
On the Preservation of Properties when Changing
Communication Models ?

Olav Bunte1, Louis C.M. van Gool2, and Tim A.C. Willemse1

1 Eindhoven University of Technology, Eindhoven, Netherlands
{o.bunte, t.a.c.willemse}@tue.nl

2 Canon Production Printing, Venlo, Netherlands
louis.vangool@cpp.canon

Abstract. In a system of processes that communicate asynchronously
by means of FIFO channels, there are many options in which these chan-
nels can be laid out. In this paper, we compare channel layouts in how
they affect the behaviour of the system using an ordering based on split-
ting and merging channels. This order induces a simulation relation,
from which the preservation of safety properties follows. Also, we iden-
tify conditions under which the properties reachability, deadlock freedom
and confluence are preserved when changing the channel layout.

Keywords: Asynchronous communication · Communication models ·
Property preservation · Confluence

1 Introduction

In asynchronous communication, sending and receiving a message are two sep-
arate actions, which makes it possible for messages to be received in a differ-
ent order than they were sent. What orderings are possible, depends on the
asynchronous communication model(s) used within the system, for which many
flavours are possible. We consider communication models that are implemented
by means of a layout of (unbounded) FIFO (First In First Out) channels, which
defines how messages in transit are stored. For instance, using a channel per
message implements a fully asynchronous model, while having a single input
channel per process enforces that messages that are sent to the same process are
received in the same order in which they are sent.

While (re)designing or refactoring a software system of asynchronously com-
municating processes, it may be desirable to change (part of) the channel layout.
This can, for instance, be the case when design choices are still being explored,
when the performance of the system needs to be improved, when the behaviour
of the system has grown too complex due to the additions of new processes, or
when the channel implementation is part of legacy software. However, changing
the channel layout may impact the behaviour of the system in unexpected ways,
? This work was carried out as part of the VOICE-B project, which is funded by Canon
Production Printing.

ar
X

iv
:2

21
0.

06
19

6v
1

 [
cs

.L
O

]
 1

2
O

ct
 2

02
2

2 O. Bunte et al.

possibly violating desired properties. In this paper, we investigate the extent of
this impact.

We use the notion of a FIFO system [FP20,BFS20] to represent a software
system of asynchronously communicating processes. Firstly, we define an order-
ing on FIFO systems based on whether one can be created from the other by
merging channels. We then analyse the difference in the behaviour between re-
lated FIFO systems and show that it induces a simulation order, from which the
preservation of safety properties follows. Secondly, we analyse whether reacha-
bility, deadlock freedom and confluence are preserved when changing the chan-
nel layout. Reachability is particularly relevant in practice, since changing the
method of communication should typically not cause previously possible process
behaviour to become impossible. If deadlock freedom is preserved, it is ensured
that changing the method of communication does not introduce undesired situ-
ations where all processes are stuck waiting for each other. Confluence is related
to the independence of actions, which is often expected between actions of dif-
ferent processes. A violation of confluence between actions of different processes
indicates a possible race condition, where the faster process determines how
the system progresses. We identify conditions under which these properties are
guaranteed to be preserved when merging or splitting channels.

Related work. In [EMR02], seven distinct channel-based asynchronous commu-
nication models are related to each other in a hierarchy based on trace and MSC
implementability. The authors of [CHQ16] also consider the causal communica-
tion model [Lam78], and show a similar hierarchy. They prove this hierarchy cor-
rect in [CHNQ19] using automated proof techniques. Compared to these works,
we consider mixed (channel-based) communication models, which is more realis-
tic for complex software systems. For communication models that can be defined
by FIFO systems, the hierarchies in these works relate these models the same
way as our relation does.

Property preservation is closely related to the field of incremental model
checking [SS94,HJMS03,WE13], which is an efficient method for rechecking a
property on a system that has undergone some changes. Under some conditions,
one can actually prove that a property will be preserved, as shown in multiple
contexts [LGS+95,Weh00,HVG03,DS12,XL21]. To our knowledge, no such work
exists in the context of asynchronously communicating processes however.

Outline. We first introduce the necessary definitions to reason about FIFO sys-
tems in Section 2. We define an ordering between FIFO systems in Section 3 and
show that it induces a simulation relation. Then in Section 4 we identify condi-
tions under which the aforementioned properties are preserved when changing
the channel layout. Lastly, we conclude in Section 5. The proofs for all lemmas
and theorems in Section 3 and 4 can be found in the Appendix.

On the Preservation of Properties when Changing Communication Models 3

2 The FIFO system

Let P be a set of processes that make up a software system and let M be
the set of messages that can be communicated between these processes. We
represent the behaviour of each process p ∈ P with a Labelled Transition System
(LTS) Bp = 〈Qp, q0p, Lp,−_p〉 where Qp is its set of states, q0p its initial state,
Lp ⊆ ({?, !} ×M)∪ {τ} its set of actions and −_p ⊆ Qp ×Lp ×Qp its transition
relation. An action ?m indicates the receiving of m, !m the sending of m and
τ is an internal action. We assume that processes do not share non-internal
actions, that is Lp ∩ Lp′ ⊆ {τ} for all distinct p, p′ ∈ P . We write q

a−_p q
′ iff

(q, a, q′) ∈ −_p. A FIFO system then describes how these processes communicate
with each other via FIFO channels.

Definition 1. A FIFO system is a tuple 〈P,C,M〉 where C ⊆ P(M) is a set of
(FIFO) channels defined as a partition of M .

Each channel in C is defined as a set of messages, which represents the
messages that this channel can hold. Note that because C partitions M , we
assume that each message can only be sent to and received from exactly one
channel. For a message m ∈ M , we define [m]C as the channel in C that m
belongs to, that is m ∈ [m]C and [m]C ∈ C. We write m 'C o iff [m]C = [o]C
for messages m, o ∈M .

We define M∗ as the set of all finite sequences of messages, also known as
words. We use ε as the empty word and concatenate two words with ++. Given
a word m ++ w for message m ∈ M and word w ∈ M∗, we define its head as
hd(m++ w) = m and its tail as tl(m++ w) = w.

Example 1. Imagine two vending machines, one for healthy snacks and one for
unhealthy snacks, and some user who can interact with these vending machines.
After receiving a "healthy voucher" , the healthy vending machine can sup-
ply apples and bananas . After receiving an "unhealthy voucher" , the
unhealthy vending machine can supply chocolate and donuts . The user
decides to use before and can receive the snacks whenever they are ready.

Let PV = {hvm, uvm, user} be processes that represent the two vending
machines and the user. Their LTSs are visualised in Figure 1. The set of mes-
sages is MV = { , , , , , }. The realistic case where both vending

hvm : 0 1 2 3
? ! !

uvm : 0 1 2 3
? ! !

user : 0 1 2
!

? , ?

!
? , ? , ? , ?

Fig. 1: Processes hvm, uvm and user for Example 1 and 2.

4 O. Bunte et al.

machines have their own voucher slot and output slot is represented by the
channel set CV = {{ }, { }, { , }, { , }}, resulting in the FIFO system
〈PV , CV ,MV 〉. Note that 'CV

and 'CV
.

Semantics A FIFO system induces an LTS that represents the communication
behaviour between all processes. A state in this LTS consists of two parts: the
states of the individual processes and the contents of the channels. For a set of
processes P , P = {κ ∈ P →

⋃
p∈P Qp | ∀p∈P : κ(p) ∈ Qp} denotes the set of

functions that map processes to their current states. For a set of channels C,
C = {ζ ∈ C → M∗ | ∀c∈C : ζ(c) ∈ c∗} denotes the set of functions that map
channels to their contents. In case of a set of channels C ′, we write C′. Note that
we assume unbounded channels.

Definition 2. Let F = 〈(Qp, q0p,−_p)p∈P , C,M〉 be a FIFO system. The seman-
tics of F is an LTS BF = 〈S, s0, L,−→〉 where

– S = P×C,
– s0 = (κ0, ζε), where κ0(p) = q0p for all p ∈ P and ζε(c) = ε for all c ∈ C,
– L = ({?, !} ×M) ∪ {τ},
– −→ ⊆ S×L×S such that for all (κ, ζ) ∈ S, p ∈ P , q ∈ Qp and m ∈M , with
c = [m]C :

(κ, ζ)
τ−→ (κ[p 7→ q], ζ) iff κ(p)

τ−_p q

(κ, ζ)
?m−−→ (κ[p 7→ q], ζ[c 7→ tl(ζ(c)]) iff κ(p)

?m−−_p q ∧ hd(ζ(c)) = m

(κ, ζ)
!m−−→ (κ[p 7→ q], ζ[c 7→ ζ(c) ++m]) iff κ(p)

!m−−_p q

We write s a−→ s′ iff (s, a, s′) ∈ −→. We lift the transition relation to one over
sequences of actions −→∗ ⊆ S×L∗×S in the usual way. In the context of a FIFO
system F , we refer to the semantics of the FIFO system as defined above as “the
LTS of F ”.

Two LTSs can be compared by means of a simulation relation [LGS+95].

Definition 3. Let B = 〈S, s0, L,−→〉 and B′ = 〈S′, s′0, L,−→′〉 be two LTSs. We
say that B simulates B′ iff there exists a simulation relation R ⊆ S′ × S such
that s′0Rs0 and for all s ∈ S and s′ ∈ S′, if s′Rs and s′ a−→′ t′ for some t′ ∈ S′
and a ∈ L, then there must exist a t ∈ S such that s a−→ t and t′Rt.

3 Comparing channel layouts

The choice in channel layout affects the behaviour of a FIFO system. The more
channels there are, the more orderings there are in which messages can be re-
ceived. With this in mind, we order FIFO systems as follows:

Definition 4. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be two FIFO systems.
We define the relation � on FIFO systems such that F � F ′ iff C 6= C ′ and
∀c∈C : ∃c′∈C′ : c ⊆ c′ (that is, C is a more refined partition of M than C ′ is).

