
Sequentially Swapping Tokens: Further on Graph Classes?,??

Hironori Kiyaa, Yuto Okadab, Hirotaka Onob, Yota Otachib,∗

aKyushu University, Fukuoka, Japan
bNagoya University, Nagoya, Japan

Abstract

We study the following variant of the 15 puzzle. Given a graph and two token placements on the
vertices, we want to find a walk of the minimum length (if any exists) such that the sequence of
token swappings along the walk obtains one of the given token placements from the other one.
This problem was introduced as Sequential Token Swapping by Yamanaka et al. [JGAA
2019], who showed that the problem is intractable in general but polynomial-time solvable for
trees, complete graphs, and cycles. In this paper, we present a polynomial-time algorithm for
block-cactus graphs, which include all previously known cases. We also present general tools
for showing the hardness of the problem on restricted graph classes such as chordal graphs and
chordal bipartite graphs. We also show that the problem is hard on grids and king’s graphs,
which are the graphs corresponding to the 15 puzzle and its variant with relaxed moves.

Keywords: Sequential token swapping, The (generalized) 15 puzzle, Block-cactus graph, Grid
graph, King’s graph

1. Introduction

Let G = (V,E) be an undirected graph and f, f ′ : V → {1, . . . , c} be colorings of G.1 We
call a sequence 〈f1, . . . , fp〉 of colorings of G a swapping sequence of length p− 1 from f to f ′ if
f1 = f , fp = f ′, and there is a walk 〈w1, w2, . . . , wp〉 such that for 2 ≤ i ≤ p, fi is obtained from
fi−1 by swapping the colors of wi−1 and wi; that is, fi(wi) = fi−1(wi−1), fi(wi−1) = fi−1(wi),
and fi(v) = fi−1(v) for v /∈ {wi−1, wi}. See Fig. 1. Now the problem can be formulated as
follows.

Problem: Sequential Token Swapping

Input: A graph G = (V,E), colorings f, f ′ of G, and an integer k.

Question: Is there a swapping sequence of length at most k from f to f ′?

We assume that f and f ′ color the same number of vertices for each color since otherwise
it becomes a trivial no-instance. We also assume that the input graph G is connected as a
swapping sequence affects only one connected component.

?A preliminary version appeared in the proceedings of the 48th International Conference on Current Trends
in Theory and Practice of Computer Science (SOFSEM 2023), Lecture Notes in Computer Science 13878 (2023)
222–235.

??Partially supported by JSPS KAKENHI Grant Numbers JP17H01698, JP17K19960, JP18H04091,
JP20H05793, JP20H05967, JP21K11752, JP21K19765, JP21K21283, JP22H00513.
∗Corresponding author.
Email addresses: h-kiya@econ.kyushu-u.ac.jp (Hironori Kiya), okada.yuto.b3@s.mail.nagoya-u.ac.jp

(Yuto Okada), ono@nagoya-u.jp (Hirotaka Ono), otachi@nagoya-u.jp (Yota Otachi)
1By a coloring, we mean a mapping from the vertex set to a color set, which is not necessarily a proper

coloring.

Preprint submitted to Journal of Computer and System Sciences March 10, 2023

ar
X

iv
:2

21
0.

02
83

5v
3

 [
cs

.D
S]

 9
 M

ar
 2

02
3

1
2 3

4

2

2
1 3

4

2

2
3 1

4

2

2
3 4

1

2

2
1 4

3

2

2
2 4

3

1W

f0 f1 f2 f3 f4 f5

Figure 1: An example of a swapping sequence.

The intuition behind its name, Sequential Token Swapping, is as follows: we consider
a coloring as an assignment of colored tokens (or pebbles) to the vertices; we proceed along a
walk; and when we visit an edge in the walk, we swap the tokens on the endpoints. For the
ease of presentation, we often use the concept of tokens in this paper. For example, we call the
token on the first vertex of the walk the moving token as it will always be the one exchanged
during the swapping sequence. In other words, fi(wi) = f1(w1) holds for all i.

Yamanaka et al. [1] introduced Sequential Token Swapping as a variant of the (general-
ized) 15 puzzle (Fig. 2), in which the first and last vertices in a swapping sequence are given as
part of input. They showed that Sequential Token Swapping is polynomial-time solvable
in some restricted cases such as trees, complete graphs, and cycles. They also showed that
there is a constant ε > 0 such that the shortest length of a swapping sequence is NP-hard to
approximate within a factor 1 + ε.

Our results. We unify and extend the positive results in [1] by showing that Sequential
Token Swapping is polynomial-time solvable on block-cactus graphs, which include the classes
of trees, complete graphs, and cycles. To this end, we first show that Sequential Token
Swapping on a graph is reducible to a generalized problem (called Sub-STS) on its biconnected
components, which may be of independent interest. We then show that the generalized problem
Sub-STS can be solved in polynomial time on complete graphs and cycles. As a byproduct, we
also show that the generalized 15 puzzle is polynomial-time solvable on the same graph class.

To complement the positive results, we show negative results on several classes of graphs. We
first present two general tools for showing the NP-hardness of Sequential Token Swapping
on restricted graph classes. One is for the few-color case, where we use only a fixed number
of colors, and the other is for the colorful case, where we use a unique color for each vertex.
The graph classes covered by the general tools include chordal graphs and chordal bipartite
graphs. We also show the hardness on grids and king’s graphs that play important roles in the
connection to puzzles [2] and video games [3]. For them, our general tools cannot be applied,
but similar ideas can be tailored. Also for split graphs, our general tools cannot be applied, but
the NP-completeness of the few-color case follows as a corollary to some discussions for grid-like
graphs. The complexity of the colorful case on split graphs remains unsettled.

Related results. Sequential Token Swapping can be seen as a variant of the famous 15
puzzle. The 15 puzzle is played on a 4×4 board with 16 cells. On the board, there are 15 pieces
numbered from 1 to 15 and one vacant cell. In each turn, we can slide an adjacent piece to the
vacant cell. The goal is to place the pieces at the right positions (see Fig. 2). By regarding
the vacant cell (instead of an adjacent piece) as the piece moving in each step, we can see the
sliding process in the 15 puzzle as a swapping sequence on the 4 × 4 grid that starts at the
vacant cell. If we define the generalized 15 puzzle as the same problem considered on general
graphs with arbitrary colorings, then it is almost the same as Sequential Token Swapping,
and the difference is whether the first and last vertices in the walk corresponding to a swapping
sequence are specified in the input (for the generalized 15 puzzle) or not (for Sequential
Token Swapping).

2

15

9 1 7 6

4 2 10

14 11

1213

5 3

8

...

15

9

1 7 6

4 2 10

14 11

1213

5 3

8 15

9

1

76

42

10

14

11 12

13

5

3

8

Figure 2: The 15 puzzle. Each step can be seen as a move of the vacant cell.

The generalized 15 puzzle has been extensively studied with respect to the “reachability”,
i.e., under the setting where the question is the existence of a swapping sequence (not the
minimum length). It was shown by Johnson and Story [2] that the reachability in the original
15 puzzle can be decided from the parity of the total distance from the initial to final token
placements. This was later generalized further and a characterization of the reachability was
given. For example, it is easy to see that the characterization given by Trakultraipruk [4] is
polynomial-time testable. On the other hand, the problem of finding a swapping sequence of
the minimum length has been studied only for a couple of cases. It was shown by Ratner and
Warmuth [5] that the generalized 15 puzzle is NP-complete on n × n grids, in which case the
problem is called the (n2 − 1) puzzle. A short proof for the same result was presented later by
Demaine and Rudoy [6].

Although Sequential Token Swapping is quite close to the generalized 15 puzzle, its
concept comes also from its non-sequential variant Token Swapping, which does not ask for
the existence of a walk consistent with a swapping sequence but allows to swap the tokens on
the endpoints of any edge in each step. The complexity of Token Swapping has shown to
be quite different from its sequential variant. For example, it is recently shown that Token
Swapping is NP-complete even on trees [7].

The generalized 15 puzzle and (Sequential) Token Swapping are sometimes considered
in combinatorial reconfiguration as well. See the surveys [8, 9] for the background and related
results in this context.

2. Preliminaries

We use standard terminologies for graphs (see e.g., [10] for the terms not defined here).
Let G = (V,E) be an undirected graph. For S ⊆ V , the subgraph of G induced by S is
denoted by G[S]. A sequence W = 〈w1, . . . , w|W |〉 of vertices is a walk of length |W | − 1 in G if
{wi, wi+1} ∈ E for 1 ≤ i < |W |. A vertex of a connected graph is a cut vertex if the removal of
the vertex makes the graph disconnected. A connected graph is biconnected if it contains no cut
vertex. A maximal induced biconnected subgraph of a graph is called a biconnected component
of the graph. Let BG denote the set of biconnected components of G. It is known that BG can
be computed in linear time [11].

A graph is a cactus if each biconnected component is a cycle or a 2-vertex complete graph.
A graph is a block graph if each biconnected component is a complete graph. A graph is a
block-cactus graph if each biconnected component is a cycle or a complete graph. A chordal
graph is a graph with no induced cycle of length 4 or more. A chordal bipartite graph is a
bipartite graph with no induced cycle of length 6 or more. A graph is a split graph if its vertex
set can be partitioned into a clique and an independent set.

The h×w grid has the vertex set V = {1, . . . , h}×{1, . . . , w} and the edge set {{(x, y), (x′, y′)} |
(x, y), (x′, y′) ∈ V, |x − x′| + |y − y′| = 1}. A graph is a grid if it is the h × w grid
for some integers h and w. A graph is a grid graph if it is an induced subgraph of some
grid. We say that a grid graph G = (V,E) is given with a grid representation if V ⊆ Z2

and E = {{(x, y), (x′, y′)} | (x, y), (x′, y′) ∈ V, |x − x′| + |y − y′| = 1}. The h × w king’s

3

graph is obtained from the h × w grid by adding all diagonal edges of the unit squares (4-
cycles) in the grid; that is, the vertex set is V = {1, . . . , h} × {1, . . . , h} and the edges set is
{{(x, y), (x′, y′)} | (x, y), (x′, y′) ∈ V, max{|x − x′|, |y − y′|} = 1}. A graph is a king’s graph if
it is the h×w king’s graph for some integers h and w. We call a vertex (x, y) of a king’s graph
even if x+ y is even and odd if x+ y is odd. In passing, the name of a king’s graph comes from
the legal moves of the king chess piece on a chessboard.

