +√y)1−ε) thm. 29

1 Cj ≤ dj
∑

wjFj O
(
2δn(P + dmax + W +√y + f(R))1−ε) cor. 37

1 Cj ≤ dj
∑

wjTj O
(
2δn(P + dmax + W +√y + f(D))1−ε) cor. 37

Table 1 Overview of our SETH-based lower bounds. Throughout, f is some arbitrary computable
function.

In Theorem 12, we showed a lower bound for 1|Rej ≤ Q|Cmax. Using Lemma 30, we now
transfer this result to other rejection problems with more difficult objective functions:

I Corollary 31. Let f be some computable function, γ1 ∈ {Lmax, Tmax}, γ2 ∈ {
∑
Uj ,
∑
Vj ,∑

Tj} and γ3 ∈ {
∑
wjUj ,

∑
wjVj ,

∑
wjTj}.11 Then unless SETH fails, for every ε > 0

there exists a δ > 0 such that there is no algorithm solving
1. 1|Rej ≤ Q|γ1 in time O

(
2δn(y + P +Q+W + f(D))1−ε),

11Note that in the case of weighted objective functions we already have weights for each job (i.e. rejection
penalties). In order for the reduction to work, we need the weights for the objective function to be
conceptually different weights wj .
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2. 1|Rej ≤ Q|γ2 in time O
(
2δn(dmax + P +Q+W + f(y))1−ε),

3. 1|Rej ≤ Q|γ3 in time O
(
2δn(dmax + P +Q+W + f(y, wmax))1−ε) or

4. 1|Rej ≤ Q|Fmax in time O
(
2δn(y + P +Q+W + f(R))1−ε).

Proof. The lower bound for 1|Rej ≤ Q|Cmax from Theorem 12 for 1|Rej ≤ Q|Cmax is
O
(
2δn(y + P +Q+W )1−ε). We use the reductions from Lemma 30 to obtain lower bounds

for the more difficult objective functions.
For part 1, the reductions only introduce zero-due-dates. Hence, D = 0 and we get the

lower bound O
(
2δn(y + P +Q+W + f(D))1−ε), where f is some computable function that

only depends on D and is hence constant for D = 0.
For part 2, applying the reductions in sequence gives us due dates that are equal to

the original target, together with a new target y = 0. Hence, we get the lower bound
O
(
2δn(dmax + P +Q+W + f(y))1−ε).
For the third part, we get O

(
2δn(dmax + P +Q+W + f(y, wmax))1−ε) as our lower

bound, since the reduction only adds unit-weights.
In the case of Fmax, we simply introduce zero-release-dates and get the lower bound

O
(
2δn(y + P +Q+W + f(R))1−ε). J

Similarly, the lower bounds from Theorem 13, Theorem 16 and Theorem 17 for the
two-machine problems with Cmax-objective can also be transferred to problems with more
difficult objective functions:

I Corollary 32. Let f be some computable function, β ∈ {size, any,−}, γ1 ∈ {Lmax, Tmax},
γ2 ∈ {

∑
Uj ,
∑
Vj ,
∑
Tj} and γ3 ∈ {

∑
wjUj ,

∑
wjVj ,

∑
wjTj}. Then unless SETH fails,

for every ε > 0 there exists a δ > 0 such that there is no algorithm solving
1. P2|β|γ1 in time O

(
2δn(y + P + f(D))1−ε),

2. P2|β|γ2 in time O
(
2δn(dmax + P + f(y))1−ε),

3. P2|β|γ3 in time O
(
2δn(dmax + P + f(wmax, y))1−ε) or

4. P2|β|Fmax in time O
(
2δn(y + P + f(R))1−ε).

Proof. The lower bounds for P2|β|Cmax are all O
(
2δn(y + P )1−ε). We apply Lemma 30

and add the additional parameters to the lower bound.
In case 1 and 4, the reduction from P2|β|Cmax to P2|β|γ1 (resp. P2|β|Fmax) involves

only adding zero-due-dates (resp. zero-release-dates). Hence, D = R = 0 in the constructed
instances and the lower bounds follow.

In case 2, the instance is constructed by adding due dates equal to the original tar-
get value and the new target value is set to zero. So the new lower bound becomes
O
(
2δn(dmax + P + f(y))1−ε).
In case 3, in addition to due dates, we get unit-weights. So we get the lower bound

O
(
2δn(dmax + P + f(wmax, y))1−ε), concluding the proof. J

The lower bound for P2||
∑
wjCj from Theorem 15, together with Lemma 30 yields the

following implications:

I Corollary 33. Let f be any computable function. Then unless SETH fails, for every ε > 0
there exists a δ > 0 such that there is no algorithm solving
1. P2||

∑
wjTj in time O

(
2δn(√y + P +W + f(D))1−ε) or

2. P2||
∑
wjFj in time O

(
2δn(√y + P +W + f(R))1−ε).
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Proof. We have O
(
2δn(√y + P +W )1−ε) as our lower bound for P2||

∑
wjCj (see The-

orem 15) and we use the reductions from Lemma 30.
In both cases, we only introduce zero-due-dates/zero-release-dates and have D = R = 0;

so the lower bounds follow. J

Using the lower bound for 1||
∑
Tj from Theorem 11 and Lemma 30, we get the following

result by adding unit-weights:

I Corollary 34. Let f be any computable function. Then for every ε > 0, there is a δ > 0
such that 1||

∑
wjTj cannot be solved in time O

(
2δn(P + f(wmax))1−ε), unless the SETH

fails.