On the Preservation of Properties when Changing Communication Models 5

One can create F ′ from F by merging a number of channels (splitting chan-
nels in the opposite direction). We first illustrate how this affects the behaviour
of the system with an example.

Example 2. Continuing from Example 1, consider the FIFO systems Fm =
〈PV , {{ }, { }, { }, { }, { }, { }},MV 〉 (one channel per message), Fo =
〈PV , {{ , }, { , }, { , }},MV 〉 (one output channel per process) and
Fg = 〈PV , {MV },MV 〉 (one global channel). Observe that Fm � Fo � Fg.

In Fm, the trace ! ! ? is possible, but in Fo it is not. This is because
in Fo, both vouchers sent by user are put in the same channel, so hvm has to
receive its voucher before uvm can. In Fo, the trace ! ! ? ? ! ! ? is
possible, but in Fg it is not. This is because in Fg, both vending machines send
their snacks to the same channel, which fixes the order in which user receives
the snacks.

In the remainder of this section, to avoid duplication in definitions, lem-
mas and theorems, we universally quantify over FIFO systems F = 〈P,C,M〉
and F ′ = 〈P,C ′,M〉 such that F � F ′, with BF = 〈S, s0, L,−→〉 and BF ′ =
〈S′, s′0, L,−→′〉.

The effect on the LTS when changing the channel layout is visualised in
Figure 2. When the channels {m} and {o} are merged into one channel {m, o},
state s results in states s1 and s2, one for every interleaving of the contents of
the two channels in s. Conversely, when channel {m, o} is split into channels
{m} and {o}, the channel contents of states s1 and s2 are split as well, making
them coincide, resulting in s. We say that state s generalises states s1 and s2
and that states s1 and s2 specialise state s.

To define this formally, we first define the interleavings of words. Given a
message m ∈M and a set of words W , let m++W = {m++ w | w ∈ W}. Then
for a set of words W , we define the set of possible interleavings of these words
||W as ||W = {ε} ifW = {ε}, else ||W =

⋃
m++w∈W m++||((W \{m++w})∪{w}).

Example 3. Continuing from Example 2, let W = {ε, , }. Then ||W =
{ , , , , , }.

With this, we can define generalisation/specialisation of states as follows:

m
o

s mo

s1

om

s2
!m

!o ?m

?o

!o ?m

!m ?o

merging

splitting

Fig. 2: A visualisation of the effect on the LTS of a FIFO system when merging
or splitting channels. Transitions without a label cover any transition that is not
already represented by other incoming or outgoing transitions.

6 O. Bunte et al.

Definition 5. Let ζ ∈ C. For channels C ′ we define the set of functions C′ζ ,
each representing possible interleavings of channel contents in ζ, as:

C′ζ =
{
ζ ′ ∈ C′

∣∣∣ ∀c′∈C′ : ζ ′(c′) ∈ ||{ζ(c) | c ∈ C ∧ c ⊆ c′}
}

Definition 6. Let s = (κ, ζ) ∈ S and s′ = (κ′, ζ ′) ∈ S′. We say that s gener-
alises s′ and s′ specialises s, written as s� s′, iff κ = κ′ ∧ ζ ′ ∈ C′ζ .

Example 4. Continuing from Example 2, take the LTSs of FIFO systems Fo and
Fg. Let κ ∈ PV such that κ(hvm) = 3, κ(uvm) = 3 and κ(user) = 2 (the vending
machines have supplied their snacks). Assume that user has not retrieved any
snack from the channels yet. In Fo there only exists one state s = (κ, ζ) that
represents this situation, namely where ζ({ , }) = ε, ζ({ , }) = and
ζ({ , }) = . In Fg there are 6 such states, because the two vending
machines use the same channel for output (the only channelM), so their outputs
get interleaved. Let S′κ be the set of these 6 states. Let (κ, ζ ′) ∈ S′κ, then the
possible values for ζ ′(MV) are the interleavings mentioned in Example 3. The
states in S′κ specialise state s since they are stricter in how the snacks are ordered
in the channel(s). Vice versa, state s generalises the states in S′κ.

For every state in the LTS of a FIFO system, specialising or generalising
states exist in the LTS of �-related FIFO systems.

Lemma 1. ∀s′∈S′ : ∃s∈S : s� s′ and ∀s∈S : ∃s′∈S′ : s� s′

As shown in Figure 2, after merging channels {m} and {o}, the action ?m is
only possible from s1, since it has the interleaving where m is at the head of the
channel. Action !m can only result in s2, since it has the interleaving where m
is at the back of the channel. Similar arguments can be made for ?o and !o. Any
other transitions to and from s are possible for both s1 and s2. When splitting
channel {m, o} the opposite happens: the incoming and outgoing transitions for
s are all transitions to and from s1 and s2 combined.

We show which transitions are preserved in the LTS when changing the chan-
nel layout formally in the below four lemmas, for any κ1, κ2 ∈ P, ζ ∈ C, ζ ′ ∈ C′ζ
and m ∈ M , with c = [m]C and c′ = [m]C′ . Firstly, internal actions are al-
ways possible from specialising or generalising states after merging or splitting
channels.

Lemma 2. (κ1, ζ)
τ−→ (κ2, ζ) iff (κ1, ζ

′)
τ−→′ (κ2, ζ ′).

Input actions remain possible from the generalising state after splitting chan-
nels. When merging channels, such actions are not possible from specialising
states that do not have the required message at the head, which may be the case
when the channel of this message was merged, as was illustrated by Figure 2.

Lemma 3. If c = c′, then (κ1, ζ)
?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]) iff (κ1, ζ

′)
?m−−→′

(κ2, ζ
′[c′ 7→ tl(ζ ′(c′))]).

On the Preservation of Properties when Changing Communication Models 7

Lemma 4. If c 6= c′, then (κ1, ζ)
?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]) ∧ hd(ζ ′(c′)) = m iff

(κ1, ζ
′)

?m−−→′ (κ2, ζ ′[c′ 7→ tl(ζ ′(c′))]).

Output actions are always possible from specialising or generalising states
after merging or splitting channels. Note however that sending a message to a
merged channel increases the number of possible interleavings, so not all spe-
cialising target states are reached, as was illustrated by Figure 2.

Lemma 5. (κ1, ζ)
!m−−→ (κ2, ζ[c 7→ ζ(c)++m]) iff (κ1, ζ

′)
!m−−→′ (κ2, ζ ′[c′ 7→ ζ ′(c′)++

m]).

Note that for each of the above four lemmas, the target state of the −→-
transition generalises the target state of the −→′-transition. Since the structure
of the transitions in these lemmas is the same as in Definition 2, it follows that
the above lemmas cover all transitions in −→ and −→′. In general, merging channels
reduces the behaviour that a FIFO system allows. This can be formalised with
the simulation preorder.

Lemma 6. �−1 is a simulation relation.

Theorem 1. BF simulates BF ′ .

4 Property preservation

In the previous section we have formally shown how the LTS of a FIFO system
is affected when changing the channel layout. In this section we investigate how
properties of a system are affected by such changes. Here the question is: if a
property φ holds on the LTS of a FIFO system F , denoted by BF |= φ, under
which conditions does it still hold after changing the channel layout? For this,
we define the following notions.

Definition 7. Let F and F ′ be two FIFO systems such that F � F ′ and let φ
be some property on FIFO systems. We say that:

– φ is merge-preserved iff BF |= φ⇒ BF ′ |= φ.
– φ is split-preserved iff BF |= φ⇐ BF ′ |= φ.

In [LGS+95] it has already been shown that simulation preserves safety prop-
erties, that is properties of the form "some bad thing is not reachable", so from
Theorem 1 we can derive the following:

Theorem 2. Safety properties are merge-preserved.

In the remainder of this section, we analyse the preservation of reachability,
deadlock freedom and confluence. To avoid duplication in definitions, lemmas
and theorems, we again universally quantify over FIFO systems F = 〈P,C,M〉
and F ′ = 〈P,C ′,M〉 such that F � F ′, with BF = 〈S, s0, L,−→〉 and BF ′ =
〈S′, s′0, L,−→′〉.

8 O. Bunte et al.

4.1 Reachability

Reachability asks whether a state can be reached in the LTS of a FIFO system
by a sequence of transitions, starting from the initial state.

Definition 8. Let B = 〈S, s0, L,−→〉 be an LTS and let L′ ⊆ L. A state s ∈ S
is L′-reachable in B iff there exists a sequence of actions α ∈ L′∗ such that
s0

α−→∗ s. We define ReachL′(S) as the set of all L′-reachable states. We omit L′
if L′ = L. We define Reach(B) as the LTS B restricted to only reachable states
and the transitions between them.

Preservation of reachability depends on whether a state’s specialising or gen-
eralising states are still reachable after changing the channel layout. When split-
ting channels this is the case, as it follows from Theorem 1.

Lemma 7. Let s ∈ S and s′ ∈ S′. Assume that s � s′. Then s ∈ Reach(S) ⇐
s′ ∈ Reach(S′).

When merging channels however, reachability is only guaranteed to be pre-
served when only transitions have been taken with actions that do not use
merged channels. Formally, we define the set of such actions as IL(F, F ′) =
{τ} ∪ {?m, !m | m ∈M ∧ [m]C = [m]C′}.

Lemma 8. Let s ∈ S and s′ ∈ S′. Assume that s � s′. Then s ∈
ReachIL(F,F ′)(S)⇒ s′ ∈ ReachIL(F,F ′)(S

′).

We argue using Figure 2 why other actions violate merge-preservation of
reachability. The transition with action !m can be done to s and to s2, but not
to s1, because it does not have m at the end of its channel. If s would not have
any other incoming transitions, s2 is possibly unreachable. The transition with
action ?m can be done from s to some state t (not depicted in the figure) and
from s1, but not from s2 since it does not have m at the head of its channel.
Due to this, some states that specialise t are possibly unreachable.

Lifting these results to the full system, we will only focus on the reachability
of process states. For a κ ∈ P and L′ ⊆ L, we say that κ is (L′-)reachable in F
iff there exists a ζ ∈ C such that (κ, ζ) is (L′-)reachable in BF .