As mentioned in Section 1, the generalized 15 puzzle can be seen as a variant of Sequential
Token Swapping with the first and last vertices specified. In the following, we call it (s, t)-
STS.

Problem: (s, t)-STS

Input: A graph G = (V,E), colorings f, f ′ of G, s, t ∈ V , and an integer k.

Question: Is there a swapping sequence of length at most k from f to f ′ such that the corre-
sponding walk starts at s and ends at t?

Note that s and t in an instance of (s, t)-STS are not necessarily distinct.

3. Polynomial-time algorithm for block-cactus graphs

In this section, we present a polynomial-time algorithm for Sequential Token Swapping
on block-cactus graphs. We prove the following theorem.

Theorem 3.1 Sequential Token Swapping on block-cactus graphs can be solved in O(n3)
time, where n is the number of vertices.

Note that although Theorem 3.1 is stated for Sequential Token Swapping, which is a
decision problem, the algorithm presented below actually solves the optimization version of the
problem in the same running time. That is, it computes the minimum length of a swapping
sequence from f to f ′ in O(n3) time.

The main part of the algorithm is the subroutine for solving (s, t)-STS. Given that subrou-
tine, the algorithm just tries all pairs of vertices as the first and last vertices. In the following,
we focus on this subroutine.

We show that the problem on a graph can be reduced to a generalized problem on its
biconnected components. Then it suffices to show that the generalized problem can be solved
in polynomial time on complete graphs and cycles. We prove this in a way similar to Yamanaka
et al. [1] but the proofs here are much more involved because of the generality of the problem.

3.1. Reduction to a generalized problem on biconnected components

We generalize (s, t)-STS by adding a subset P of vertices to be visited as follows.

Problem: Sub-STS

Input: A graph G = (V,E), colorings f, f ′ of G, s, t ∈ V , and P ⊆ V .

Task: Find the minimum length of a swapping sequence from f to f ′ (if any exists) such that
the corresponding walk W = 〈w1, w2, . . . , w|W |〉 satisfies that w1 = s, w|W | = t, and
P ⊆ {w1, w2, . . . , w|W |}.

4

s

c1 c2

G1 S G2

Figure 3: Cut vertices c1, c2 and the corresponding subgraphs G1, G2.

Let λ(G, f, f ′, s, t, P) denote the answer for the instance 〈G, f, f ′, s, t, P 〉 of Sub-STS. We
set it to ∞ if no swapping sequence from f to f ′ exists. Note that λ(G, f, f ′, s, t, ∅) is the
minimum k such that 〈G, f, f ′, s, t, k〉 is a yes-instance of (s, t)-STS.

Let 〈G, f, f ′, s, t, k〉 be an instance of (s, t)-STS and let H be a biconnected component
of G. Let us see how a solution to this instance passes through H. If s /∈ V (H), then the
first vertex visited in H is the cut vertex closest to s. Similarly, if t /∈ V (H), then the last
vertex visited in H is the cut vertex closest to t. Also, a cut vertex u of G belonging to H has
to be visited if at least one vertex in H is visited and there is a vertex v /∈ V (H) such that
f(v) 6= f ′(v) and u is the closest vertex in H to v. With these observations, we construct an
instance 〈H, fH , f ′H , sH , tH , PH〉 of Sub-STS as follows, where cv is the cut vertex in H that
separates v and V (H).

• Set fH = f |V (H). If s /∈ V (H), then update fH as fH(cs) := f(s).

• Set f ′H = f ′|V (H). If t /∈ V (H), then update f ′H as f ′H(ct) := f(s).

• Set sH = s if s ∈ V (H). Otherwise, set sH = cs.

• Set tH = t if t ∈ V (H). Otherwise, set tH = ct.

• Set PH to the set of cut vertices cv of G belonging to V (H) such that cv separates v and
H for some v /∈ V (H) with f(v) 6= f ′(v).

The following lemma says that this instance correctly captures how a solution to (s, t)-STS on
G affects H.

Lemma 3.2 For a graph G, colorings f, f ′ of G, and s, t ∈ V ,

λ(G, f, f ′, s, t, ∅) =
∑
H∈BG

λ(H, fH , f
′
H , sH , tH , PH).

Proof. We use induction on |BG|, the number of biconnected components of G. If |BG| =
1, then the unique biconnected component is G itself and thus the statement holds. In the
following, we assume that |BG| = b + 1 for some b ≥ 1 and that the statement holds for all
graphs with at most b biconnected components.

Let S ∈ BG be an arbitrary biconnected component that contains s. Since |BG| = b+ 1 ≥ 2,
the biconnected component S has at least one cut vertex. Let c1, . . . , ca be the cut vertices of G
in H. Let G1, . . . , Ga be the nontrivial connected components of G−E(S) such that ci ∈ V (Gi)
for each i (see Fig. 3).

For each Gi, we set f (i), f ′(i), s(i), and t(i) as follows.

• Set f (i) = f |V (Gi), and then update it as f (i)(ci) := f(s).

• Set f ′(i) = f ′|V (Gi). If t /∈ V (Gi), then update it as f ′(i)(ci) := f(s).

5

• Set s(i) = ci.

• Set t(i) = t if t ∈ V (Gi). Otherwise, set t(i) = ci.

For each biconnected component H of Gi, we define f
(i)
H , f

′(i)
H , s

(i)
H , t

(i)
H , P

(i)
H in the same way as

fH , f
′
H , sH , tH , PH . Observe that each biconnected component of Gi is a biconnected component

of G as well. This implies that |BGi | ≤ b for each i (as S is missing). By the induction hypothesis,
the statement of the lemma holds for each Gi. To be more precise, it holds for each i that

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅) =

∑
H∈BGi

λ(H, f
(i)
H , f

′(i)
H , s

(i)
H , t

(i)
H , P

(i)
H). (1)

We can see that for every Gi and every H ∈ BGi , it holds that f
(i)
H = fH , f

′(i)
H = f ′H , s

(i)
H = sH ,

t
(i)
H = tH , and P

(i)
H ∪ {s

(i)
H } = PH . This implies that

λ(H, fH , f
′
H , sH , tH , PH) = λ(H, f

(i)
H , f

′(i)
H , s

(i)
H , t

(i)
H , P

(i)
H),

and thus by Eq. (1),

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅) =

∑
H∈BGi

λ(H, fH , f
′
H , sH , tH , PH).

Now, since BG = {S} ∪
⋃

1≤i≤a BGi ,

∑
H∈BG

λ(H, fH , f
′
H , sH , tH , PH) = λ(S, fS , f

′
S , sS , tS , PS) +

a∑
i=1

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅). (2)

Claim 3.3 The following inequality holds:

λ(G, f, f ′, s, t, ∅) ≥ λ(S, fS , f
′
S , sS , tS , PS) +

a∑
i=1

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅).

Proof (Claim 3.3). We assume that λ(G, f, f ′, s, t, ∅) 6=∞ since otherwise the claim is triv-
ially true. Let W = 〈w1, . . . , wλ(G,f,f ′,s,t,∅)+1〉 be a walk that corresponds to a swapping sequence
from f to f ′ such that w1 = s and w|W | = t.

Constructing a walk in G(i).. If f (i) = f ′(i) and s(i) = t(i), then the trivial walk 〈s(i)〉 certificates
that λ(Gi, f

(i), f ′(i), s(i), t(i), ∅) = 0. Otherwise, we construct a shortest walk for each Gi using
the walk W .

Let W1, . . . ,Wl be all maximal subwalks of W appearing in this ordering such that each Wj

contains vertices of V (Gi) only and |Wj | ≥ 2. Note that there is at least one such maximal
subwalk since the moving token needs to swap tokens in Gi as f (i) 6= f ′(i) or s(i) 6= t(i) holds. By
the definition of Gi, the cut vertex ci (= s(i)) is the unique vertex in V (Gi) that is adjacent to
a vertex not in V (Gj). This implies that, for each p < l, Wp is a walk from ci to ci, and Wl is a
walk from ci to t(i). Thus we can concatenate the walk W1, . . . ,Wl into one walk W (i) from s(i)

to t(i) such that W (i) = 〈w1,1, . . . , w1,|W1| (= w2,1), w2,2, . . . , w2,|W2| (= w3,1), . . . , wl−1,|Wl−1| (=

wl,1), . . . wl,|Wl|〉, where wp,q is the qth vertex in Wp. Now we show that W (i) corresponds to a
desired swapping sequence on Gi.

Observe that the moving token (walking along W) brings into Gi a token t not originally in
Gi when it leaves Gi from ci right after visiting wp,|Wp| for some p. After that, when the moving

6

token visits wp+1,|Wp|, the token t leaves Gi and the token placement restricted to Gi becomes
exactly the same as the one right when wp,|Wp| had been visited. Thus, by swapping along

the walk W (i) we can replicate the swappings in G(i) by the swapping sequence corresponding
to W . Recall that f (i) is the same as f on V (Gi) with an exception f (i)(s(i)) = f(s). Since
λ(G, f, f ′, s, t, ∅) 6= ∞, we have f(s) = f ′(t). Hence, if t ∈ V (Gi), then f ′(i)(t(i)) = f ′(i)(t) =
f ′(t) = f(s). Otherwise, f ′(i)(t(i)) = f ′(i)(ci) = f(s). Thus, W (i) corresponds to a desired
swapping sequence of length

∑l
p=1(|Wp| − 1) for the instance 〈Gi, f (i), f ′(i), s(i), t(i), ∅〉 of Sub-

STS.

Constructing a walk in S.. As before, we construct a walk W (S) by concatenating the max-
imal subwalks of W passing through S. In almost the same way as before, we can see that
the swapping sequence along W (S) is the desired one. The only difference is the additional
requirement for visiting the vertices in PS . A cut vertex ci belongs to PS if there exists a
vertex v ∈ V (Gi) ⊆ V (S) such that f(v) 6= f(v′). The walk W has to visit ci since it starts at
s ∈ V (S), and thus W (S) visits ci.