Proof. The lower bound for 1||
∑
Tj from Theorem 11 is O

(
2δnP 1−ε) and using the unit-

weight reduction from Lemma 30, we get the claimed lower bound, since wmax = 1. J

As noted before, 1|rj |
∑
wjCj is equivalent to 1||

∑
wjFj . Hence, we get the same lower

bound for that problem. By introducing zero-due-dates, we also get a lower bound for
1|rj |

∑
wjTj using Lemma 30:

I Corollary 35. Let f be any computable function. Then unless the SETH fails, for every
ε > 0, there exists a δ > 0 such that there is no algorithm solving
1. 1|rj |

∑
wjTj in time O

(
2δn

(
rmax + P +W +√y + f(D)

)1−ε) or

2. 1||
∑
wjFj in time O

(
2δn

(
rmax + P +W +√y

)1−ε).
Proof. From Theorem 27, we have O

(
2δn

(
rmax + P +W +√y

)1−ε) as lower bound for
1|rj |

∑
wjCj , so using the zero-due-dates reduction from Lemma 30, we get D = 0 and the

lower bound for 1|rj |
∑
wjTj follows. J

Using our lower bound for 1|rj |Tmax from Theorem 28 and Lemma 30, we get the following
implications for other single-machine release date problems:

I Corollary 36. Let γ1 ∈ {
∑
Uj ,
∑
Vj ,
∑
Tj}, γ2 ∈ {

∑
wjUj ,

∑
wjVj ,

∑
wjTj} and let f

be any computable function. Then unless SETH fails, for every ε > 0 there exists a δ > 0
such that there is no algorithm solving
1. 1|rj |Lmax in time O

(
2δn(dmax + rmax + P + y)1−ε),

2. 1|rj |γ1 in time O
(
2δn(dmax + rmax + P + f(y))1−ε) or

3. 1|rj |γ2 in time O
(
2δn(dmax + rmax + P + f(y, wmax))1−ε).

Proof. We have the lower bound O
(
2δn(dmax + rmax + P + y)1−ε) for 1|rj |Tmax (see The-

orem 28) and using the reductions from Lemma 30, we get the following results:
The lower bound for 1|rj |Lmax directly follows, since the reduction does not change the

instance in any way.
For the second part, the reduction increases the due dates by the original target value

and sets the new target value to zero. Hence, the O
(
2δn(dmax + rmax + P + f(y))1−ε)-time

lower bound follows.
The same lower bound holds for the third case, but we also introduce unit-weights, so

the bound becomes O
(
2δn(dmax + rmax + P + f(y, wmax))1−ε). J

Using Lemma 30, we can also transfer the lower bound for 1|Cj ≤ dj |
∑
wjCj from

Theorem 29 to weighted flow minimization and total weighted tardiness.
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I Corollary 37. Let f be any computable function. Then unless the SETH fails, for every
ε > 0, there exists a δ > 0 such that there is no algorithm solving
1. 1|Cj ≤ dj |

∑
wjFj in time O

(
2δn

(
dmax + P +W +√y + f(R)

)1−ε) or

2. 1|Cj ≤ dj |
∑
wjTj in time O

(
2δn

(
dmax + P +W +√y + f(D)

)1−ε).
Here, D is the sum of due dates and dmax is the largest deadline.

Proof. From Theorem 29, we have O
(

2δn
(
dmax + P +W +√y

)1−ε) as a lower bound for
1|Cj ≤ dj |

∑
wjCj . The lower bounds for 1|Cj ≤ dj |

∑
wjFj and 1|Cj ≤ dj |

∑
wjTj follow

if we use the zero-release-dates/zero-due-dates reduction from Lemma 30. J

Finally, we can transfer the result for Pm||Cmax from Theorem 14 to other objectives,
using the reductions from Lemma 30:

I Corollary 38. Let γ ∈ {Fmax, Tmax, Lmax,
∑
Tj ,
∑
Uj ,
∑
Vj ,
∑
wjTj ,

∑
wjUj ,

∑
wjVj}.

There is no algorithm solving Pm||γ in time O
(
nmP

o
(

m
log2(m)

))
, unless the ETH fails.

Proof. Here, we use simply that there is a reduction from Pm||Cmax to each of these
problems, where neither the number of jobs, nor the number of machines or the processing
times change. The lower bound then directly holds for the more difficult problems. J
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