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Abstract

We study the computational complexity of determining structural prop-
erties of edge periodic temporal graphs (EPGs). EPGs are time-varying
graphs that compactly represent periodic behavior of components of a dy-
namic network, for example, train schedules on a rail network. In EPGs,
for each edge e of the graph, a binary string se determines in which time
steps the edge is present, namely e is present in time step t if and only if se
contains a 1 at position t mod |se|. Due to this periodicity, EPGs serve as
very compact representations of complex periodic systems and can even
be exponentially smaller than classic temporal graphs representing one
period of the same system, as the latter contain the whole sequence of
graphs explicitly. In this paper, we study the computational complexity
of fundamental questions of the new concept of EPGs such as what is the
shortest traversal time between two vertices; is there a time step in which
the graph (1) is minor-free; (2) contains a minor; (3) is subgraph-free; (4)
contains a subgraph; with respect to a given minor or subgraph. We give
a detailed parameterized analysis for multiple combinations of parameters
for the problems stated above including several parameterized algorithms.

1 Introduction

In general, a time-varying graph describes a graph that changes over time. For
most applications, this change is limited to the availability or weight of edges,
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meaning that edges are only present at certain time steps or the time needed
to cross an edge changes over time. They are of great interest in the area of
dynamic networks [7, 13–15] such as mobile ad hoc networks [36] and vehicular
networks [3,10] as in those networks, the topology naturally changes over time.
There are plenty of representations for time-varying graphs in the literature
which are not equivalent in general, see [5–7] for some overview. In general, a
time-varying graph G consists of an underlying graphG and functions describing
how the availability or weights of edges change over time. Thereby, settings with
discrete and continuous time steps are considered [7, 18, 21, 23]. In this work,
we only deal with the discrete time setting. Usually, in the field of time-varying
graphs, for each time step t of the lifetime of the graph, the snapshot graph G(t),
i.e., the graph present in time step t, is explicitly given in the input [4, 22, 33].
This implies that the lifetime of the graph G is linear in the input size and
further that the input is mostly dominated by the sequence of snapshot graphs
(G(t))t and not by the underlying graph G. We will call those time-varying
graphs where the whole sequence of snapshot graphs is explicitly given temporal
graphs.

Knowing the whole sequence of snapshot graphs of the temporal graph re-
quires a detailed knowledge of the usually complex system that is modelled by
the graph. On the other hand, describing a system by its components is a natu-
ral concept in computer science [9,16,26] and requires only individual knowledge
of the components. In the context of time-varying graphs, this approach is re-
alized by so called edge periodic (temporal) graphs, EPGs for short, categorized
as Class 8 in [7] and considered for instance in [12, 24, 25]. An edge periodic
(temporal) graph G = (V,E, τ) consists of an underlying graph G = (V,E) and
a function τ that assigns each edge with a binary string, the edge label, that
indicates in which time step the edge is present. Thereby, the time step is con-
sidered modulo the length of the edge label. As the length of the edge labels
can differ, the sequence of snapshot graphs only repeats after the least common
multiple of the individual edge label lengths. Hence, an EPG can compactly
represent an exponentially longer sequence of snapshot graphs without explic-
itly describing each snapshot graph individually. This implies that the lifetime
can be exponentially in the input size. Fig. 1 shows an example of an EPG
together with some snapshot graphs.