The total length of the walks.. From the discussions above, we have

(|W (S)| − 1) +
a∑
i=1

(|W (i)| − 1) ≥ λ(S, fS , f
′
S , sS , tS , PS) +

a∑
i=1

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅).

Observe that each consecutive vertices wi, wi+1 in the walk W contributes 1 to exactly one of
the lengths |W (S)|−1, |W (1)|−1, . . . , |W (a)|−1. Thus, |W |−1 = (|W (S)|−1)+

∑a
i=1(|W (i)|−1).

Since |W | − 1 = λ(G, f, f ′, s, t, ∅), the claim follows. (The end of the proof of Claim 3.3.) 2

Claim 3.4 The following inequality holds:

λ(G, f, f ′, s, t, ∅) ≤ λ(S, fS , f
′
S , sS , tS , PS) +

a∑
i=1

λ(Gi, f
(i), f ′(i), s(i), t(i), ∅).

Proof (Claim 3.4). We assume that the right-hand side is not ∞ since otherwise the claim
clearly holds. Let W (S) = 〈wS,1, wS,2, . . . , wS,|W (S)|〉 be a walk corresponding to a desired swap-

ping sequence of length λ(S, fS , f
′
S , sS , tS , PS). Similarly, for each i, letW (i) = 〈wi,1, wi,2, . . . , wi,|W (i)|〉

be a walk corresponding to a desired swapping sequence of length λ(Gi, f
(i), f ′(i), s(i), t(i), ∅).

We first assume that t ∈ V (S). In this case, s(i) = t(i) = ci holds for each Gi. If f (i) 6= f ′(i),
then ci ∈ PS holds, and thus there exists l such that wS,l = ci. Replacing the vertex wS,l in
W (S) with the walk W (i), we obtain a new walk from sS to tS as follows:

〈wS,1 . . . , wS,l−1, ci, wi,2, . . . , wi,|W (i)|−1, ci, wS,l+1, . . . wS,|W (S)|〉.

Since W (S) and W (i) share ci only, after applying the swapping sequence along the new walk,

each vertex v in S has color f ′S(v) = f ′(v) and each vertex v ∈ V (Gi) \ {ci} has color f
′(i)
S (v) =

f ′(v). We repeat the replacement for all Gi. We call the obtained walk W . The walk W is a
walk from s (= sS) to t (= tS) that changes the coloring from f to f ′. Since each replacement
for Gi increases the length of W by |W (i)| − 1, the length of W can be bounded as follows:

|W | − 1 ≤ |W (S)| − 1 +

a∑
i=1

(|W (i) − 1)

= λ(S, fS , f
′
S , sS , tS , PS) +

a∑
i=1

λ(Gi, f
(j), f ′(i), s(i), t(i), ∅).

7

1

2

3 4

5

6 2

1

3 4

5

6 2

3

1 4

5

6 2

3

4 1

5

6 2

3

4 5

1

6 2

3

4 5

6

1 1

3

4 5

6

2

Figure 4: A swapping sequence on a cycle.

We next assume that t /∈ V (S). Let j be the unique index such that t ∈ V (Gj). Now
we have, sS = s, tS = cj , s

(j) = cj , t
(j) = t, and s(i) = t(i) = ci for each i 6= j. By the

same discussion as the previous case, we can construct a walk W from s to cj such that the
corresponding swapping sequence changes the colors of each vertex v /∈ V (Gj) to f ′(v), while
the vertices in V (Gj) \ {cj} are left untouched. Since the vertex of Gj does not appear in W
except for cj , the coloring obtained by W restricted to Gj coincides with f (j). Therefore, we
can obtain f ′ by attaching W (j) to the end of W by identifying the last vertex of W and the
first vertex of W (j). The length of the resultant walk is |W (S)| − 1 +

∑a
i=1(|W (i)− 1) as before.

(The end of the proof of Claim 3.4.) 2

Now the lemma follows by Eq. (2) and Claims 3.3 and 3.4. 2

3.2. Sub-STS on cycles

Lemma 3.5 Sub-STS on cycles can be solved in linear time.

Proof. Let 〈C, f, f ′, s, t, P 〉 be an instance of Sub-STS, where C is a cycle of n vertices. We
assume that f(s) = f ′(t) since otherwise it is a trivial no-instance. We arbitrarily fix a cyclic
orientation on C and call it the clockwise direction (and the other one the counterclockwise
direction).

Observe that if the moving token goes in one direction on the cycle, then the other tokens
passed are shifted to the other direction (see Fig. 4). Observe also that if the moving token goes
one step in one direction and goes back in the other direction immediately, then these moves
cancel out and the coloring stays the same. Thus, if P = ∅, then an optimal solution never goes
back and forth. Based on these observations, Yamanaka et al. [1] presented a polynomial-time
algorithm for Sequential Token Swapping on cycles. We also use these facts, but since
P 6= ∅ in general, we need some new ideas.

Let W = 〈u1, . . . , up (= v1), . . . , vq (= w1), . . . , wr〉 be a walk corresponding to a desired
swapping sequence of the minimum length, where

• v1 is the last vertex in W such that v1 = s and the coloring after executing the swapping
sequence up to v1 is f , and

• vq is the first vertex in W such that vq = t and the coloring after executing the swapping
sequence up to vq is f ′.

We show that there is a direction ←, which is clockwise or counterclockwise, such that the
following properties hold:

• the moves along 〈u1, . . . , up〉 first go in the direction ← some number of steps and then
go back in the opposite direction → the same number of steps;

• the moves along 〈v1, . . . , vq〉 go in the direction → only;

• the moves along 〈w1, . . . , wr〉 first go in the direction → some number of steps and then
go back in the direction ← the same number of steps.

8

To show the property of 〈v1, . . . , vq〉, assume that q ≥ 2 and that v2 is the clockwise neighbor
of v1. If vi = s for some i 6= 1, then V (C) = {v1, . . . , vq} holds as the coloring after executing the
swapping sequence up to vi is not f . Similarly, if vi = t for some i 6= q, then V (C) = {v1, . . . , vq}
holds as the coloring after executing the swapping sequence up to vi is not f ′. Otherwise,
{v1, . . . , vq} is the set of consecutive vertices on C from s to t in the clockwise direction. In all
cases, if there is a counterclockwise move, then the first such move vj → vj+1 can be removed
with the previous one vj−1 → vj without changing the set of visited vertices. Since W is of the
minimum length, we can conclude that there is no such move. Now the properties of 〈u1, . . . , up〉
and 〈w1, . . . , wr〉 follows easily as they are necessary only for visiting more vertices (in P).

We compute the minimum length for each of the cases V (C) 6= {v1, . . . , vq} and V (C) =
{v1, . . . , vq}.

The case of V (C) 6= {v1, . . . , vq}.. In this case, 〈v1, . . . , vq〉 is a simple path from s to t. We
assume that this is a clockwise path. (The other case is symmetric.) Since only 〈v1, . . . , vq〉
changes the coloring and the other parts of W cancel out, we first check that we get f ′ by
applying 〈v1, . . . , vq〉 to f and then compute the other parts that visit P \ {v1, . . . , vq}. Let
〈x1, . . . , xk〉 be the sequence of the vertices of P \ {v1, . . . , vq} ordered in the counterclockwise
order from s to t. Observe that if p ≥ 2, then the first part 〈u1, . . . , up〉 of W starts at s in
the counterclockwise direction, visits some vertices x1, . . . , xk′ , and comes back to s. Thus, its
length is the twice of the distance from s to xk′ in the counterclockwise direction. Similarly,
if r ≥ 2, then the last part 〈w1, . . . , wr〉 of W starts at t in the clockwise direction, visits the
remaining vertices xk′+1, . . . , xk, and comes back to t. Its length is the twice of the distance
from t to xk′+1 in the clockwise direction. The index k′ ∈ {0, . . . , k} that minimizes the sum
p + r can be found in linear time by precomputing the counterclockwise distances from s to
x1, . . . , xk and the clockwise distances from t to x1, . . . , xk in linear time.

The case of V (C) = {v1, . . . , vq}.. In this case, W = 〈v1, . . . , vq〉 as there is no other vertex to
visit. Now it is easy to compute the minimum length in polynomial time: guess the direction of
the walk; go in the guessed direction n− 1 steps from s; and then further proceed in the same
direction until we get the desired coloring. Since the minimum length is O(n3) (if not ∞) in
general [1], this algorithm runs in polynomial time.

To do it in linear time, we reduce the problem to a substring matching problem that can be
solved in linear time by the KMP algorithm [12].

Assume that W goes in the clockwise direction. (The other case is symmetric.) Let g be
the coloring obtained from f by executing the swapping sequence along W up to the first point
where all vertices are visited and the moving token is placed at t. The remaining of the walk
we are looking for repeats the (clockwise) walk from t to t some number of times. Observe
that if we repeat it i times, then the coloring we get is the one obtained from g by shifting
the non-moving tokens i steps in the counterclockwise direction (see Fig. 4). Thus it suffices to
compute the minimum number of shifts to obtain f ′.

Let tnext and tprev be the clockwise and counterclockwise neighbors of t, respectively. Let
Sg = 〈c1, . . . , cn−1〉 be the sequence of the colors under g of vertices from tnext to tprev in the
clockwise ordering. Similarly, let Sf ′ be the same sequence but under f ′. Observe that if Sf ′

can be obtained from Sg by i cyclic shifts (in the counterclockwise direction, or to the left in
this context), then Sf ′ = 〈ci+1, . . . , cn−1, c1, . . . , ci〉 holds. The minimum i satisfying this can
be found by finding the first index such that Sf ′ starts in Sg · Sg = 〈c1, . . . , cn−1, c1, . . . , cn−1〉
as a substring, which can be done in linear time [12]. 2

3.3. Sub-STS on complete graphs
Let I = 〈K, f, f ′, s, t, P 〉 be an instance of Sub-STS, where K = (V,E) is a complete

graph. As before, we assume that f(s) = f ′(t). Furthermore, we assume that s has a unique

9

color under f (and so does t under f ′). We set the unique color to 0. That is, we assume that
f(s) = f ′(t) = 0, f(v) 6= 0 if v 6= s, and f ′(v) 6= 0 if v 6= t. Observe that this does not change
the instance since the moving token anyway moves from s to t.