Theorem 3. For all κ ∈ P, reachability of κ is split-preserved.

Theorem 4. For all κ ∈ P, IL(F, F ′)-reachability of κ is merge-preserved.

Example 5. See Figure 3 for an example that shows that reachability of process
states is not merge-preserved in general. In Reach(BF), state 2 of process p2
is reachable, but in Reach(BF ′) it is not. This is because in Reach(BF ′), the
messages m and o can only be received by p2 in the order in which they are sent
by p1. Note that the actions !m, !o and ?o that are necessary to reach state 2 of
p2 in Reach(BF) are not in IL(F, F ′).

On the Preservation of Properties when Changing Communication Models 9

p1 : 0 1 2
!m !o

p2 : 0

1

2

3

?m

?o

?o

?m

Reach(BF) :

0 0
ε ε

1 0
m ε

2 0
m o

1 1
ε ε

2 2
m ε

2 1
ε o

2 3
ε ε

!m !o

?m

?o

?m

!o

?m

?o

Reach(BF ′) :

0 0
ε

1 0
m

2 0
om

2 0
mo

1 1
ε

2 2
m

2 1
o

2 3
ε

!m !o

?m

?o

?m

!o

?m

?o

Fig. 3: Processes p1 and p2 and LTSs Reach(BF) and Reach(BF ′) for Example
5, with F = 〈{p1, p2}, {{m}, {o}}, {m, o}〉 and F ′ = 〈{p1, p2}, {{m, o}}, {m, o}〉.
The dashed states are unreachable states that specialise states in Reach(BF).

The preservation of reachability is not only interesting on its own, but also
for property preservation in general, because one is typically only interested in
the preservation of a property within reachable behaviour. Thanks to Theorem
3 and Lemma 1, we know that for merge-preservation of a property that needs
to hold for all reachable states, it suffices to check whether if it holds for a state,
then it also holds for its specialising states. We cannot give such local arguments
for split-preservation, because after splitting channels, states may be reachable
that do not generalise any reachable state in the original LTS. To be able to claim
split-preservation of a property, we need to assume that all reachable states in
the new system generalise some state in the original. We call this assumption
unaltered reachability and represent it formally with S I S′, which is true iff for
all s ∈ Reach(S) there exists an s′ ∈ Reach(S′) such that s� s′.

4.2 Deadlock freedom

A deadlock is a state in an LTS from which no action is possible.

Definition 9. Let B = 〈S, s0, L,−→〉 be an LTS. A state s ∈ S is a deadlock,
denoted as δ(s), iff there does not exist an a ∈ L and t ∈ S such that s a−→ t. We
say that B is deadlock free iff for all s ∈ Reach(S) it holds that ¬δ(s).

The preservation of deadlock freedom comes down to whether for every non-
deadlock state, its generalising or specialising states are not deadlocks as well.
Whether this is the case can be easily derived from Figure 2. When splitting

10 O. Bunte et al.

channels, the number of outgoing transitions cannot decrease, so s cannot be-
come a deadlock if s1 or s2 were not deadlocks already.

Lemma 9. Let s ∈ S and s′ ∈ S′. Assume that s� s′. Then ¬δ(s)⇐ ¬δ(s′).

When merging channels however, the number of outgoing transitions with in-
put actions may decrease in specialising states, which can cause some to become
a deadlock. There does always exist a specialising state that is not a deadlock,
namely one where the interleaving of channel contents is such that the input
action is still possible, but much more than this cannot be shown. For instance,
referring to Figure 2, if only ?m would be possible from s, then s2 is a deadlock.
State s1 is not a deadlock however, since it has m at the head of its channel.

If we assume unaltered reachability, then we can derive from Lemma 9 that
deadlock freedom is split-preserved.

Theorem 5. If S I S′, then deadlock freedom is split-preserved.

Example 6. See Figure 4 for an example that shows why the condition S I S′

is needed for split-preservation of deadlock freedom. In Reach(BF ′), state 2
of process p2 is not reachable, because the single channel forces p2 to receive
m and o in the order that they are sent. In Reach(BF), m and o are put in
different channels, so p2 is free to choose which it receives first. This makes 2 of
p2 reachable, which violates unaltered reachability. The corresponding state in
Reach(BF) is a deadlock, because p2 expects another o which is never supplied.

p1 : 0 1 2
!m !o

p2 : 0

1

2

3

?m

?o

?o

?o

τ

Reach(BF) :

0 0
ε ε

1 0
m ε

2 0
m o

1 1
ε ε

2 2
m ε

2 1
ε o

2 3
ε ε

!m

!o

?m

?o

?m

!o ?m
τ

Reach(BF ′) :

0 0
ε

1 0
m

2 0
mo

1 1
ε

2 1
o

2 3
ε

!m

!o

?m ?m

!m ?o
τ

Fig. 4: An example that shows that deadlock freedom is not split-
preserved without assuming unaltered reachability (S I S′), with F =
〈{p1, p2}, {{m}, {o}}, {m, o}〉 and F ′ = 〈{p1, p2}, {{m, o}}, {m, o}〉.

On the Preservation of Properties when Changing Communication Models 11

4.3 Confluence

Confluence of two actions indicates a form of independence between them. Since
a FIFO system consists of multiple processes acting mostly independently of
each other, confluence in a FIFO system is common.

Definition 10. Let B = 〈S, s0, L,−→〉 be an LTS. For a, b ∈ L and s ∈ S, a and
b are confluent from s, denoted as Confab (s), iff for all t, u ∈ S we have that
(s

a−→ t ∧ s b−→ u) ⇒ (∃v∈S : t
b−→ v ∧ u a−→ v). Note that Confab (s) = Conf ba(s).

We say that a and b are confluent in B iff Confab (s) for all s ∈ Reach(S).

Again, we will first look at the preservation on state level. The relation be-
tween confluence and independence is reflected in its preservation: confluence of
two actions from a state is preserved when merging channels, if the two actions
do not use the same channel. This is the case when at least one of two actions
is τ and when both actions use different channels in both FIFO systems. When
splitting channels, there is an exception when an input action a is involved that
uses a split channel. If a choice between a and another action exists from a state
s after splitting channels, there may be some specialising states in the original
LTS from which a is not possible due to the interleaving of channel contents.
This makes confluence trivially true from these states, while confluence may be
false from s. We represent this case with the condition ?SCCC′(a), which is true
iff a = ?m⇒ [m]C = [m]C′ for some m ∈M .

Lemma 10. Let s ∈ S, s′ ∈ S′ and a ∈ L. Assume that s�s′. Then Confτa (s)⇒
Confτa (s

′) and if ?SCCC′(a), then Confτa (s)⇐ Confτa (s
′).

p1 : 0 1 2 3
!o !m !n

p2 : 0 1

2

3

?n
?m

τ

Reach(BF) : 0 0
ε ε ε

1 0
ε o ε

2 0
m o ε

3 0
m o n

3 1
m o ε

3 2
ε o ε

3 3
m o ε

!o !m !n ?n
?m

τ

Reach(BF ′) : 0 0
ε ε

1 0
o ε

2 0
om ε

3 0
om n

3 1
om ε

3 3
om ε

!o !m !n ?n τ

Fig. 5: An example that shows that without condition ?SCCC′(a) confluence is
not split-preserved, with F = 〈{p1, p2}, {{m}, {o}, {n}}, {m, o, n}〉 and F ′ =
〈{p1, p2}, {{m, o}, {n}}, {m, o, n}〉.

12 O. Bunte et al.

Lemma 11. Let s ∈ S, s′ ∈ S′ and m, o ∈M . Assume that s�s′ and m 6'C′ o.
Let a ∈ {?m, !m} and b ∈ {?o, !o}. Then Confab (s)⇒ Confab (s

′) and if ?SCCC′(a)
and ?SCCC′(b), then Confab (s)⇐ Confab (s

′).

Example 7. See Figure 5 for an example why condition ?SCCC′(a) is necessary
for the split-preservation of confluence. In Reach(BF) confluence of ?m and τ
is not met, because there is a choice between the two that does not result in
a confluence diamond. In Reach(BF ′) confluence of ?m and τ is trivially met
because the choice between the two is never possible. Compared to Reach(BF),
the choice was made impossible in Reach(BF ′) because the channels for m and
o have now merged. Because o is sent before m, p2 is forced in Reach(BF ′) to
receive o first, but it never does. Note that ?SCCC′(?m) is not met.

If both actions a and b use the same channel in both FIFO systems, there is an
edge case where confluence is not preserved when merging channels, namely when
both are the exact same input action. In this case, two messages m are required
at the head of the channel of m to create the confluence diamond. However, if
the channel of m is merged with another channel, there are specialised states
with an interleaving of channel contents without both messages m in front. We
represent this case with a ≡? b for actions a, b ∈ L, which is true iff a = ?m = b
for some m ∈M .

Lemma 12. Let s ∈ S, s′ ∈ S′ and m, o ∈M . Assume that s� s′ and m 'C o.
Let a ∈ {?m, !m} and b ∈ {?o, !o}. If not a ≡? b, then Confab (s) ⇒ Confab (s

′)
and if ?SCCC′(a) and ?SCCC′(b), then Confab (s)⇐ Confab (s

′).

Example 8. See Figure 6 for an example why condition not a ≡? b is necessary
for merge-preservation of confluence. In Reach(BF) confluence of ?m and ?m
is met, because the only choice between ?m and ?m results in a confluence
diamond. In Reach(BF ′) confluence of ?m and ?m is not met, because there is
a choice between ?m and ?m that does not result in a confluence diamond. This
is because p2 first needs to receive the o before it can receive the second m. In
Reach(BF) this was not an issue, because m and o both had their own channels.
Note that ?m ≡??m.