As humans tend to follow a daily routine and the systems that are to be
described by time-varying graphs are mostly influenced by human behavior,
they naturally exhibit a periodic behavior. For instance, in social networks
describing the dynamics of people meeting [19, 30], the whole network will be
quite complex, but every person individually follows mostly a daily routine.
Hence, in order to describe the system compactly as an EPG we only need to
consider the daily routine of two people at the same time to specify an edge.
An other example is to model a train network. There, the underlying graph
represents the railway system, while an edge is present in a time step if and
only if a train is scheduled to run on the respective rail segment at that time. A
major advantage of modelling a time-varying system with EPGs is that, if for
some application, we are only interested in a part of the temporal graph (for
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(a) EPG G (b) G(0) (c) G(1) (d) G(4) (e) G(26) (f) G(33)

Figure 1: Example EPG G and the snapshot graphs corresponding to t ∈ {0, 1, 4,
26, 45}. G has a period of length 60. It illustrates the blow-up in complexity due
to the compact representation. For example, the first K2-free snapshot graph
is at time step 33.

instance, we are only interested in the train schedule of a commune and not
of the whole state), then we can first extract the corresponding subgraph of G
and then compute the sequence of snapshot graphs, which will be both, smaller
in the size of the individual snapshots, and the sequence might be shorter as
the period of the sequence might be smaller. Hence, we avoid considering the
complete huge and complicated system if we are only interested in a part of the
system.

So far, to the best of our knowledge, the class of edge periodic (temporal)
graphs is not studied in detail, yet. We counter this by giving a fundamental
analysis of the parameterized complexity of essential graph-theoretical problems
on EPGs such as being minor- or subgraph-free, containing a minor or subgraph,
and the fundamental short traversal problem [1, 35] from the theory of time-
varying graphs. The theory on graph minors, established by Robertson and
Seymour in a series of over 20 publications [20], is one of the most fundamental
results in graph theory. They showed that minor closed properties of a given
graph can be checked in polynomial time as the minor relation is a well-quasi-
ordering and hence, every minor closed family excludes a finite set of minimal
minors. This implies that in order to recognize a minor closed family one only
needs to test a finite number of minors and the latter task can be done in time
f(|H |) ·n2 [17], where H is the sought minor. As the finite set of minors is fixed
with respect to the graph property, these tests can be performed in polynomial
time. Hence, it is natural to ask, if the toolbox of minors carries over to EPGs.
For those, one could be interested in two questions: (1) Do all snapshot graphs
obey a minor closed property? (2) Is there some snapshot graph that obeys
a minor closed property? As those properties are proved by excluding certain
minors, question (1) relates to a no-answer to the question whether there exists
a snapshot graph containing a certain minor and question (2) relates to a yes-
answer to the question whether there exists a snapshot graph being minor-free.
Note that for EPGs, it could be that the underlying graph is not contained in
a minor closed graph class but still each snapshot is contained.
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While classically, both problems of being minor-free and finding a minor
are FPT in the size of the sought minor, we will observe that for EPGs, both
problems are NP-hard even if the minor is fixed and very simple, such as a
triangle, or a a star with four leafs. This implies that the graph minor toolbox
does not translate to EPGs. In fact, our NP-hardness results hold even in
the case of topological minors. On the other hand, the problem of finding a
subgraph is not getting harder when we shift from classic graphs to EPGs.
This problem is classically W[1]-hard for the size of the subgraph (consider
cliques as subgraphs) [8] and in XP for the same parameter. Surprisingly, we
can obtain a similar XP-algorithm for EPGs in the same parameter. For the
problem of checking whether there is a snapshot graph that does not contain a
fixed subgraph/minor, we obtain NP-completeness for both problems, while if
the sought subgraph/minor is given in the input (and hence not fixed), we lift
the coNP-completeness from the classic setting to ΣP

2 -completeness concerning
EPGs. Despite the high complexity, we present FPT-algorithms in a combined
parameter, including the size of the underlying graph, for all four problems
of containment/freeness of minors/subgraphs. We indicate that the parameter
|G| is necessary by giving hardness results when |G| is replaced by smaller
structural parameters such as vertex cover number, treewidth, and pathwidth
of the underlying graph.

We emphasize that EPGs can trivially be converted into temporal graphs by
unrolling the whole sequence of snapshot graphs in exponential time and space.
Hence, the apparent complexity blow-up comes from the compact representation
via periodic edge labels. Intuitively, as for encoding a problem in binary instead
of unary, we do not need more time than for temporal graphs, we are just
measuring in a smaller input size. But we can exploit the additional structure
of EPGs to obtain better algorithms than with the naive approach of unrolling
the EPG.