Let R = {v ∈ V | f(v) 6= f ′(v)}∪{s, t}∪P . We define a directed multigraph D = (VD, ED),
possibly with self-loops and parallel edges, as VD = {f(v) | v ∈ R} and ED = {(f(v), f ′(v)) |
v ∈ R}. This graph D is almost the same as the conflict graph defined in [1]. The difference
here is the self-loops corresponding to the vertices in P \ {v ∈ V | f(v) 6= f ′(v)} (and s when
s = t). Thus the assumption that f and f ′ use the same number of vertices for each color
implies that the indegree and the outdegree are the same for each vertex (or, color) in D. This
implies that each connected component of D is strongly connected and has an Eulerian circuit.
Let cc(D) denote the number of (strongly) connected components of D.

The rest of this subsection is devoted to a proof of the following equation:

λ(I) = |R|+ cc(D)− 2. (3)

Lemma 3.6 λ(I) ≤ |R|+ cc(D)− 2.

Proof. We prove this by constructing a swapping sequence following the ideas in [1]. Let
C1, . . . , Ccc(D) be the connected components of D. We assume without loss of generality that
0 ∈ V (C1).

For C1, let 〈e1(1), . . . , e1(t1)〉 be an Eulerian circuit of Ci such that e1(1) = (f(s), f ′(s)) and
e1(t1) = (f(t), f ′(t)). Such an Eulerian circuit exists since 0 has the unique outneighbor f ′(s)
and the unique inneighbor f(t). For each Ci with i ≥ 2, let 〈ei(1), . . . , ei(ti)〉 be an arbitrary
Eulerian circuit of Ci.

Let us fix a bijective correspondence between R and ED such that if v ∈ R corresponds
to e ∈ ED, then e = (f(v), f ′(v)) holds. Then, for each i and j, let vi(j) ∈ R be the vertex
corresponding to ei(j). Now we define a walk W from the Eulerian circuits above as follows:

W = 〈 v1(1), . . . , v1(t1), v2(1), . . . , v2(t2), v1(t1),

v3(1), . . . , v3(t3), v1(t1),

. . .

vcc(D)(1), . . . , vcc(D)(tcc(D)), v1(t1) 〉.

Clearly, W is a walk from s (= v1(1)) to t (= v1(t1)). It is easy to see that each vertex in
P appears in W . Observe that |W | − 1 = |R| + cc(D) − 2 since v1(t1) appears cc(D) times in
W each vertex in R \ {v1(t1)} appears once, and no other vertex appears in W .

Let fW be the coloring obtained by applying the swapping sequence along W to f . It suffices
to show that fW (v) = f ′(v) for each v ∈ R since vertices in V \R agree in f and f ′ and do not
appear in W .

First assume that v = v1(t1). Since the last vertex of W is v1(t1), it holds that fW (v1(t1)) =
f(v1(1)) = f(s) = 0 = f ′(t).

Next assume that v = vi(j) with j < ti. In this case, fW (vi(j)) = f(vi(j + 1)) holds since
the moving token visits vi(j) only once and it visits vi(j+1) for the first time right after visiting
vi(j). Since the edges ei(j) = (f(vi(j)), f

′(vi(j))) and ei(j + 1) = (f(vi(j + 1)), f ′(vi(j + 1)))
consecutively appear in the Eulerian circuit Ci, it holds that f ′(vi(j)) = f(vi(j + 1)), and thus
fW (vi(j)) = f ′(vi(j)).

Finally assume that v = vi(ti) for some i 6= 1. The color fW (vi(ti)) is the color of v1(t1)
when the moving token visits vi(ti). The vertex v1(t1) got this color fW (vi(ti)) when the moving
token visits vi(1). Since vi(1) is visited only once, fW (vi(ti)) = f(vi(1)) holds. Since the edges
ei(ti) = (f(vi(ti)), f

′(vi(ti))) and ei(1) = (f(vi(1)), f ′(vi(1))) consecutively appear in Ci, it
holds that f ′(vi(ti)) = f(vi(1)), and thus fW (vi(ti)) = f ′(vi(ti)). 2

10

Lemma 3.7 λ(I) ≥ |R|+ cc(D)− 2.

Proof. We assume without loss of generality s, t /∈ P . We use induction on λ(I). If λ(I) = 0,
then the instance I = 〈K, f , f ′, s, t, P 〉 satisfies that f = f ′, s = t, P = ∅, and thus
R = {s, t} = {s}. As f(s) = 0 (= f ′(s)), we have VD = {0} and ED = {(0, 0)}. Hence,
|R| + cc(D) − 2 = 1 + 1 − 2 = 0 = λ(I). In the following, we assume that λ(I) = k for some
k ≥ 1 and that the lemma holds for every instance I ′ with λ(I) < k.

Let W = 〈w1, w2, . . . , wk+1〉 be the walk corresponding to a desired swapping sequence of
length k. Let f2 be the second coloring in the swapping sequence. That is, f2(w1) = f(w2),
f2(w2) = f(w1), and f2(v) = f(v) for all v /∈ {w1, w2}. Let W2 = 〈w2, w3, . . . , wk+1〉. Then, W2

is the walk corresponding to a swapping sequence for I2 = 〈K, f2, f ′, w2, t, P 〉. In the same way
asR andD for I, we defineR2 andD2 = (VD2 , ED2) for I2. Observe that λ(I2) ≤ |W2|−1 = k−1.
By the induction hypothesis, λ(I2) ≥ |R2|+cc(D2)−2 holds. Thus we have k ≥ |R2|+cc(D2)−1.
Now, it suffices to show that

|R2|+ cc(D2) ≥ |R|+ cc(D)− 1.

In the following, we consider the cases of w2 ∈ R and w2 /∈ R separately.

The case of w2 ∈ R.. Recall that

R = {v ∈ V | f(v) 6= f ′(v)} ∪ {w1, t} ∪ P,
R2 = {v ∈ V | f2(v) 6= f ′(v)} ∪ {w2, t} ∪ P.

By the assumption w2 ∈ R, it holds that w2 ∈ R ∩R2. For v /∈ {w1, w2}, we have v ∈ R if and
only if v ∈ R2 since f2(v) = f(v). Hence, R2 ⊆ R and R \ R2 ⊆ {w1}. That is, R = R2 or
R = R2 ∪̇ {w1}, where ∪̇ denotes the disjoint union.
• Subcase R = R2. In this case, both w1 and w2 belong to R = R2, and thus VD2 = VD.

Observe that w1 ∈ R2 implies that f2(w1) 6= f ′(w1) or w1 = t. The latter case also implies
that f2(w1) 6= f ′(w1) as f ′(w1) = f ′(t) = 0 6= f(w2) = f2(w1). This implies that the set
ED2 of edges is obtained from ED by removing (f(w1), f

′(w1)) and (f(w2), f
′(w2)) and adding

(f2(w2), f
′(w2)) = (f(w1), f

′(w2)) and (f2(w1), f
′(w1)) = (f(w2), f

′(w1)). If the colors f(w1)
and f(w2) belong to different connected components Ca and Cb in D, then Ca and Cb are
merged into a single connected component of D2 by the replacement of the edges, while the
other connected components are unaffected. Thus, cc(D2) = cc(D) − 1 holds. On the other
hand, If the colors f(w1) and f(w2) belong to the same connected component Ca in D, then
all colors involved in the replacement belong to Ca. Since other connected components are
unaffected, cc(D2) ≥ cc(D) holds. Now, we can conclude that

|R2|+ cc(D2) = |R|+ cc(D2) ≥ |R|+ cc(D)− 1.

• Subcase R = R2 ∪̇ {w1}. The set of edges ED2 is obtained from ED by removing
(f(w1), f

′(w1))) and (f(w2), f
′(w2)) and adding (f2(w2), f

′(w2)) = (f(w1), f
′(w2)). Since

w1 /∈ R2, it holds that f ′(w1) = f2(w1) = f(w2). Thus, (f(w1), f(w2)) = (f(w1), f
′(w1)) ∈ ED.

Since (f(w1), f
′(w1)), (f(w2), f

′(w2)) ∈ ED, the colors f(w1), f
′(w1), f(w2) and f ′(w2) belong

to the same connected component of D. This implies that cc(D2) ≥ cc(D) as before, and thus

|R2|+ cc(D2) ≥ (|R| − 1) + cc(D) = |R|+ cc(D)− 1.

11

The case of w2 /∈ R.. We first show that f ′(w1) 6= f(w2). Suppose to the contrary that f(w2) =
f ′(w1). The assumption w2 /∈ R implies that f ′(w2) = f(w2), and thus f ′(w2) = f ′(w1). Since
the color f(w1) = 0 is unique in f , we have f(w2) 6= 0. Hence we have

f(w1) 6= f ′(w1) = f ′(w2) = f(w2).

From the assumptions, w1, w2 /∈ P holds. We can see that wk+1 /∈ {w1, w2} as follows: if t = w1

(= s), then f(w1) = f(s) = 0 = f ′(t) = f ′(w1) contradicting f(w1) 6= f ′(w1); if t = w2, then
f(w2) = f ′(w1) 6= f(w1) = 0 = f ′(t) = f ′(w2) contradicting w2 /∈ R. Since K is a complete
graph, w1 and w2 have the same neighborhood. Therefore, the instance I2 = 〈K, f2, f ′, w2, t, P 〉
can be seen as the one obtained from I = 〈K, f, f ′, w1, t, P 〉 by renaming w1 as w2 and w2 as
w1. This implies that λ(I) = λ(I2), a contradiction. Thus, f ′(w1) 6= f(w2) holds.