If both actions use channels that are distinct in F but equal in F ′, confluence
of two actions is merge-preserved if at least one of the actions is an input action.
In case one action is an input action and the other an output action, merge-
preservation follows from the fact that the actions touch different ends of the
channel and are therefore in some sense independent. In case both actions are
input actions, the choice between the two actions is not possible from any state in
BF ′ , since they use the same channel. This makes their confluence hold trivially,
from which merge-preservation trivially follows. Confluence is not split-preserved
in these cases for the same reason as for the example in Figure 5 (for instance,
replace τ with ?o).

In case both actions are output actions, confluence is only split-preserved.
This is because from any state s′ in BF ′ , the two different orders of these actions

On the Preservation of Properties when Changing Communication Models 13

p1 : 0 1 2 3 4
!m !o !m !n

p2 : 0 1

2

3

4
?n

?m

?m

?m

?m

Reach(BF) :

0 0
ε ε ε

· · · 4 1
mm o ε

4 2
m o ε

4 3
m o ε

4 4
ε o ε

!m ?n

?m

?m

?m

?m

Reach(BF ′) :

0 0
ε ε

· · · 4 1
mom ε

4 2
om ε

4 3
om ε

!m ?n
?m

?m

Fig. 6: An example that shows that without condition not a ≡? b confluence is
not merge-preserved, with F = 〈{p1, p2}, {{m}, {o}, {n}}, {m, o, n}〉 and F ′ =
〈{p1, p2}, {{m, o}, {n}}, {m, o, n}〉.

produce different orders of channel contents, since both actions use the same
channel. This implies that confluence cannot hold from s′, and therefore it is
trivially preserved when splitting channels. Confluence is still possible in BF ,
so confluence is not necessarily preserved when merging channels. For actions
a, b ∈ L, we formally represent this last case with !ACCC′(a, b), which is true iff
a = !m, b = !o, m 6'C o and m 'C′ o for some m, o ∈M .

Lemma 13. Let s ∈ S, s′ ∈ S′ and m, o ∈M . Assume that s� s′, m 6'C o and
m 'C′ o. Let a ∈ {?m, !m} and b ∈ {?o, !o}. If not !ACCC′(a, b), then Confab (s)⇒
Confab (s

′).

Lemma 14. Let s ∈ S, s′ ∈ S′ and a, b ∈ L Assume that s� s′. If !ACCC′(a, b),
then Confab (s)⇐ Confab (s

′).

Lifting these state-based results to confluence in the LTSs of FIFO systems,
we can derive the following theorems:

Theorem 6. Let a, b ∈ L. If not !ACCC′(a, b) and not a ≡? b, then confluence of
a and b is merge-preserved.

Theorem 7. Let a, b ∈ L. If ?SCCC′(a), ?SCCC′(b) and S I S′, then confluence
of a and b is split-preserved.

14 O. Bunte et al.

4.4 Summary of results

The results of this section are summarised in the table below. Remember that
IL(F, F ′) = {τ}∪{?m, !m |m ∈M∧[m]C = [m]C′}, that S I S′ iff ∀s∈Reach(S) :
∃s′∈Reach(S′) : s�s′, that ?SCCC′(a) iff a = ?m⇒ [m]C = [m]C′ for some m ∈M ,
that a ≡? b iff a = ?m = b for some m ∈ M , and that !ACCC′(a, b) iff a = !m,
b = !o, m 6'C o and m 'C′ o for some m, o ∈M .

Merge-preserved Split-preserved
L′-reachability of κ If L′ = IL(F, F ′) (Th. 4) If L′ = L (Th. 3)
Deadlock freedom No If S I S′ (Th. 5)
Confluence of a and b If not !ACCC′(a, b) and not

a ≡? b (Th. 6)
If ?SCCC′(a), ?SCCC′(b) and
S I S′ (Th. 7)

5 Conclusion

We have studied asynchronously communicating systems and their channel lay-
outs by modelling them as FIFO systems and ordered them based on whether
one can be created from the other by merging channels. We have shown that
the LTS that describes the behaviour of a split FIFO system simulates the LTS
of the original system. As a consequence of this, safety properties are merge-
preserved. We have also identified conditions under which reachability, deadlock
freedom and confluence are preserved when changing the channel layout.

For most conditions that are required for a property to be preserved, their
truth can be derived easily. An exception of this is the unaltered reachability
assumption, for which it should be investigated how feasible it is to check them.
It is also the question how likely the conditions are met in practice, given that
some are rather strict. Using more detailed information from the processes of the
FIFO systems could lead to less strict conditions, but they can be more difficult
to check. Another option would be to find whether sufficient property-specific
conditions exist.

The properties mentioned in this paper are of course not the only interesting
properties one could want to be preserved. Other options would be preservation
of maximum queue length, of eventual termination, of (lack of) starvation and
of behavioural equivalence between two systems.

Acknowledgements

We thank the reviewers for their helpful feedback.

References

BFS20. Benedikt Bollig, Alain Finkel, and Amrita Suresh. Bounded reachability
problems are decidable in FIFO machines. In CONCUR, volume 171 of
LIPIcs, pages 49:1–49:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020.

On the Preservation of Properties when Changing Communication Models 15

CHNQ19. Florent Chevrou, Aurélie Hurault, Shin Nakajima, and Philippe Quéinnec.
A map of asynchronous communication models. In FM Workshops (2), vol-
ume 12233 of Lecture Notes in Computer Science, pages 307–322. Springer,
2019.

CHQ16. Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity
of asynchronous communication. Formal Aspects Comput., 28(5):847–879,
2016.

DS12. John Derrick and Graeme Smith. Temporal-logic property preservation
under Z refinement. Formal Aspects Comput., 24(3):393–416, 2012.

EMR02. André Engels, Sjouke Mauw, and Michel A. Reniers. A hierarchy of com-
munication models for message sequence charts. Sci. Comput. Program.,
44(3):253–292, 2002.

FP20. Alain Finkel and M. Praveen. Verification of flat FIFO systems. Log. Meth-
ods Comput. Sci., 16(4), 2020.

HJMS03. Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Marco A. A.
Sanvido. Extreme model checking. In Verification: Theory and Practice,
volume 2772 of Lecture Notes in Computer Science, pages 332–358. Springer,
2003.

HVG03. Jinfeng Huang, Jeroen Voeten, and Marc Geilen. Real-time property preser-
vation in approximations of timed systems. In MEMOCODE, pages 163–
171. IEEE Computer Society, 2003.

Lam78. Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

LGS+95. Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouajjani, and Sad-
dek Bensalem. Property preserving abstractions for the verification of con-
current systems. Formal Methods Syst. Des., 6(1):11–44, 1995.

SS94. Oleg Sokolsky and Scott A. Smolka. Incremental model checking in the
modal mu-calculus. In CAV, volume 818 of Lecture Notes in Computer
Science, pages 351–363. Springer, 1994.

WE13. Anton Wijs and Luc Engelen. Efficient property preservation checking of
model refinements. In TACAS, volume 7795 of Lecture Notes in Computer
Science, pages 565–579. Springer, 2013.

Weh00. Heike Wehrheim. Behavioural subtyping and property preservation. In
FMOODS, volume 177 of IFIP Conference Proceedings, pages 213–231.
Kluwer, 2000.

XL21. Chuanliang Xia and Chengdong Li. Property preservation of petri synthesis
net based representation for embedded systems. IEEE CAA J. Autom.
Sinica, 8(4):905–915, 2021.

A Proofs

Lemma 1. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then ∀s′∈S′ : ∃s∈S :
s� s′ and ∀s∈S : ∃s′∈S′ : s� s′.

Proof. We first prove ∀s′∈S′ : ∃s∈S : s � s′. Pick some s′ ∈ S′. Let s′ = (κ, ζ ′)
where κ ∈ P and ζ ′ ∈ C′. Using Definition 6, what is left to prove is whether
there exists a state s = (κ, ζ) ∈ S for ζ ∈ C such that ζ ′ ∈ C′ζ . To pick a
ζ, we first define the projection function πM ′(w) for M ′ ⊆ M and w ∈ M∗,

16 O. Bunte et al.

such that πM ′(ε) = ε, πM ′(w) = πM ′(tl(w)) if hd(w) 6∈ M ′, and πM ′(w) =
hd(w) ++ πM ′(tl(w)) if hd(w) ∈ M ′. Then we pick ζ such that ζ(c) = πc(ζ

′(c′))
for all c ∈ C with c′ ∈ C ′ such that c ⊆ c′. By Definition 4 we know that
exactly one such c′ exists for each c. Also, by the definition of S (Definition
2), we know that such a ζ exists, since ζ ∈ C. By Definition 5, what is left to
show is that ζ ′(c′) ∈ ||{ζ(c) | c ∈ C ∧ c ⊆ c′} for all c′ ∈ C ′. We prove this
by induction on the length of ζ ′(c′). If ζ ′(c′) = ε, then from ζ(c) = πc(ζ

′(c′))
it follows that ζ(c) = ε for all c ∈ C such that c ⊆ c′, thus ||{ζ(c) | c ∈
C ∧ c ⊆ c′} = {ε}. In case ζ ′(c′) = m ++ w for some m ∈ M and w ∈ M∗, we
know that[m]C ⊆ c′ and by definition of πc that there is some v ∈M∗ such that
ζ([m]C) = m++v. Following the definition of ||, we know that (m++ ||(({ζ(c) | c ∈
C ∧ c ⊆ c′} \ {m ++ v}) ∪ {v})) ⊆ (||{ζ(c) | c ∈ C ∧ c ⊆ c′}). By the induction
hypothesis, we know that w ∈ ||(({ζ(c) | c ∈ C ∧ c ⊆ c′} \ {m++ v})∪ {v}), thus
m++ w ∈ m++ ||(({ζ(c) | c ∈ C ∧ c ⊆ c′} \ {m++ v}) ∪ {v}), from which we can
conclude that ζ ′(c′) ∈ ||{ζ(c) | c ∈ C ∧ c ⊆ c′}.