2 Preliminaries

For a string w = w0w1 . . . wn with wi ∈ {0, 1}, for 0 ≤ i ≤ n, we denote with
w[i] the symbol wi at position i in w. Let |w| = n be the length of w. We write
the concatenation of strings u and v as u · v. For non-negative integers i ≤ j we
denote with [i, j] the interval of natural numbers n with i ≤ n ≤ j. A monomor-
phism ϕ : V → V ′ is an isomorphism when restricted to its image. For a set
S = {s1, s2, . . . , sn}, we might denote the set {ϕ(s1), ϕ(s2), . . . , ϕ(sn)} by ϕ(S).

An edge periodic (temporal) graph, EPG for short, G = (V,E, τ) (see also
[12]) consists of a graph G = (V,E) (called the underlying graph) and a func-
tion τ : E → {0, 1}∗ where τ maps each edge e to a string τ(e) ∈ {0, 1}∗ such
that e exists in a time step t ≥ 0 if and only if τ(e)[t]

◦
= 1, where τ(e)[t]

◦
:=

τ(e)[t mod |τ(e)|]. For an edge e and non-negative integers i ≤ j, we induc-
tively define τ(e)[[i, j]]

◦
= τ(e)[i]

◦
· τ(e)[[i+ 1, j]]

◦
and τ(e)[[j, j]]

◦
= τ(e)[j]

◦
.

Every edge e exists in at least one time step, that is, for each edge e there is
some te ∈ [0, |τ(e)| − 1] with τ(e)[te] = 1. We might abbreviate i repetitions of
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the same symbol σ in τ(e) as σi. We call #1max the maximal number of ones
appearing in an edge label τ(e) over all edges e ∈ E. Similarly, we call #0max

the maximal number of zeros appearing in some τ(e).
Let LG = {|τ(e)| | e ∈ E} be the set of all edge periods of some edge periodic

graph G = (V,E, τ) and let lcm(LG) be the least common multiple of all periods
in LG . We denote with G(t) the subgraph of G present in time step t. We do
not assume that G is connected in any time step. If not stated otherwise, we
assume an edge periodic graph to be undirected.

For an EPG G = (V,E, τ) we define the layered directed graph G	 =
(V	, E	) where V	 = V × [0, lcm(LG)−1] and two vertices (u, i), (v, j) ∈ V	 are
connected in E	 with a directed edge ((u, i), (v, j)), if j = i + 1 mod lcm(LG)
and either u = v, or {u, v} ∈ E and τ({u, v})[i]

◦
= 1. Intuitively, G	 enrols

the periodic temporal graphs and describes how we can traverse between the
vertices taking the current time step into account.

3 Periodic Character Alignment

Most of our hardness results presented in this work will be based on the Peri-
odic Character Alignment problem which was shown to be NP-complete
in [24]. This problem builds a bridge between the modern setting of edge peri-
odic temporal graphs and the classical field of automata theory as it is closely
related to the Intersection Non-Emptiness problem of deterministic finite
automata over a unary alphabet.

Periodic Character Alignment (PCA)
Input: A finite set X ⊆ {0, 1}∗ of binary strings.
Question: Is there a position i, such that x[i]

◦
= 1 for all x ∈ X?

The parameterized complexity of PCA was already considered in [24] where
W[1]-hardness was shown for the parameter |X | and FPT-algorithms were given
for the total number of runs of 1’s, in all strings, the combined parameter |X |
plus the greatest common divisor of any pair of lengths of strings of X , and
the length of the longest string in X . Here, a run is a nonextendable (with
the same minimal period) periodic segment in a string. As the reductions from
PCA, presented in this work, are parameter preserving, we inherit several W[1]-
hardness results from PCA for the different problems introduced for EPGs.
Due to this tight connection, we begin with a more detailed analyzes of the
parameterized complexity of the PCA problem.