By the assumption, w2 /∈ R. Since f2(w1) = f(w2) and f ′(w1) 6= f(w2), we have f2(w1) 6=
f ′(w1), and thus w1 ∈ R2. For v /∈ {w1, w2}, we have v ∈ R if and only if v ∈ R2 since
f2(v) = f(v). Hence, it holds that R2 = R ∪̇ {w2}. Now the set ED2 is obtained from ED by
removing (f(w1), f

′(w1)) and adding (f2(w2), f
′(w2)) = (f(w1), f

′(w2)) and (f2(w1), f
′(w1)) =

(f(w2), f
′(w1)). Assume first that f(w2) ∈ VD. The same discussion as for the case of w2 ∈ R

and R = R2 shows that cc(D2) ≥ cc(D)−1: if f(w1) and f(w2) are in the different component,
cc(D2) = cc(D)− 1; otherwise cc(D2) ≥ cc(D). Next assume that f(w2) /∈ VD, and thus VD2 =
VD ∪̇ {f(w2)}. Since f(w2) = f ′(w2), (f(w1), f

′(w2)) = (f(w1), f(w2)) and (f(w2), f
′(w1)) =

(f ′(w2), f
′(w1)) hold. Hence, D2 is obtained from D by adding the vertex f(w2) and replacing

the edge (f(w1), f
′(w1)) with the path (f(w1), f(w2), f

′(w1)). Thus, cc(D2) = cc(D) holds.
Therefore, it holds in both cases that

|R2|+ cc(D2) ≥ (|R|+ 1) + cc(D)− 1 > |R|+ cc(D)− 1,

as required. 2

3.4. The whole algorithm

Let 〈G = (V,E), f, f ′, k〉 be an instance of Sequential Token Swapping, such that
G = (V,E) is a block-cactus graph with |V | = n and |E| = m. We first compute the set BG
of the biconnected components. For each H ∈ BG, we mark all cut vertices, check whether H
contains a vertex v with f(v) 6= f(v′), and check whether H is a cycle or a complete graph. If
H is a complete graph, then we construct an implicit representation so that we do not have to
store the redundant information E(H). These preprocessing can be done in O(m+ n) time in
total.

Let s, t ∈ V . We compute the instance IH = 〈H, fH , f ′H , sH , tH , PH〉 of Sub-STS for all
H ∈ BG. We can do it in O(m+ n) time in a bottom-up manner over the tree structure of the
biconnected components. Let H ∈ BG. If H is a cycle, then we compute λ(IH) in O(|V (H)|)
time using the algorithm in Lemma 3.5. If H is a complete graph, then we compute λ(IH) using
Eq. (3), which can be done in O(|V (H)|) time from the implicit representation of H. Thus, by
Lemma 3.2, we can solve (s, t)-STS in O(n) time, given that the aforementioned preprocessing
is done. Since we have n2 candidates for the pair s, t, the total running time is O(n3). This
completes the proof of Theorem 3.1.

Note that we only need O(m+ n) time to solve (s, t)-STS.

Corollary 3.8 (s, t)-STS on block-cactus graphs can be solved in linear time.

4. Hardness of the few-color and colorful cases

Since Sequential Token Swapping clearly belongs to NP, in the following we only show
the NP-hardness for each case.

12

4.1. General tools for showing hardness

The first tool uses the hardness of Hamiltonian Path to show the hardness of Sequential
Token Swapping with few colors.

A path (a cycle) in a graph is a Hamiltonian path (a Hamiltonian cycle, resp.) if it visits
every vertex in the graph exactly once. The problems Hamiltonian Path and Hamiltonian
Cycle ask whether a given graph has a Hamiltonian path or a Hamiltonian cycle, respectively.
In the problem (s, t)-Hamiltonian Path, the first and last vertices s and t are fixed.

By attaching a cycle of length q at a vertex v, we mean the operation of adding q − 1 new
vertices and q edges that form a cycle with v.

Theorem 4.1 Let C be a graph class. For every fixed c ≥ 2, Sequential Token Swapping
with c colors is NP-complete on C if the following conditions are satisfied:

1. (s, t)-Hamiltonian Path is NP-complete on C;

2. there is an integer q ≥ 3 such that C is closed under the operation that attaches a cycle of
length q at a vertex.

Proof. We only prove the case of c = 2. For a larger c, we can attach as many cycles as we
need and use extra colors there.

Let G = (V,E) be a graph in C and s, t ∈ V . Let H be the graph obtained from G by
attaching a cycle of length q at each vertex. Note that H ∈ C by the assumption. We set
k = (q + 1)(|V | − 2) + 3.

Now we define colorings f and f ′ (see Fig. 5). We call the color 1 white and the color 2
black. For each v ∈ V , let Cv denote the cycle attached at v. Let f color one neighbor of s in
Cs black, and all other vertices in Cs white. We let f ′ color all vertices in Cs white. Similarly,
let f color all vertices in Ct white and let f ′ color one neighbor of t in Ct black, and all other
vertices in Ct white. For v ∈ V \ {s, t}, let f color one neighbor of v, say w, in Cv black, and
all other vertices in Cv white. Let f ′ color the neighbor of w in V (Cv) \ {v} black, and all other
vertices in Cv white.

For each v ∈ V \ {t}, let bv denote the unique black vertex u ∈ V (Cv) under f . Similarly,
for each v ∈ V \ {s}, let b′v denote the unique black vertex u ∈ V (Cv) under f ′. Note that for
each v ∈ V \ {s, t}, bv and b′v are adjacent.

s

t

s

t

s

t

G

f f ′

bs bs

b′tb′t

Figure 5: The reduction for Theorem 4.1 (q = 4).

We show that 〈G, s, t〉 is a yes-instance of (s, t)-Hamiltonian Path if and only if 〈H, f, f ′, k〉
is a yes-instance of Sequential Token Swapping.

First assume that G has a Hamiltonian path P = 〈v1, v2, . . . , vn〉 from v1 = s to vn = t. Let

W = 〈bs, s,
−→
C v2 ,

−→
C v3 , . . . ,

−→
C vn−1 , t, b

′
t〉 be a walk in H such that for 2 ≤ i ≤ n − 1,

−→
C vi is the

cyclic walk on Cvi such that it starts and ends at vi and proceeds in the ordering that bvi is visited
right before the second visit of vi. The swapping sequence along W brings the black token on bs
to b′t and moves the black token on bv to b′v for each v ∈ V \{s, t}. That is, the coloring obtained

13

is f ′. The length of the sequence is 4 + 2(|V | − 2) + (q − 1)(|V | − 2)− 1 = (q + 1)(|V | − 2) + 3
since it visits bs, s, t, and b′t once, each v ∈ V \ {s, t} twice, and all vertices in V (Cv) \ {v} for
v ∈ V \ {s, t} once.

Next assume that 〈H, f, f ′, k〉 is a yes-instance of Sequential Token Swapping. Let W
be a walk corresponding to a swapping sequence of length at most k from f to f ′. Observe that
W has to start at bs and end at b′t since otherwise one cannot get rid of the black token in Cs
nor place a black token in Ct. Since f(bv) 6= f ′(bv) for each v ∈ V \ {s, t}, W has to visit Cv for
each v ∈ V \ {s, t}. Furthermore, W has to visit all vertices of Cv for each v ∈ V \ {s, t} since
otherwise the moves in Cv cancel out and thus the black token in Cv cannot move. Now consider
the walk WG obtained from W by taking the edges of G only. From the discussion above, we can
bound the length of WG as |WG|−1 ≤ |W |−1−(1+1+(|V |−2)q) ≤ k−(2+(|V |−2)q) ≤ |V |−1.
Observe that WG starts at s, visits all vertices in V \ {s, t}, and ends at t. This implies that
WG is a Hamiltonian path of G from s to t. 2

The second tool uses the hardness of Steiner Tree to show the hardness of the colorful
case of Sequential Token Swapping. In this case, we ask f to be injective and call this
condition the colorful condition.

For a walk W , let V (W) be the set of vertices in W .

Lemma 4.2 Let f be an injective coloring of a graph G. If a walk W in G corresponds to a
swapping sequence from f to f itself, then |V (W)| ≤ (|W |+ 1)/2.

Proof. We use induction on |W |. A walk W with |W | = 1 satisfies the statement.
Assume that |W | > 1 and the statement holds for all strictly shorter walks. If each vertex

in V (W) appears at least twice in W , then |V (W)| ≤ |W |/2 holds. Thus assume that there
exists a vertex v ∈ V (W) that appears only once in W . Since f is injective, W has to start and
end at the same vertex, and thus v cannot be the first (and last) vertex in W . Let u and w be
the vertex right before and after v in W , respectively.

When the swapping sequence along W visits v, the token of unique color f(v) moves to u.
The next move brings the token on w to v, and after that the color of v never changes. This
implies that indeed u = w. Let W ′ be the walk obtained from W by replacing the subwalk
〈u, v, u〉 with 〈u〉. Observe that |W ′| = |W | − 2 and |V (W ′)| = |V (W)| − 1. By the induction
hypothesis, |V (W ′)| ≤ (|W |′ + 1)/2 holds. This implies that |V (W)| − 1 ≤ ((|W | − 2) + 1)/2,
and thus |V (W)| ≤ (|W |+ 1)/2. 2

For a graph G = (V,E) and a set K ⊆ V , the subgraph T of G is a Steiner tree if it is a
tree and contains all vertices in K.

Problem: Steiner Tree

Input: A graph G = (V,E), a set K ⊆ V with |K| ≥ 2, and an integer `.

Question: Is there a connected subgraph T of G such that K ⊆ V (T) and |E(T)| ≤ `?

Theorem 4.3 Sequential Token Swapping with the colorful condition is NP-complete on
a graph class C if the following conditions are satisfied:

1. Steiner Tree is NP-complete on C;

2. there is an integer q ≥ 3 such that C is closed under the operation that attaches a cycle of
length q at a vertex.

14

Proof. Let G = (V,E) be a graph in C, K ⊆ V , and ` be an integer. Let H ∈ C be the graph
obtained from G by attaching a cycle of length q at each vertex in K. For each v ∈ K, let Cv
denote the cycle attached at v. We set k = 2`+ q|K|. Let f be an injective coloring of G and
f ′ be the coloring obtained from f by cyclically shifting one step (in an arbitrary direction) the
colors of the vertices in V (Cv) \ {v} for each v ∈ K. See Fig. 6.

G

f

K 2

4

1

3

5
8

7 6

9

10

f ′

4

3

1

2

5
6

8 7

9

10

Figure 6: The reduction for Theorem 4.3 (q = 4).