Next we prove that ∀s∈S : ∃s′∈S′ : s � s′. Pick some s ∈ S. Let s = (κ, ζ)
where κ ∈ P and ζ ∈ C. Using Definition 6, what is left to prove is whether
there exists a state s′ = (κ, ζ ′) ∈ S′ for ζ ′ ∈ C′ such that ζ ′ ∈ C′ζ . By Definition
5, it is not hard to see that C′ζ 6= ∅, so a ζ ′ exists. Also, from this definition we
know that ζ ′ ∈ C′. Then by the definition of S′ (Definition 2), we can conclude
that s′ exists. ut

Lemma 2. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then for any κ1, κ2 ∈
P, ζ ∈ C and ζ ′ ∈ C′ζ , it holds that (κ1, ζ)

τ−→ (κ2, ζ) iff (κ1, ζ
′)

τ−→′ (κ2, ζ ′).

Proof. The bi-implication is proven in both directions.

⇒: Let (κ1, ζ)
τ−→ (κ2, ζ). According to the definition of −→, a τ -step is only

possible if κ2 = κ1[p 7→ q] for some p ∈ P and q ∈ Qp, so we can assume
this. If we then apply the definition of −→ we get that κ1(p)

τ−_p q. Then
applying the definition of −→′, it follows that (κ1, ζ

′)
τ−→′ (κ1[p 7→ q], ζ ′).

Since κ2 = κ1[p 7→ q], we can conclude that (κ1, ζ ′)
τ−→′ (κ2, ζ ′).

⇐: Let (κ1, ζ
′)

τ−→′ (κ2, ζ ′). According to the definition of −→′, a τ -step is only
possible if κ2 = κ1[p 7→ q] for some p ∈ P and q ∈ Qp, so we can assume
this. If we then apply the definition of −→′ we get that κ1(p)

τ−_p q. Then
applying the definition of −→, it follows that (κ1, ζ)

τ−→ (κ1[p 7→ q], ζ). Since
κ2 = κ1[p 7→ q] we can conclude that (κ1, ζ)

τ−→ (κ2, ζ).
ut

Lemma 3. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then for any
κ1, κ2 ∈ P, ζ ∈ C, ζ ′ ∈ C′ζ and m ∈ M , with c = [m]C and c′ = [m]C′ it holds

that if c = c′, then (κ1, ζ)
?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]) iff (κ1, ζ

′)
?m−−→′ (κ2, ζ ′[c′ 7→

tl(ζ ′(c′))]).

Proof. The bi-implication is proven in both directions. Let c = c′.

On the Preservation of Properties when Changing Communication Models 17

⇒: Let (κ1, ζ)
?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]). According to the definition of −→, a

?m-step is only possible if κ2 = κ1[p 7→ q] for some p ∈ P and q ∈ Qp,
so we can assume this. If we then apply the definition of −→ we get that
κ1(p)

?m−−_p q ∧ hd(ζ(c)) = m. Using Definition 6 and c = c′, we can derive
from hd(ζ(c)) = m that hd(ζ ′(c′)) = m. Then applying the definition of
−→′, it follows that (κ1, ζ

′)
?m−−→′ (κ1[p 7→ q], ζ ′[c′ 7→ tl(ζ ′(c′))]). Since κ2 =

κ1[p 7→ q] we can conclude that (κ1, ζ ′)
?m−−→′ (κ2, ζ ′[c′ 7→ tl(ζ ′(c′))]).

⇐: Let (κ1, ζ
′)

?m−−→′ (κ2, ζ ′[c′ 7→ tl(ζ ′(c′))]). According to the definition of −→′,
a ?m-step is only possible if κ2 = κ1[p 7→ q] for some p ∈ P and q ∈ Qp,
so we can assume this. If we then apply the definition of −→′ we get that

κ1(p)
?m−−_p q ∧ hd(ζ ′(c′)) = m. Using Definition 6, we can derive from

hd(ζ ′(c′)) = m that hd(ζ(c)) = m. Then applying the definition of −→, it
follows that (κ1, ζ)

?m−−→ (κ1[p 7→ q], ζ[c 7→ tl(ζ(c))]). Since κ2 = κ1[p 7→ q],
we can conclude that (κ1, ζ)

?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]).
ut

Lemma 4. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then for any
κ1, κ2 ∈ P, ζ ∈ C, ζ ′ ∈ C′ζ and m ∈ M , with c = [m]C and c′ = [m]C′ it

holds that if c 6= c′, then (κ1, ζ)
?m−−→ (κ2, ζ[c 7→ tl(ζ(c))]) ∧ hd(ζ ′(c′)) = m iff

(κ1, ζ
′)

?m−−→′ (κ2, ζ ′[c′ 7→ tl(ζ ′(c′))]).

Proof. The bi-implication is proven in both directions. Let c 6= c′.

⇒: Same as the proof for Lemma 3, except that we use hd(ζ ′(c′)) = m from the
assumptions since in this case it cannot be derived from hd(ζ(c)) = m.

⇐: Same as the proof for Lemma 3, except that we take hd(ζ ′(c′)) = m along
to the conclusion.

ut

Lemma 5. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then for any
κ1, κ2 ∈ P, ζ ∈ C, ζ ′ ∈ C′ζ and m ∈ M , with c = [m]C and c′ = [m]C′ it holds

that (κ1, ζ)
!m−−→ (κ2, ζ[c 7→ ζ(c) ++m]) iff (κ1, ζ

′)
!m−−→′ (κ2, ζ ′[c′ 7→ ζ ′(c′) ++m]).

Proof. The bi-implication is proven in both directions.

⇒: Let (κ1, ζ)
!m−−→ (κ2, ζ[c 7→ ζ(c) ++m]). According to the definition of −→, a

!m-step is only possible if κ2 = κ1[p 7→ q] for some p ∈ P and q ∈ Qp,
so we can assume this. If we then apply the definition of −→ we get that
κ1(p)

!m−−_p q. Then applying the definition of −→′, it follows that (κ1, ζ ′)
!m−−→′

(κ1[p 7→ q], ζ ′[c′ 7→ ζ ′(c′) ++m]). Since κ2 = κ1[p 7→ q], we can conclude that
(κ1, ζ

′)
!m−−→′ (κ2, ζ ′[c′ 7→ ζ ′(c′) ++m]).

18 O. Bunte et al.

⇐: Let (κ1, ζ
′)

!m−−→′ (κ2, ζ ′[c′ 7→ ζ ′(c′) ++ m]). According to the definition of
−→′, a !m-step is only possible if κ2 = κ1[p 7→ q] for some p ∈ P and
q ∈ Qp, so we can assume this. If we then apply the definition of −→′ we
get that κ1(p)

!m−−_p q. Then applying the definition of −→, it follows that
(κ1, ζ)

!m−−→ (κ1[p 7→ q], ζ[c 7→ ζ(c) ++ m]). Since κ2 = κ1[p 7→ q], we can
conclude that (κ1, ζ)

!m−−→ (κ2, ζ[c 7→ ζ(c) ++m]).
ut

Lemma 6. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Then �−1 is a
simulation relation.

Proof. Pick some (s′, s) ∈ �−1 and some a ∈ L and t′ ∈ S′ such that s′ a−→′ t′.
From s′�−1 s we know that s� s′, so we can use Lemma 2-5 to show that there
exists a t ∈ S such that s a−→ t. With the same lemmas and Definition 6 we can
derive that t� t′. From this it follows that t′�−1 t, from which we can conclude
that �−1 is a simulation relation.

What is left to show is that Lemma 2-5 cover all transitions. For τ -transitions,
Lemma 2 only requires that ζ is the same in the source and target state, which is
also required by Definition 2, so all τ -transitions are covered. For ?m-transitions
the condition c = c′ in Lemma 3 and the condition c 6= c′ in Lemma 4 cancel
each other out. Both lemmas require that ζ is updated with c 7→ tl(ζ(c)) (re-
spectively c′ 7→ tl(ζ ′(c′))) in the target state, which is also required by Definition
2. Lemma 4 additionally requires that hd(ζ ′(c′)) = m for the right-hand side to
be true, which is also required by Definition 2 (see the right-hand side), so all
?m-transitions are covered. For !m-transitions, Lemma 5 only requires that the
channel is updated with c 7→ ζ(c) ++m (respectively c′ 7→ ζ ′(c′) ++m, which is
also required by Definition 2, so all !m-transitions are covered. ut

Theorem 1. Let F and F ′ be FIFO systems such that F � F ′. Then BF
simulates BF ′ .

Proof. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. We have that BF
simulates BF ′ iff there exists a simulation relation R such that s′0Rs0. We pick
R = �−1. Lemma 6 already shows that R is a simulation relation. That s′0Rs0
follows easily from Lemma 6, from which we can conclude that BF simulates
BF ′ . ut

Theorem 2. Let F and F ′ be FIFO systems such that F � F ′. Then action-
based safety properties are merge-preserved.

Proof. Follows from Theorem 1 and Theorem 2 in [LGS+95]. ut

Lemma 7. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S and s′ ∈ S′.
Assume that s� s′. Then s ∈ Reach(S)⇐ s′ ∈ Reach(S′).

Proof. This follows from Lemma 6 and Theorem 1: if every sequence of actions
from the initial state in BF ′ can be simulated by BF by following generalising

On the Preservation of Properties when Changing Communication Models 19

states, then for every state reached this way, its generalising state in BF must
be reachable as well along the same sequence of actions. ut

Lemma 8. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S and s′ ∈ S′.
Assume that s� s′. Then s ∈ ReachIL(F,F ′)(S)⇒ s′ ∈ ReachIL(F,F ′)(S

′).

Proof. We prove this by induction over the distance (in terms of minimal num-
ber of transitions) from the initial state. As base case we have the initial state
s′0, which is trivially reachable by definition of reachability (Definition 8). Now
we prove the inductive step. We assume that s ∈ ReachIL(F,F ′)(S) and is at
distance δ from the initial state. This means that there must be some state
t ∈ ReachIL(F,F ′)(S) at distance δ − 1 such that t a−→ s for some a ∈ L′. By
the induction hypothesis, it follows that there exists a t′ ∈ ReachIL(F,F ′)(S

′)
for any t′ ∈ S′ such that t � t′. Then using Lemma 2, 3 and 5, it follows for
each t′ that t′ a−→′ s′ for some state s′ ∈ S′ such that s � s′. Since a cannot
change the contents of a merged channel, we know that the number of states
that specialise t equals the number of states that specialise s. Combining the
last two points, we know that for every s′ such that s � s′ there is a t′ such
that t′ ∈ ReachIL(F,F ′)(S

′) and t′
a−→′ s′, and therefore we can conclude that

s ∈ ReachIL(F,F ′)(S)⇒ s′ ∈ ReachIL(F,F ′)(S
′). ut

Theorem 3. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Then for all κ ∈ P, reachability of κ is split-preserved.