Theorem 1. PCA is NP-hard even if #0max = 1.

Proof. Let X be an instance of Periodic Character Alignment. We
describe how to obtain an equivalent instance X ′ of Periodic Character
Alignment in polynomial time such that each x′ ∈ X ′ contains only a single
0. To obtain X ′, we start with an empty set and add for each x ∈ X and
each i ∈ [0, |x| − 1] with x[i] = 0, a string xi to X ′ where |xi| = |x| and xi
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contains exactly one 0 at position i. The equivalence between X and X ′ now
follows directly from the fact that for each t ≥ 0 there is an x ∈ X with x[t]

◦
= 0

if and only if x(t mod |x|)[t]
◦ = 0.

Theorem 2. PCA is NP-hard even if #1max ≤ 9.

Corollary 1. PCA is W[1]-hard with respect to the number of different prime
numbers in the prime factorizations of the integers in LG.

To prove Theorem 2 and Corollary 1 we recall the construction of the reduc-
tion from Multicolored Clique to Periodic Character Alignment [24].

Multicolored Clique
Input: A graphG = (V,E), an integer k, and a k-partition (V1, . . . , Vk)
of G.
Question: Is there a vertex vi ∈ Vi for each i ∈ [1, k] such that {vi |
i ∈ [1, k]} is a clique in G.

Constructing an equivalent instance of Periodic Character Align-

ment. Let I = (G = (V,E), k, (V1, . . . , Vk)) be an instance of Multicolored
Clique. We describe how to obtain an equivalent instance X(I) of Periodic
Character Alignment in polynomial time. For each i ∈ [1, k], we compute a
prime number pi with |Vi| ≤ pi such that pi and pj are distinct for j 6= i. Com-
puting such prime numbers can be done in polynomial time [29]. Moreover,

let v0i , . . . , v
|Vi|−1
i denote the vertices of Vi for each i ∈ [1, k].

For each pair of distinct i, j ∈ [1, k] with i < j we define a string xi,j that
represents the edges between Vi and Vj in G. The string xi,j has length pi · pj
and we set

xi,j [t] :=





0 ti ≥ |Vi|

0 tj ≥ |Vj |

1 {vtii , v
tj
j } ∈ E

0 {vtii , v
tj
j } /∈ E

where ti := t mod pi and tj := t mod pj. The instance X(I) of Periodic
Character Alignment is now defined as X(I) := {xi,j | 1 ≤ i < j ≤ k}.

Theorem 3 (Lemma 5 in [24]). I is a yes-instance of Multicolored Clique
if and only if X(I) is a yes-instance of Periodic Character Alignment.

With the construction ofX(I), we can now prove Theorem 2 and Corollary 1.

Proof of Theorem 2. The classical reduction by Karp from 3-SAT to Clique
implies that Multicolored Clique is NP-hard even if |Vi| = 3 for each i ∈
[1, k]. Let I = (G, k, (V1, . . . , Vk)) be an instance of Multicolored Clique
with |Vi| = 3 for each i ∈ [1, k]. Since the number on 1’s in a string xi,j ∈ X(I)
is equal to the number of edges between Vi and Vj in G, and |Vi| · |Vj | ≤
9, Periodic Character Alignment is NP-hard even if #1max ≤ 9.

6



Proof of Corollary 1. Since Multicolored Clique is W[1]-hard when param-
eterized by k [11] and the length of the string xi,j is the product of the two prime
numbers pi and pj , the set of prime factors of the strings of X(I) is exactly the
set {pi | 1 ≤ i ≤ k}. Hence, Periodic Character Alignment is W[1]-
hard when parameterized by the number of different prime factors of strings
of X(I)

Multicolored Variant of PCA For some reductions we will use a general-
ization of PCA which was considered in [24]. In this variant, not all strings
of X have to align at a common 1 but at least k, respecting some partition
constraints.