We show that 〈G,K, `〉 is a yes-instance of Steiner Tree if and only if 〈H, f, f ′, k〉 is a
yes-instance of Sequential Token Swapping.

The only-if direction.. First assume that there is a tree T such that T is a subgraph of G,
K ⊆ V (T), and |E(T)| ≤ `. Let W be a walk on T that visits each edge of T exactly twice.
For each v ∈ K, we expand W by inserting a walk right after the first occurrence of v in W
such that the inserted walk is a cycle through Cv that has direction opposite to the cyclic shift
applied to Cv when we constructed f ′. We can see that the swapping sequence along this walk
obtains f ′. The length of the sequence is 2|E(T)|+ q|K| ≤ 2`+ q|K| = k.

The if direction.. Next assume that 〈H, f, f ′, k〉 is a yes-instance of Sequential Token Swap-
ping. Let W be a walk corresponding to a swapping sequence of length at most k from f to
f ′. Let R be the set of vertices that W visits. From W , we construct a walk W ′ by taking the
vertices of G only.

If W does not start in V (Cv) \ {v} for some v ∈ K, then W contains a cyclic subwalk that
visits v, V (Cv) \ {v}, and v again in this ordering. In W ′, this cyclic subwalk is replaced with
the trivial walk 〈v〉. This decreases the length of the walk by q.

If W starts at a vertex in V (Cv)\{v} for some v ∈ K, it has to end at a vertex in V (Cv)\{v}.
We claim that W contains the edges of Cv at least q times in total. Suppose to the contrary
that this is not the case. Then, there is an edge e in Cv that is not included in W . Since W
has to visit all vertices in V (Cv) \ {v} as they have different colors in f and f ′, W contains all
other edges in Cv. This implies that W starts at an endpoint of the missing edge e, leaves Cv,
visits some other vertices and comes back to Cv, and then proceeds in Cv and ends at the other
endpoint of e (see Fig. 7). In this case, some vertex in V (Cv) \ {v} will be colored with f(v) in
the final coloring. This contradicts the assumption that f is injective and f(v) = f ′(v). Hence,
this cycle also contributes to the shrinking of the length of the walk by at least q.

v
e

Figure 7: A walk contains the edges of Cv at least q times in total.

15

The discussions above imply that |W ′| ≤ |W | − q|K|. Since |W | ≤ k+ 1 = 2`+ q|K|+ 1, we
have |W ′| ≤ 2`+ 1. Observe that W ′ is a swapping sequence from f to f itself. By Lemma 4.2,
it holds that |V (W ′)| ≤ (|W ′| + 1)/2 ≤ ` + 1. Since G[V (W ′)] is connected, it has a spanning
tree of at most ` edges. 2

It is known that Steiner Tree is NP-complete on chordal graphs [13] and chordal bipartite
graphs [14]. It is also known that (s, t)-Hamiltonian Path is NP-complete on chordal graphs
and chordal bipartite graphs [15]. Observe that chordal graphs and chordal bipartite graphs
are closed under the operations that attach a cycle of length 3 and 4, respectively. Thus,
Theorems 4.1 and 4.3 implies the hardness on them.

Corollary 4.4 Sequential Token Swapping is NP-complete on chordal graphs and on
chordal bipartite graphs in both the colorful and few-color cases.

4.2. The few-color case on grid-like graphs

Recall that a graph is a grid graph if it is an induced subgraph of a grid. A bipartite graph
is balanced if it admits a proper 2-coloring such that the color classes have the same size. Note
that a grid graph is bipartite.

It is known that Hamiltonian Cycle is NP-complete on grid graphs [16]. The next lemma
follows easily from this fact.

Lemma 4.5 Hamiltonian Path is NP-complete on balanced grid graphs given with grid rep-
resentations.

Proof. We show the NP-hardness by giving a reduction from Hamiltonian Cycle on grid
graphs given with grid representations, which is known to be NP-complete [16]. Let G = (V,E)
be an instance of this problem. We assume that G is balanced and has minimum degree at least
2 as otherwise G does not have any Hamiltonian cycle.

Let v = (mx,my) ∈ V be the top vertex in the rightmost column; that is, mx = max{x |
(x, y) ∈ V } and my = max{y | (mx, y) ∈ V }. By the assumption of the minimum degree, v
has degree 2. Let u = v + (−1, 0) and w = v + (0,−1) be the neighbors of v (see Fig. 8 (left)).
Let H be the graph obtained from G by adding four vertices s = v + (1, 1), s′ = v + (1, 0),
t = v+ (2,−1), and t′ = v+ (1,−1) into the grid representation (see Fig. 8 (right)). Clearly, H
is balanced.

Observe that every Hamiltonian cycle of G (if any exists) contains the path 〈u, v, w〉, and
every Hamiltonian path of H (if any exists) contains the paths 〈s, s′, v, u〉 and 〈w, t′, t〉. Since
a Hamiltonian cycle of G and a Hamiltonian path of H play the same role in the subgraphs
induced by V \ {v}, we can conclude that G has a Hamiltonian cycle if and only if H has a
Hamiltonian path. 2

v

w

v

w

s

s′

t′ t

G H

u u

Figure 8: The graphs G and H in the proof of Lemma 4.5.

16

Theorem 4.6 For every fixed constant c ≥ 2, Sequential Token Swapping with c colors is
NP-complete on king’s graphs.

Proof. We prove the theorem only for the case where c = 2. For c > 2, we add c − 2 new
vertices to G defined below and for each new vertex, set a new color as its initial and target
colors. Then the proof works as it is.

We prove the NP-hardness by a reduction from Hamiltonian Path on balanced grid graphs
(see Lemma 4.5).

Let G = (V,E) be a balanced grid graph given with a grid representation. We assume
that G is connected. From G, we construct an instance 〈H, f, f ′, k〉 of Sequential Token
Swapping. We set k = |V | − 1.

Let minx = min{x ∈ Z | (x, y) ∈ V } and miny = min{y ∈ Z | (x, y) ∈ V }. We also define
maxx and maxy in the analogous ways. Let U = {(x, y) ∈ Z2 \ V | minx ≤ x ≤ maxx, miny ≤
x ≤ maxy}. The grid graph represented by U ∪ V is a grid and has size polynomial in |V |.
From this grid, we obtain H by adding all diagonal edges of the unit squares. Note that H is a
king’s graph.

Let f be the coloring of H that maps the odd vertices to 1 and the even vertices to 2. Let
f ′ be the coloring obtained from f by reversing the colors of the vertices in the original grid
graph G. That is, f ′(v) = f(v) for v ∈ U , f ′(v) = 1 for v ∈ V with f(v) = 2, and f ′(v) = 2 for
v ∈ V with f(v) = 1.

We show that G has a Hamiltonian path if and only if 〈H, f, f ′, k〉 is a yes-instance of
Sequential Token Swapping.

The only-if direction.. Let P = 〈v1, . . . , v|V |〉 be a Hamiltonian path of G. Let S = 〈f1, . . . , f|V |〉
be a swapping sequence corresponding to P , where f1 = f . Since each vertex in the walk is
visited only once, we have f|V |(vi) = f(vi+1) for 1 ≤ i ≤ |V | − 1, and f|V |(v|V |) = f(v1). Since
P is a path of G, vi and vi+1 have different parities. Also, since G is balanced, v|V | and v1 have
different parities. Therefore, f|V | is obtained from f1 by changing the color of each vertex in V
to the other one. That is, f|V | = f ′.

The if direction.. Let 〈f1, . . . , fk′+1〉 be a swapping sequence between f and f ′ with k′ ≤ k. Let
W = 〈w1, . . . , wk′+1〉 be the corresponding walk in H. Since f(v) 6= f ′(v) for every v ∈ V , the
moving token has to visit all vertices in V . Furthermore, since |W | = k′ + 1 ≤ k + 1 = |V |,
indeed the moving token visits each vertex in V exactly once and does not visit other vertices
(and thus, k′ = k). Hence, it suffices to show that W is a walk also in G; that is, each edge
{wi, wi+1} is not diagonal. Suppose to the contrary that an edge {wi, wi+1} in W is diagonal.
This implies that wi and wi+1 have the same parity, and thus f(wi) = f(wi+1). Since W visits
a vertex at most once, f(wi+1) = f ′(wi) has to hold. Thus we have that f(wi) = f ′(wi). This
contradicts the assumption that f ′(v) 6= f(v) for each v ∈ V . 2

In the proof above, we showed that no diagonal edge is used in shortest swapping sequences.
Therefore, the proof works without the diagonal edges.

Corollary 4.7 For every fixed constant c ≥ 2, Sequential Token Swapping with c colors
is NP-complete on grids.

Observe further that the proof of Theorem 4.6 works even if we add or remove an arbitrary
set of edges connecting vertices of the same parity since we can just ignore them. Now consider
the graph obtained from a king’s graph by removing all edges connecting even vertices and
adding all possible edges connecting odd vertices. Such a graph is a split graph since the even
vertices form an independent set and the odd vertices form a clique. Thus it is hard on split
graphs as well.

17

Corollary 4.8 For every fixed constant c ≥ 2, Sequential Token Swapping with c colors
is NP-complete on split graphs.

4.3. The colorful case on grid-like graphs

We now consider Sequential Token Swapping with the colorful condition on grid-like
graphs.

We first show the hardness on the ordinary grids. Recall that (s, t)-STS with the colorful
condition on grids are known as the generalized 15 puzzle (or the (n2 − 1) puzzle) and shown
to be NP-complete [5, 6]. For Sequential Token Swapping, we can use the reduction by
Demaine and Rudoy [6] almost directly with a small change. Their reduction is from the
following problem.

Problem: Rectilinear Steiner Tree

Input: A set P ⊆ Z2
+ of integer points in the plane and an integer `.

Question: Is there a tree T on the plane that satisfies the following conditions? T contains all
points in P ; every edge of T is horizontal or vertical; the total length of the edges in T is
at most `.

Rectilinear Steiner Tree is known to be strongly NP-hard [17], and thus we assume that
the maximum coordinate of the points in P is bounded from above by a polynomial in |P |.