Proof. Follows from Lemma 7 and 1. ut

Theorem 4. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Then for all κ ∈ P, IL(F, F ′)-reachability of κ is merge-preserved.

Proof. Follows from Lemma 8 and 1. ut

Lemma 9. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S and s′ ∈ S′.
Assume that s� s′. Then ¬δ(s)⇐ ¬δ(s′).

Proof. Follows from Lemma 6: if a transition is possible from s′, then s is able
to simulate it with a transition itself. ut

Theorem 5. Let F and F ′ be FIFO systems such that F � F ′. Let BF =
〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. If S I S′, then deadlock freedom is
split-preserved.

Proof. Follows from Lemma 9 and Theorem 3. ut

Lemma 10. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S, s′ ∈ S′
and a ∈ L. Assume that s � s′. Then Confτa (s) ⇒ Confτa (s

′) and if ?SCCC′(a),
then Confτa (s)⇐ Confτa (s

′).

20 O. Bunte et al.

Proof. Let s = (κs, ζ) and s′ = (κs, ζ
′) for some κs ∈ P, ζ ∈ C and ζ ′ ∈ C′ζ . We

first prove Confτa (s)⇒ Confτa (s
′). Assume that Confτa (s), that is for all t, u ∈ S

we have that (s
τ−→ t ∧ s a−→ u) ⇒ (∃v∈S : t

a−→ v ∧ u τ−→ v). We need to prove
that Confτa (s′), that is for all t′, u′ ∈ S′ we have that (s′

τ−→′ t′ ∧ s′ a−→′ u′) ⇒
(∃v′∈S′ : t′

a−→′ v′ ∧ u′ τ−→′ v′). We do a case distinction on a.

– Case a = τ . Pick some t′, u′ ∈ S′ such that s′ τ−→′ t′ and s′
τ−→′ u′. Then

by Definition 2, t′ = (κt, ζ
′) and u′ = (κu, ζ

′) for some κt, κu ∈ P. Then
using Lemma 2, we know that there are states t, u ∈ S such that t = (κt, ζ),
u = (κu, ζ), s

τ−→ t and s τ−→ u. Due to Confτa (s), we know that there must
exist a v ∈ S, namely v = (κv, ζ) for some κv ∈ P, such that t τ−→ v and
u

τ−→ v. Then using Lemma 2, we know that there must exist a v′ ∈ S′,
namely v′ = (κv, ζ

′), such that t′ τ−→′ v′ and u′
τ−→′ v′, from which we can

conclude that Confτa (s′).
– Case a = ?m for some m ∈ M . Pick some t′, u′ ∈ S′ such that s′ τ−→′

t′ and s′
?m−−→′ u′. Then by Definition 2, hd(ζ ′([m]C′)) = m, t′ = (κt, ζ

′)
and u′ = (κu, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′))]) for some κt, κu ∈ P. Then using
Lemma 2-4, we know that there are states t, u ∈ S such that t = (κt, ζ),
u = (κu, ζ[[m]C 7→ tl(ζ([m]C))]), s

τ−→ t and s ?m−−→ u. Due to Confτa (s), we
know that there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→ tl(ζ([m]C))])

for some κv ∈ P, such that t ?m−−→ v and u
τ−→ v. Then using Lemma 2-4

and hd(ζ ′([m]C′)) = m, we know that there must exist a v′ ∈ S′, namely
v′ = (κv, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′))]), such that t′ ?m−−→′ v′ and u′ τ−→′ v′, from
which we can conclude that Confτa (s′).

– Case a = !m for some m ∈ M . Pick some t′, u′ ∈ S′ such that s′ τ−→′ t′

and s′ !m−−→′ u′. Then by Definition 2, t′ = (κt, ζ
′) and u′ = (κu, ζ

′[[m]C′ 7→
ζ ′([m]C′) ++m]) for some κt, κu ∈ P. Then using Lemma 2 and 5, we know
that there are states t, u ∈ S such that t = (κt, ζ), u = (κu, ζ[[m]C 7→
ζ([m]C) ++m]), s τ−→ t and s

!m−−→ u. Due to Confτa (s), we know that there
must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→ ζ([m]C) ++ m]) for some
κv ∈ P, such that t !m−−→ v and u τ−→ v. Then using Lemma 2 and 5, we know
that there must exist a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→ ζ ′([m]C′)++m]),
such that t′ !m−−→′ v′ and u′ τ−→′ v′, from which we can conclude that Confτa (s′).

Next we prove that if ?SCCC′(a), then Confτa (s) ⇐ Confτa (s
′). Assume that

?SCCC′(a) and that Confτa (s′), that is for all t′, u′ ∈ S′ we have that (s′
τ−→′

t′ ∧ s′ a−→′ u′)⇒ (∃v′∈S′ : t′
a−→′ v′ ∧ u′ τ−→′ v′). We need to prove that Confτa (s),

that is for all t, u ∈ S we have that (s τ−→ t ∧ s a−→ u)⇒ (∃v∈S : t
a−→ v ∧ u τ−→ v).

We do a case distinction on a.

– Case a = τ . Pick some t, u ∈ S such that s τ−→ t and s
τ−→ u. Then by

Definition 2, t = (κt, ζ) and u = (κu, ζ) for some κt, κu ∈ P. Then using
Lemma 2, we know that there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′),
u′ = (κu, ζ

′), s′ τ−→′ t′ and s′ τ−→′ u′. Due to Confτa (s′), we know that there

On the Preservation of Properties when Changing Communication Models 21

must exist a v′ ∈ S, namely v = (κv, ζ
′) for some κv ∈ P, such that t′ τ−→′ v′

and u′ τ−→′ v′. Then using Lemma 2, we know that there must exist a v ∈ S,
namely v = (κv, ζ), such that t τ−→ v and u τ−→ v, from which we can conclude
that Confτa (s).

– Case a = ?m for some m ∈M . Pick some t, u ∈ S such that s τ−→ t and s ?m−−→
u. Then by Definition 2, t = (κt, ζ) and u = (κu, ζ[[m]C 7→ tl(ζ([m]C))])
for some κt, κu ∈ P. Then using ?SCCC′(a) and Lemma 2 and 3, we know
that there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′), u′ = (κu, ζ
′[[m]C′ 7→

tl(ζ ′([m]C′))]), s′ τ−→′ t′ and s′ ?m−−→′ u′. Due to Confτa (s′), we know that there
must exist a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′))]) for some
κv ∈ P, such that t′ ?m−−→′ v′ and u′ τ−→′ v′. Then using ?SCCC′(a) and Lemma
2 and 3, we know that there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→
tl(ζ([m]C))]), such that t m−→ v and u τ−→ v, from which we can conclude that
Confτa (s).

– Case a = !m for some m ∈M . Pick some t, u ∈ S such that s τ−→ t and s !m−−→
u. Then by Definition 2, t = (κt, ζ) and u = (κu, ζ[[m]C 7→ ζ([m]C) ++m])
for some κt, κu ∈ P. Then using Lemma 2 and 5, we that there are states
t′, u′ ∈ S′ such that t′ = (κt, ζ

′), u′ = (κu, ζ
′[[m]C′ 7→ ζ ′([m]C′) ++ m]),

s′
τ−→′ t′ and s′

!m−−→′ u′. Due to Confτa (s′), we know that there must exist
a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→ ζ ′([m]C′) ++ m]) for some κv ∈ P,
such that t′ !m−−→′ v′ and u′ τ−→′ v′. Then using Lemma 2 and 5, we know that
there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→ ζ([m]C) ++ m]), such
that t !m−−→ v and u τ−→ v, from which we can conclude that Confτa (s).

ut

Lemma 11. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S,
s′ ∈ S′ and m, o ∈ M . Assume that s � s′ and m 6'C′ o. Let a ∈ {?m, !m} and
b ∈ {?o, !o}. Then Confab (s) ⇒ Confab (s

′) and if ?SCCC′(a) and ?SCCC′(b), then
Confab (s)⇐ Confab (s

′).

Proof. Note that m 6'C′ o implies that m 6'C o. Let s = (κs, ζ) and s′ = (κs, ζ
′)

for some κs ∈ P, ζ ∈ C and ζ ′ ∈ C′ζ . We first prove Confab (s) ⇒ Confab (s
′).

Assume that Confab (s), that is for all t, u ∈ S we have that (s a−→ t ∧ s b−→ u)⇒
(∃v∈S : t

b−→ v∧u a−→ v). We need to prove that Confab (s
′), that is for all t′, u′ ∈ S′

we have that (s′ a−→′ t′ ∧ s′ b−→′ u′)⇒ (∃v′∈S′ : t′
b−→′ v′ ∧ u′ a−→′ v′). We do a case

distinction on a and b.