The high-level idea of the reduction in [6] is to represent the integer points in the plane
by a grid and then each point in P by some local changes of the colors around the vertex
corresponding to the point. Then, a swapping sequence for this instance forms a rectilinear
Steiner tree on the plane. The difference between their setting and ours is that they can fix
the starting and ending vertices, but we cannot. This difference actually does not affect the
correctness of their proof applied to our case. To not repeat their argument here, we only give
a proof sketch.

Theorem 4.9 Sequential Token Swapping with the colorful condition is NP-complete on
grids.

Proof (sketch). From an instance of 〈P, `〉 Rectilinear Steiner Tree, we construct an
instance 〈G, f, f ′, k〉 of Sequential Token Swapping.

Let c = 18|P | and D be the maximum coordinate of the points in P . Let G be the ((D +
1)c)× ((D+ 1)c) grid. Let f be an injective coloring of G, and f ′ be the coloring obtained from
f by rotating the colors of vertices (cx, cy), (cx+ 1, cy), and (cx, cy + 1) as shown in Fig. 9 for
each point (x, y) ∈ P . We set k = (2`+ 1)c.

This construction is almost the same as the one in [6]. In their setting, they fix one vertex
p1 ∈ P arbitrarily and set both s and t to the vertex corresponding to p1. They omit the color
rotation around the vertices corresponding to p1 as it is anyway visited as s and t.

cx

cy 3

4 1

2

cx

cy 2

3 1

4f : f ′ :

Figure 9: Rotating the colors around (cx, cy).

First assume that 〈P, `〉 is a yes-instance of Rectilinear Steiner Tree. Demaine and
Rudoy [6] showed that in this case there exists a swapping sequence S such that:

18

• the length is at most 2c`+ 18(|P | − 1);

• the moving token starts and ends at the vertex (cx1, cy1), where (x1, y1) is the coordinate
of an arbitrarily chosen point p1 ∈ P ;

• the obtained coloring is the same as f for three vertices (cx1, cy1), (cx1 + 1, cy1) and
(cx1, cy1 + 1);

• the obtained coloring is the same as f ′ for the other vertices.

We want to expand S by inserting a subsequence that rotates the colors of (cx1, cy1), (cx1 +
1, cy1), and (cx1, cy1 + 1) and leaves the colors of the other vertices unchanged. This is possible
with at most 18 steps [6], and thus we get a swapping sequence from f to f ′ with length at
most 2c`+ 18|P | = k.

Next assume that 〈G, f, f ′, k〉 is a yes-instance of Sequential Token Swapping. For this
direction, we can use the proof in [6] as it is. In the 1/c scale, we embed the edges used in a
walk corresponding to a swapping sequence into the plane. Then, using the analysis in [6], we
can show that this walk (or a spanning tree of it) gives a rectilinear Steiner tree for P with
length at most `. 2

Before showing the hardness of Sequential Token Swapping with the colorful condition
on king’s graphs, we first show that Steiner Tree is NP-complete on king’s graphs since the
proofs are similar and this one is easier than the one for Sequential Token Swapping. Also,
the result itself might be useful for connecting some graph problems and geometric problems.

Theorem 4.10 Steiner Tree is NP-complete on king’s graphs.

Proof. The problem clearly belongs to NP. We prove the NP-hardness by giving a reduction
from Rectilinear Steiner Tree. From an instance 〈P, `〉 of Rectilinear Steiner Tree,
we construct an instance 〈G,K, `〉 of Steiner Tree. Let D be the maximum coordinate of the
points in P . Let G be the (2D−1)×(2D−1) king’s graph. For each point (x, y) ∈ {1, 2, . . . , D}2,
let g((x, y)) = (x + y − 1,−x + y + D). We set K = {g(p) | p ∈ P}. That is, we rotate the
original instance 45 degrees and embed it into the (2D−1)×(2D−1) king’s graph (see Fig. 10).
Note that the (2D − 1) × (2D − 1) king’s graph contains the D × D grid as a subgraph. We
show that 〈P, `〉 is a yes-instance if and only if so is 〈G,K, `〉.

x

y

D

D

Figure 10: The reduction to Steiner Tree on king’s graphs.

The only-if direction.. Assume that 〈P, `〉 is a yes-instance of Rectilinear Steiner Tree.
Hanan [18] showed that there exists a minimum rectilinear Steiner tree for P such that all edges
are on a grid formed by taking the horizontal and vertical lines through each point in P . This
implies that by rotating 45 degrees and scaling by a factor of

√
2, we can embed T into the

D×D grid contained in G and obtain a Steiner tree for K with length at most `. See Fig. 11.

19

x

y

D

D

Figure 11: Embedding a rectilinear Steiner tree in the plane into a king’s graph.

The if direction.. Let T be a Steiner tree for K with length at most `. By rotating T 45 degrees
and scaling by a factor of 1/

√
2, we obtain a (not necessarily rectilinear) tree T ′ in the plane

that includes all points in P (see Fig. 12).

x

y

D

D

Figure 12: Embedding a Steiner tree of a king’s graph into the plane.

We now replace the non-rectilinear edges in T ′ with rectilinear edges, while maintaining the
connectivity, as follows. We partition each non-rectilinear edges in T ′ into segments of length
1/
√

2 (see Fig. 13 (left)). Observe that each of such segments takes a form of {(x, y), (x +
1/2, y + 1/2)} or {(x, y), (x+ 1/2, y − 1/2)}.

We replace each segment {(x, y), (x+ 1/2, y+ 1/2)} with two segments {(x, y), (x+ 1/2, y)}
and {(x + 1/2, y), (x + 1/2, y + 1/2)}. Similarly, we replace {(x, y), (x + 1/2, y − 1/2)} with
{(x, y), (x + 1/2, y)} and {(x + 1/2, y), (x + 1/2, y − 1/2)}. See Fig. 13 (right). After the
replacements, we take a spanning tree, which is a rectilinear Steiner tree for P , and call it T ′′.

x

y

D

D
x

y

D

D

Figure 13: Replacing non-rectilinear edges.

Now we prove that the length of the rectilinear Steiner tree obtained above is at most `. If
an edge of T is between vertices of the same parity, then the edge corresponds to a unit-length

20

rectilinear segment in T ′ (and thus in T ′′ as well). Otherwise, the edge corresponds to two
segments of length 1/2 in T ′′. Therefore, the length of the rectilinear Steiner tree is at most
|E(T)| (≤ `). 2

We now show the hardness of Sequential Token Swapping with the colorful condition
on king’s graphs. Although the proof is similar to the one for grids, the presence of diagonal
edges makes it a little more complicated.

Theorem 4.11 Sequential Token Swapping with the colorful condition is NP-complete on
king’s graphs.

Proof. We prove the NP-hardness by a reduction from Rectilinear Steiner Tree. From
an instance 〈P, `〉 of Rectilinear Steiner Tree, we construct an instance 〈G, f, f ′, k〉 of
Steiner Tree that satisfies the colorful condition.

Let c = 12|P | and D be the maximum coordinate of the points in P . We set k = (2`+ 1)c.
Let G be the ((2D+ 1)c)× ((2D+ 1)c) king’s graph. For each point p = (x, y) ∈ {1, 2, . . . , D}2,
let g(p) = (gx(p), gy(p)) = (c(x + y), c(−x + y + D + 1)). Let f be an injective coloring of
G, and f ′ be the coloring obtained from f by rotating the colors of the four vertices (gx(p) ±
1, gy(p)), (gx(p), gy(p) ± 1) for each p ∈ P as shown in Fig. 14. We show that 〈P, `〉 is a yes-
instance if and only if so is 〈G, f, f ′, k〉.

gx(p)

gy(p)

3

1

5

4
2

f :

gx(p)

gy(p)

4

1

2

5
3

f ′ :

Figure 14: Rotating the colors around the vertex g(p).

The only-if direction.. Assume that 〈P, `〉 is a yes-instance of Rectilinear Steiner Tree.
By the same discussion as in Theorem 4.10, there exists a Steiner tree for P with at most `
edges in the D×D grid. Let T be such a tree. Now, by scaling T by a factor of

√
2 · c and then

rotating 45 degrees, we obtain a Steiner tree T ′ for g(P) in G such that the number of edges is
at most c`. That is, if T contains an edge {u, v}, then T ′ contains the unique g(u)–g(v) path
of length c in G that corresponds to {u, v}. Note that since T is rectilinear, T ′ only contains
diagonal edges.

From T ′, we construct a swapping sequence from f to f ′ with length at most k. Let p1
be an arbitrary vertex in P , and let W be a walk from g(p1) in T ′ that contains each edge
of T ′ exactly twice. As observed in [6], the moves along such a walk cancel out, and thus the
swapping sequence corresponding to W is a swapping sequence from f to f itself.

We construct a swapping sequence between f and f ′ by adding some moves to W . For each
point p ∈ P , we insert five moves to W just after the moving token visits g(p) for the first time.
Suppose that the current configuration is f and the moving token is at g(p). Then, moving the
moving token as in Fig. 15, we can match the colors of tokens at four vertices (gx(p)±1, gy(p)±1)
to f ′. Note that this movement does not affect the colors of other tokens. Since W contains all
edges of T ′, W contains g(p) for every p ∈ P . In addition, the vertices in T ′ have the same parity
since it contains only diagonal edges. Thus, the four vertices (gx(p)±1, gy(p)), (gx(p), gy(p)±1)
do not appear in W . This implies that the four vertices are touched by the inserted moves only.
Therefore, by inserting the five moves into W for each p ∈ P , we obtain a swapping sequence
between f and f ′.

21

gx(p)

gy(p)

3

1

5

4
2

3

2

5

4
1

4

2

1

5
3

4

1

2

5
3

Figure 15: A movement to match the colors of tokens around g(p) to f ′.

Now we prove that the length is at most k. Since T ′ has at most c` edges and W contains
each of them exactly twice, |W | ≤ 2c` holds. Since we add five moves to W for each p ∈ P , the
length of the resultant walk is |W |+ 5|P | < 2c`+ c = k.