– Case a = ?m and b = ?o. Pick some t′, u′ ∈ S′ such that s′ ?m−−→′ t′ and
s′

?o−→′ u′. Then by Definition 2, hd(ζ ′([m]C′)) = m, hd(ζ ′([o]C′)) = o,
t′ = (κt, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′))]) and u′ = (κu, ζ
′[[o]C′ 7→ tl(ζ ′([o]C′))])

for some κt, κu ∈ P. Then using Lemma 3 and 4, we know that there are
states t, u ∈ S such that t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]), u = (κu, ζ[[o]C 7→
tl(ζ([o]C))]), s

?m−−→ t and s ?o−→ u. Due to Confab (s) and m 6'C o, we know

22 O. Bunte et al.

that there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→ tl(ζ([m]C)), [o]C 7→
tl(ζ([o]C))]) for some κv ∈ P, such that t ?o−→ v and u

?m−−→ v. Then us-
ing hd(ζ ′([m]C′)) = m, hd(ζ ′([o]C′)) = o, m 6'C′ o and Lemma 3 and 4,
we know that there must exist a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→
tl(ζ ′([m]C′)), [o]C′ 7→ tl(ζ ′([o]C′))]), such that t′ ?o−→′ v′ and u′ ?m−−→′ v′, from
which we can conclude that Confab (s

′).
– Case a = !m and b = !o. Pick some t′, u′ ∈ S′ such that s′ !m−−→′ t′ and
s′

!o−→′ u′. Then by Definition 2, t′ = (κt, ζ
′[[m]C′ 7→ ζ ′([m]C′) ++ m]) and

u′ = (κu, ζ
′[[o]C′ 7→ ζ ′([o]C′)++o]) for some κt, κu ∈ P. Then using Lemma 5,

we know there are states t, u ∈ S such that t = (κt, ζ[[m]C 7→ ζ([m]C)++m]),
u = (κu, ζ[[o]C 7→ ζ([o]C) ++ o]), s !m−−→ t and s !o−→ u. Due to Confab (s) and
m 6'C o, we know that there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→
ζ([m]C) ++ m, [o]C 7→ ζ([o]C) ++ o]) for some κv ∈ P, such that t !o−→ v

and u
!m−−→ v. Then using m 6'C′ o and Lemma 5, we know that there

must exist a v′ ∈ S′, namely v′ = (κv, ζ
′[[m]C′ 7→ ζ ′([m]C′) ++ m, [o]C′ 7→

ζ ′([o]C′)++o]), such that t′ !o−→′ v′ and u′ !m−−→′ v′, from which we can conclude
that Confab (s

′).
– Case a = ?m and b = !o. Pick some t′, u′ ∈ S′ such that s′ ?m−−→′ t′ and
s′

!o−→′ u′. Then by Definition 2, hd(ζ ′([m]C′)) = m, t′ = (κt, ζ
′[[m]C′ 7→

tl(ζ ′([m]C′))]) and u′ = (κu, ζ
′[[o]C′ 7→ ζ ′([o]C′) ++ o]) for some κt, κu ∈ P.

Then using Lemma 3-5, we know that there are states t, u ∈ S such that
t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]), u = (κu, ζ[[o]C 7→ ζ([o]C) ++ o]), s ?m−−→ t

and s !o−→ u. Due to Confab (s) and m 6'C o, we know that there must exist
a v ∈ S, namely v = (κv, ζ[[m]C 7→ tl(ζ([m]C)), [o]C 7→ ζ([o]C) ++ o]) for
some κv ∈ P, such that t !o−→ v and u !m−−→ v. Then using hd(ζ ′([m]C′)) = m,
m 6'C′ o and Lemma 3-5, we know that there must exist a v′ ∈ S′, namely
v′ = (κv, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′)), [o]C′ 7→ ζ ′([o]C′) ++ o]) such that t′ !o−→′ v′

and u′ !m−−→′ v′, from which we can conclude that Confab (s
′).

– Case a = !m and b = ?o. This case follows by symmetry of the above case.

Next we prove that if ?SCCC′(a) and ?SCCC′(b), then Confab (s) ⇐ Confab (s
′).

Assume that ?SCCC′(a), ?SCCC′(b) and that Confab (s
′), that is for all t′, u′ ∈ S′

we have that (s′
a−→′ t′ ∧ s′ b−→′ u′) ⇒ (∃v′∈S′ : t′

b−→′ v′ ∧ u′ a−→′ v′). We need to
prove that Confab (s), that is for all t, u ∈ S we have that (s

a−→ t ∧ s b−→ u) ⇒
(∃v∈S : t

b−→ v ∧ u a−→ v). We do a case distinction on a and b.

– Case a = ?m and b = ?o. Pick some t, u ∈ S such that s ?m−−→ t and s ?o−→ u.
Then by Definition 2, t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]) and u = (κu, ζ[[o]C′ 7→
tl(ζ([o]C))]) for some κt, κu ∈ P. Then using ?SCCC′(a), ?SCCC′(b) and Lemma
3, we know that there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′[[m]C′ 7→
tl(ζ ′([m]C′))]), u′ = (κu, ζ

′[[o]C′ 7→ tl(ζ ′([o]C′))]), s′ ?m−−→′ t′ and s′
?o−→′ u′.

Due to Confab (s
′) and m 6'C′ o, we know that there must exist a v′ ∈ S′,

On the Preservation of Properties when Changing Communication Models 23

namely v′ = (κv, ζ
′[[m]C′ 7→ tl(ζ ′([m]C′)), [o]C′ 7→ tl(ζ ′([o]C′))]) for some

κv ∈ P, such that t′ ?o−→′ v′ and u′ ?m−−→′ v′. Then using ?SCCC′(a), ?SCCC′(b),
m 6'C o and Lemma 3 and 4, we know that there must exist a v ∈ S, namely
v = (κv, ζ[[m]C 7→ tl(ζ([m]C)), [o]C 7→ tl(ζ([o]C))]), such that t ?o−→ v and
u

?m−−→ v, from which we can conclude that Confab (s).

– Case a = !m and b = !o. Pick some t, u ∈ S such that s !m−−→ t and
s

!o−→ u. Then by Definition 2, t = (κt, ζ[[m]C 7→ ζ([m]C) ++ m]) and
u = (κu, ζ[[o]C 7→ ζ([o]C) ++ o]) for some κt, κu ∈ P. Then using Lemma
5, we know there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′[[m]C′ 7→
ζ ′([m]C′) ++m]), u′ = (κu, ζ

′[[o]C′ 7→ ζ ′([o]C′) ++ o]), s′ !m−−→′ t′ and s′ !o−→′ u′.
Due to Confab (s

′) and m 6'C′ o, we know that there must exist a v′ ∈ S′,
namely v′ = (κv, ζ

′[[m]C′ 7→ ζ ′([m]C′) ++m, [o]C′ 7→ ζ ′([o]C′) ++ o]) for some
κv ∈ P, such that t′ !o−→′ v′ and u′ !m−−→′ v′. Then using m 6'C o and Lemma
5, we know that there must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→
ζ([m]C) ++ m, [o]C 7→ ζ([o]C) ++ o]), such that t !o−→ v and u

!m−−→ v, from
which we can conclude that Confab (s).

– Case a = ?m and b = !o. Pick some t, u ∈ S such that s ?m−−→ t and s !o−→ u.
Then by Definition 2, t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]) and u = (κu, ζ[[o]C 7→
ζ([o]C) ++ o]) for some κt, κu ∈ P. Then using ?SCCC′(a) and Lemma 3 and
5, we know that there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′[[m]C′ 7→
tl(ζ ′([m]C′))]), u′ = (κu, ζ

′[[o]C′ 7→ ζ ′([o]C′) ++ o]), s′ ?m−−→′ t′ and s′ !o−→′ u′.
Due to Confab (s

′) and m 6'C′ o, we know that there must exist a v′ ∈ S′,
namely v′ = (κv, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′)), [o]C′ 7→ ζ ′([o]C′) ++ o]) for some
κv ∈ P, such that t′ !o−→′ v′ and u′

!m−−→′ v′. Then using ?SCCC′(a), m 6'C
o and Lemma 3 and 5, we know that there must exist a v ∈ S, namely
v = (κv, ζ[[m]C 7→ tl(ζ([m]C)), [o]C 7→ ζ([o]C) ++ o]) such that t !o−→ v and
u

!m−−→ v, from which we can conclude that Confab (s).
– Case a = !m and b = ?o. This case follows by symmetry of the above case.

ut

Lemma 12. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S, s′ ∈ S′ and
m, o ∈ M . Assume that s � s′ and m 'C o. Let a ∈ {?m, !m} and b ∈ {?o, !o}.
If not a ≡? b, then Confab (s) ⇒ Confab (s

′) and if ?SCCC′(a) and ?SCCC′(b), then
Confab (s)⇐ Confab (s

′).

Proof. Note that m 'C o implies that m 'C′ o. Let s = (κs, ζ) and s′ = (κs, ζ
′)

for some κs ∈ P, ζ ∈ C and ζ ′ ∈ C′ζ . We first prove that if not a ≡? b, then
Confab (s) ⇒ Confab (s

′). Assume that not a ≡? b and that Confab (s), that is for
all t, u ∈ S we have that (s a−→ t ∧ s b−→ u) ⇒ (∃v∈S : t

b−→ v ∧ u a−→ v). We need
to prove that Confab (s

′), that is for all t′, u′ ∈ S′ we have that (s′ a−→′ t′ ∧ s′ b−→′

u′)⇒ (∃v′∈S′ : t′
b−→′ v′ ∧ u′ a−→′ v′). We do a case distinction on a and b.

24 O. Bunte et al.

– Case a = ?m and b = ?o. Since not a ≡? b, we know that m 6= o. Due to
m 6= o and m 'C′ o, the choice between actions ?m and ?o is not possible
from s′, because a channel cannot have two distinct messages at its head.
Therefore Confab (s

′) trivially holds.
– Case a = !m and b = !o. In case m 6= o, since m 'C o, there does not exist

a fourth state to complete the confluence diamond from s, because different
orderings of !m and !o will result in different channel orderings. Therefore
Confab (s) cannot hold, which makes the implication hold trivially.

In case m = o, pick some t′, u′ ∈ S′ such that s′ !m−−→′ t′ and s′ !m−−→′ u′. Then
by Definition 2, t′ = (κt, ζ

′[[m]C′ 7→ ζ ′([m]C′)++m]) and u′ = (κu, ζ
′[[m]C′ 7→

ζ ′([m]C′)++m]) for some κt, κu ∈ P. Then using Lemma 5, we know there are
states t, u ∈ S such that t = (κt, ζ[[m]C 7→ ζ([m]C)++m]), u = (κu, ζ[[m]C 7→
ζ([m]C) ++m]), s !m−−→ t and s !o−→ u. Due to Confab (s), we know that there
must exist a v ∈ S, namely v = (κv, ζ[[m]C 7→ ζ([m]C) ++m++m]) for some
κv ∈ P, such that t !m−−→ v and u !m−−→ v. Then using Lemma 5, we know that
there must exist a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→ ζ ′([m]C′) ++ m ++

m]), such that t′ !m−−→′ v′ and u′
!m−−→′ v′, from which we can conclude that

Confab (s
′).

– Case a = ?m and b = !o. Pick some t′, u′ ∈ S′ such that s′ ?m−−→′ t′ and
s′

!o−→′ u′. Then by Definition 2, hd(ζ ′([m]C′)) = m, t′ = (κt, ζ
′[[m]C′ 7→

tl(ζ ′([m]C′))]) and u′ = (κu, ζ
′[[o]C′ 7→ ζ ′([o]C′) ++ o]) for some κt, κu ∈ P.

Then using Lemma 3-5, we know that there are states t, u ∈ S such that
t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]), u = (κu, ζ[[o]C 7→ ζ([o]C) ++ o]), s ?m−−→ t

and s
!o−→ u. Due to Confab (s), m 'C o and tl(w) ++ m = tl(w ++ m) for

any m ∈ M and w ∈ M∗, we know that there must exist a v ∈ S, namely
v = (κv, ζ[[m]C 7→ tl(ζ([m]C)) ++ o]) for some κv ∈ P, such that t !o−→ v and
u

!m−−→ v. Then using hd(ζ ′([m]C′)) = m, m 'C′ o, tl(w) ++m = tl(w ++m)
for any m ∈M and w ∈M∗ and Lemma 3-5, we know that there must exist
a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→ tl(ζ ′([m]C′)) ++ o]) such that t′ !o−→′ v′

and u′ !m−−→′ v′, from which we can conclude that Confab (s
′).

– Case a = !m and b = ?o. This case follows by symmetry of the above case.

Next we prove that if ?SCCC′(a) and ?SCCC′(b), then Confab (s) ⇐ Confab (s
′).

Assume that ?SCCC′(a) and ?SCCC′(b) and that Confab (s
′), that is for all t′, u′ ∈ S′

we have that (s′
a−→′ t′ ∧ s′ b−→′ u′) ⇒ (∃v′∈S′ : t′

b−→′ v′ ∧ u′ a−→′ v′). We need to
prove that Confab (s), that is for all t, u ∈ S we have that (s

a−→ t ∧ s b−→ u) ⇒
(∃v∈S : t

b−→ v ∧ u a−→ v). We do a case distinction on a and b.

– Case a = ?m and b = ?o. Since not a ≡? b, we know that m 6= o. Due to
m 6= o and m 'C o, the choice between actions ?m and ?o is not possible
from s, because a channel cannot have two distinct messages at its head.
Therefore Confab (s) trivially holds.

On the Preservation of Properties when Changing Communication Models 25

– Case a = !m and b = !o. In case m 6= o, since m 'C′ o, there does not exist
a fourth state to complete the confluence diamond from s′, because different
orderings of !m and !o will result in different channel orderings. Therefore
Confab (s

′) cannot hold, which makes the implication hold trivially.

In case m = o, pick some t, u ∈ S such that s !m−−→ t and s
!m−−→ u. Then

by Definition 2, t = (κt, ζ[[m]C 7→ ζ([m]C) ++ m]) and u = (κu, ζ[[m]C 7→
ζ([m]C) ++ m]) for some κt, κu ∈ P. Then using Lemma 5, we know there
are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′[[m]C′ 7→ ζ ′([m]C′) ++ m]), u′ =
(κu, ζ

′[[m]C′ 7→ ζ ′([m]C′) ++m]), s′ !m−−→′ t′ and s′ !o−→′ u′. Due to Confab (s
′),

we know that there must exist a v′ ∈ S′, namely v′ = (κv, ζ
′[[m]C′ 7→

ζ ′([m]C′) ++m ++m]) for some κv ∈ P, such that t′ !m−−→′ v′ and u′ !m−−→′ v′.
Then using Lemma 5, we know that there must exist a v ∈ S, namely
v = (κv, ζ[[m]C 7→ ζ([m]C) ++m++m]), such that t !m−−→ v and u !m−−→ v, from
which we can conclude that Confab (s).

– Case a = ?m and b = !o. Pick some t, u ∈ S such that s ?m−−→ t and s !o−→ u.
Then by Definition 2, t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]) and u = (κu, ζ[[o]C 7→
ζ([o]C) ++ o]) for some κt, κu ∈ P. Then using ?SCCC′(a) and Lemma 3 and
5, we know that there are states t′, u′ ∈ S′ such that t′ = (κt, ζ

′[[m]C′ 7→
tl(ζ ′([m]C′))]), u′ = (κu, ζ

′[[o]C′ 7→ ζ ′([o]C′) ++ o]), s′ ?m−−→′ t′ and s′ !o−→′ u′.
Due to Confab (s

′), m 'C′ o and tl(w) ++ m = tl(w ++ m) for any m ∈
M and w ∈ M∗, we know that there must exist a v′ ∈ S′, namely v′ =

(κv, ζ
′[[m]C′ 7→ tl(ζ ′([m]C′)) ++ o]) for some κv ∈ P, such that t′ !o−→′ v′ and

u′
!m−−→′ v′. Then using ?SCCC′(a), m 'C o, tl(w) ++m = tl(w ++m) for any

m ∈ M and w ∈ M∗ and Lemma 3 and 5, we know that there must exist
a v ∈ S, namely v = (κv, ζ[[m]C 7→ tl(ζ([m]C)) ++ o]) such that t !o−→ v and
u

!m−−→ v, from which we can conclude that Confab (s).
– Case a = !m and b = ?o. This case follows by symmetry of the above case.

ut

Lemma 13. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S, s′ ∈ S′
and m, o ∈M . Assume that s� s′, m 6'C o and m 'C′ o. Let a ∈ {?m, !m} and
b ∈ {?o, !o}. If not !ACCC′(a, b), then Confab (s)⇒ Confab (s

′).

Proof. Let s = (κs, ζ) and s′ = (κs, ζ
′) for some κs ∈ P, ζ ∈ C and ζ ′ ∈ C′ζ .

Assume that Confab (s), that is for all t, u ∈ S we have that (s a−→ t ∧ s b−→ u)⇒
(∃v∈S : t

b−→ v∧u a−→ v). We need to prove that Confab (s
′), that is for all t′, u′ ∈ S′

we have that (s′ a−→′ t′ ∧ s′ b−→′ u′)⇒ (∃v′∈S′ : t′
b−→′ v′ ∧ u′ a−→′ v′). We do a case

distinction on a and b. Note that the case where a =!m and b =!o is not possible
since we assume that not !ACCC′(a, b).

– Case a = ?m and b = ?o. From m 6'C o it follows that m 6= o. Since m 'C′ o
and m 6= o and since a channel can only have one element as its head, the

26 O. Bunte et al.

choice between ?m and ?o is not possible from s′, so Confab (s
′) trivially

holds.
– Case a = ?m and b = !o. Pick some t′, u′ ∈ S′ such that s′ ?m−−→′ t′ and
s′

!o−→′ u′. Then by Definition 2, hd(ζ ′([m]C′)) = m, t′ = (κt, ζ
′[[m]C′ 7→

tl(ζ ′([m]C′))]) and u′ = (κu, ζ
′[[o]C′ 7→ ζ ′([o]C′) ++ o]) for some κt, κu ∈ P.

Then using Lemma 4 and 5, we know that there are states t, u ∈ S such that
t = (κt, ζ[[m]C 7→ tl(ζ([m]C))]), u = (κu, ζ[[o]C 7→ ζ([o]C) ++ o]), s ?m−−→ t

and s
!o−→ u. Due to Conf?m!o (s), m 6'C o and tl(w) ++ m = tl(w ++ m)

for any m ∈ M and w ∈ M∗, we know that there must exist a v ∈ S,
namely v = (κv, ζ[[m]C 7→ tl(ζ([m]C)), [o]C 7→ ζ([o]C)++o]) for some κv ∈ P,
such that t !o−→ v and u

?m−−→ v. Then using hd(ζ ′([m]C′)) = m, m 'C′ o,
tl(w) ++ m = tl(w ++ m) for any m ∈ M and w ∈ M∗ and Lemma 4 and
5, we know that there must exist a v′ ∈ S′, namely v′ = (κv, ζ

′[[m]C′ 7→
tl(ζ ′([m]C′)) ++ o]) such that t′ !o−→′ v′ and u′

?m−−→′ v′, from which we can
conclude that Conf?m!o (s′).

– Case a = !m and b = ?o. This case follows by symmetry of the above case.
ut

Lemma 14. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such that
F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let s ∈ S, s′ ∈ S′
and a, b ∈ L Assume that s� s′. If !ACCC′(a, b), then Confab (s)⇐ Confab (s

′).

Proof. Since m 'C′ o, there does not exist a fourth state to complete the con-
fluence diamond from s, because different orderings of !m and !o will result in
different channel orderings. Therefore Confab (s

′) cannot hold, which makes the
implication hold trivially. ut

Theorem 6. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let a, b ∈ L. If
not !ACCC′(a, b) and not a ≡? b, then confluence of a and b is merge-preserved.

Proof. This follows from Lemma 1, 7, 10, 11, 12 and 13. ut

Theorem 7. Let F = 〈P,C,M〉 and F ′ = 〈P,C ′,M〉 be FIFO systems such
that F � F ′. Let BF = 〈S, s0, L,−→〉 and BF ′ = 〈S′, s′0, L,−→′〉. Let a, b ∈ L. If
?SCCC′(a), ?SCCC′(b) and S I S′, then confluence of a and b is split-preserved.

Proof. This follows from Lemma 10, 11, 12 and 14. ut

	On the Preservation of Properties when Changing Communication Models