The if direction.. Assume that 〈G, f, f ′, k〉 is a yes-instance of Sequential Token Swapping.
As observed in the proof of Theorem 4.10, if there is a Steiner tree for g(P) on G with L edges,
then there is a rectilinear Steiner tree for P with length at most L/c. Since the length of a
minimum rectilinear Steiner tree is an integer [18] (see also [6]), it suffices to show that there
exists a Steiner tree for g(P) with at most (` + 1)c − 1 edges, or, equivalently with at most
(`+ 1)c vertices.

Let S be a minimum swapping sequence from f to f ′ with length at most k = (2`+ 1)c. Let
R be the set of vertices that the moving token visits in S, and let R′ = {v ∈ R | f(v) = f ′(v)}.
If f(v) 6= f ′(v) for some v, then the moving token has to visit v. Thus, |R \R′| = |{v ∈ V (G) |
f(v) 6= f ′(v)}| = 4|P |. Since S has the minimum length, each vertex in R′ is visited at least
twice (see [6]), and thus |R′| ≤ (k + 1)/2. Therefore, it holds that |R| = |R′| + |R \ R′| ≤
(k + 1)/2 + 4|P | = ((2`+ 1)c+ 1)/2 + 4|P | < (2`+ 1)c/2 + c/2 = (`+ 1)c.

Now observe that R contains all g(p) + (1, 0) for each p ∈ P since f(g(p) + (1, 0)) 6=
f ′(g(p)+(1, 0)). Therefore, shifting all vertices in R by (−1, 0), we obtain a Steiner tree of g(P)
with at most (l + 1)c vertices. 2

5. Concluding remarks

We have studied Sequential Token Swapping from the view point of restricted graph
classes and shown several positive and negative results. We note that the complexity of the
problem with the colorful condition remained unsettled for split graphs.

• Is Sequential Token Swapping NP-complete on split graphs in the colorful condition?

We did not address the approximability and the parameterized complexity of the problem
in this paper, which would be interesting research topics.

Approximation. Since the problem is intractable in general, it would be interesting to ask if
it admits an approximation. It is known that for some constant c, it is NP-hard to find a
c-approximation solution for Sequential Token Swapping [1]. However, we can still hope
for an approximation algorithm with a slightly worse approximation guarantee.

• Does Sequential Token Swapping admit a constant-factor approximation?

Note that the non-sequential variant, Token Swapping, admits a 4-approximation for general
graphs [19].

22

Parameterized complexity. It would be interesting to study the parameterized complexity of the
problem (see [20]). Lemma 3.2 and the O(n3) upper bound of the minimum length of a swapping
sequence [1] together imply that Sequential Token Swapping is fixed-parameter tractable
parameterized by the maximum size of a biconnected component. This parameter is an upper
bound of treewidth, the most well-studied structural graph parameter.2 Furthermore, one can
see that block-cactus graphs have constant clique-width (a generalization of treewidth). Hence,
it would be natural to ask the complexity of Sequential Token Swapping parameterized
by treewidth or clique-width, although it looks quite challenging to generalize our algorithm to
such settings. Actually, we can observe that the problem is intractable when clique-width is
the parameter. It is easy to see that attaching a triangle to each vertex may increase clique-
width only by a constant. Since (s, t)-Hamiltonian Path is W[1]-hard parameterized by
clique-width [22],3 the same argument in the proof of Theorem 4.1 implies the following.

Corollary 5.1 Sequential Token Swapping parameterized by clique-width is W[1]-hard.

Given the discussion above, we would like to ask a few questions about the complexity of
Sequential Token Swapping.

• Is it fixed-parameter tractable or XP parameterized by treewidth? How about upper
bounds of treewidth such as vertex cover number?

• Is it XP parameterized by clique-width? Is it polynomial-time solvable for some graph
classes of constant clique-width (e.g., cographs)?

References

[1] K. Yamanaka, E. D. Demaine, T. Horiyama, A. Kawamura, S. Nakano, Y. Okamoto,
T. Saitoh, A. Suzuki, R. Uehara, T. Uno, Sequentially swapping colored tokens on graphs,
J. Graph Algorithms Appl. 23 (1) (2019) 3–27. doi:10.7155/jgaa.00482.

[2] W. W. Johnson, W. E. Story, Notes on the “15” puzzle, American Journal of Mathematics
2 (4) (1879) 397–404. doi:10.2307/2369492.

[3] GungHo Online Entertainment America, Inc., Puzzle & Dragons, official website, accessed:
2022-07-22.
URL https://www.puzzleanddragons.us/

[4] S. Trakultraipruk, Connectivity properties of some transformation graphs, Ph.D. thesis,
London School of Economics and Political Science, London, UK (2013).

[5] D. Ratner, M. K. Warmuth, The (n2−1)-puzzle and related relocation problems, J. Symb.
Comput. 10 (2) (1990) 111–138. doi:10.1016/S0747-7171(08)80001-6.

[6] E. D. Demaine, M. Rudoy, A simple proof that the (n2−1)-puzzle is hard, Theor. Comput.
Sci. 732 (2018) 80–84. doi:10.1016/j.tcs.2018.04.031.

[7] O. Aichholzer, E. D. Demaine, M. Korman, A. Lubiw, J. Lynch, Z. Masárová, M. Rudoy,
V. V. Williams, N. Wein, Hardness of token swapping on trees, in: ESA 2022, Vol. 244 of
LIPIcs, 2022, pp. 3:1–3:15. doi:10.4230/LIPIcs.ESA.2022.3.

2We omit formal definitions of the graph parameters mentioned in this section. See e.g., [21] for the their
definitions and basic properties.

3Fomin et al. [22] showed the W[1]-hardness of Hamiltonian Cycle, which can be easily translated to the
W[1]-hardness of (s, t)-Hamiltonian Path by adding a false-twin of an arbitrary vertex and call them s and t.

23

https://doi.org/10.7155/jgaa.00482
https://doi.org/10.2307/2369492
https://www.puzzleanddragons.us/
https://www.puzzleanddragons.us/
https://doi.org/10.1016/S0747-7171(08)80001-6
https://doi.org/10.1016/j.tcs.2018.04.031
https://doi.org/10.4230/LIPIcs.ESA.2022.3

[8] J. van den Heuvel, The complexity of change, in: S. R. Blackburn, S. Gerke, M. Wildon
(Eds.), Surveys in Combinatorics 2013, Vol. 409 of London Mathematical Society Lec-
ture Note Series, Cambridge University Press, 2013, pp. 127–160. doi:10.1017/

CBO9781139506748.005.

[9] N. Nishimura, Introduction to reconfiguration, Algorithms 11 (4) (2018) 52. doi:10.3390/
a11040052.

[10] R. Diestel, Graph Theory, 5th Edition, Vol. 173 of Graduate texts in mathematics,
Springer, 2016.
URL https://diestel-graph-theory.com/

[11] J. E. Hopcroft, R. E. Tarjan, Algorithm 447: Efficient algorithms for graph manipulation,
Commun. ACM 16 (6) (1973) 372–378. doi:10.1145/362248.362272.

[12] D. E. Knuth, J. H. M. Jr., V. R. Pratt, Fast pattern matching in strings, SIAM J. Comput.
6 (2) (1977) 323–350. doi:10.1137/0206024.

[13] K. White, M. Farber, W. R. Pulleyblank, Steiner trees, connected domination and strongly
chordal graphs, Networks 15 (1) (1985) 109–124. doi:10.1002/net.3230150109.

[14] H. Müller, A. Brandstädt, The NP-completeness of steiner tree and dominating set
for chordal bipartite graphs, Theor. Comput. Sci. 53 (1987) 257–265. doi:10.1016/

0304-3975(87)90067-3.

[15] H. Müller, Hamiltonian circuits in chordal bipartite graphs, Discret. Math. 156 (1-3) (1996)
291–298. doi:10.1016/0012-365X(95)00057-4.

[16] A. Itai, C. H. Papadimitriou, J. L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J.
Comput. 11 (4) (1982) 676–686. doi:10.1137/0211056.

[17] M. R. Garey, D. S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM
Journal on Applied Mathematics 32 (4) (1977) 826–834. doi:10.1137/0132071.

[18] M. Hanan, On Steiner’s problem with rectilinear distance, SIAM J. Appl. Math. 14 (2)
(1966) 255–265.
URL http://www.jstor.org/stable/2946265

[19] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, T. Uno, Approximation and
hardness of token swapping, in: ESA 2016, Vol. 57 of LIPIcs, 2016, pp. 66:1–66:15. doi:

10.4230/LIPIcs.ESA.2016.66.

[20] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015. doi:10.1007/

978-3-319-21275-3.

[21] P. Hlinený, S. Oum, D. Seese, G. Gottlob, Width parameters beyond tree-width and their
applications, Comput. J. 51 (3) (2008) 326–362. doi:10.1093/comjnl/bxm052.

[22] F. V. Fomin, P. A. Golovach, D. Lokshtanov, S. Saurabh, Intractability of clique-width
parameterizations, SIAM J. Comput. 39 (5) (2010) 1941–1956. doi:10.1137/080742270.

24

https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://diestel-graph-theory.com/
https://diestel-graph-theory.com/
https://doi.org/10.1145/362248.362272
https://doi.org/10.1137/0206024
https://doi.org/10.1002/net.3230150109
https://doi.org/10.1016/0304-3975(87)90067-3
https://doi.org/10.1016/0304-3975(87)90067-3
https://doi.org/10.1016/0012-365X(95)00057-4
https://doi.org/10.1137/0211056
https://doi.org/10.1137/0132071
http://www.jstor.org/stable/2946265
http://www.jstor.org/stable/2946265
https://doi.org/10.4230/LIPIcs.ESA.2016.66
https://doi.org/10.4230/LIPIcs.ESA.2016.66
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1093/comjnl/bxm052
https://doi.org/10.1137/080742270

	1 Introduction
	2 Preliminaries
	3 Polynomial-time algorithm for block-cactus graphs
	3.1 Reduction to a generalized problem on biconnected components
	3.2 Sub-STS on cycles
	3.3 Sub-STS on complete graphs
	3.4 The whole algorithm

	4 Hardness of the few-color and colorful cases
	4.1 General tools for showing hardness
	4.2 The few-color case on grid-like graphs
	4.3 The colorful case on grid-like graphs

	5 Concluding remarks