Multicolored Periodic Character Alignment (Multicolored
PCA)
Input: Finite sets X1, . . . , Xk ⊆ {0, 1}∗ of binary stings.
Question: Is there a position i, such that for each j ∈ [1, k], there
is some xj ∈ Xj with xj [i]

◦
= 1.

It was shown that Multicolored PCA is NP-hard and W[1]-hard when
parameterized by k even if every string contains only a single 1 [24].

The core task of the problems introduced in the next sections is to determine
whether a certain graph structure exists in one time step or over a sequence of
consecutive time steps. As the existence of an edge e in an EPG is determined
by a binary string τ(e), we associate each EPG with a corresponding PCA
instance. Hence, if the location of the sought graph structure in the underlying
graph of the EPG is known, the problem of finding a time step in which the
structure exists is equivalent to finding a time step in which the 1’s of the
corresponding PCA-instance align.

Definition 1. Let X be an instance of PCA. A triple (G, H, ϕ), where G =
(V,E, τ) is an EPG, H = (VH , EH) is a subgraph of the underlying graph G =
(V,E) of G, and ϕ : VH → V is a monomorphism that identifies H in G, is
called an X-embedding if τ(EH) = X .

Lemma 1. Let X be an instance of PCA and let (G, H, ϕ) be an X-embedding.
Then, there exists a time step t in which ϕ(H) exists in G(t) if and only if X
is a yes-instance of PCA.

Proof. Assume, there exists a time step t in which ϕ(H) exists in G(t). Then, by
definition, for each edge e ∈ EH it holds that τ(ϕ(e))[t]

◦
= 1. As (G, H, ϕ) is an

X-embedding, we have that τ(EH) = X . Hence, for each element x ∈ X , we find
an edge e ∈ EH , with x = τ(ϕ(e)). Hence, we have that x[t]

◦
= τ(ϕ(e))[t]

◦
= 1.

For the other direction, assume there exists a times-step t for which x[t]◦ = 1,
for each x ∈ X . Then, as (G, H, ϕ) is anX-embedding, for each edge e ∈ EH , we
find an element x ∈ X such that τ(ϕ(e)) = x and therefore, x[t]

◦
= τ(ϕ(e))[t]

◦
=

1 and ϕ(H) exists in G(t).
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Due to the close relation of EPGs and PCA stated in Lemma 1 we imme-
diately inherit hardness results from PCA for the problem of finding a given
subgraph in some G(t) if t is unknown. On the other hand, we can use the
known FPT-algorithms for PCA as subroutines in FPT-algorithms for prob-
lems concerning EPGs. For instance, in the problem of finding a time step t in
which some graph H is a subgraph of G(t), we can iterate over all subgraphs
containing H that can appear as a snapshot graph and then use the algorithms
for PCA to find a time step in which this snapshot graph exists. We refer to
Theorem 16 for details.

We are now ready to shift our view to edge periodic temporal graphs.

4 Short Traversal

As edge periodic temporal graphs model periodic connectivity in a graph, the
most natural question is to ask what is the shortest traversal time between two
vertices a and b, taking into account the periodicity of edges. In other words,
we want to know the most favourable time step t to start the traversal from a
in order to have the shortest traversal time. Stated as a decision problem we
obtain the EPG Short Traversal problem.

EPG Short Traversal (EPG-ST)
Input: Edge periodic graph G = (V,E, τ), vertices a, b ∈ V , and
k ∈ N.
Question: Is there a time step t such that starting from vertex a at
time step t, we can reach vertex b at the beginning of time step t+k
while traversing at most one edge per time step?

For the next results, we introduce the notation of string shifts. Let x be
a binary string and let i be an integer. We denote the left shift x←i as the
binary string where |x←i| := |x| and x←i[j] := x[j + i]◦ for each j ∈ [0, |x| − 1].
Analogously, we define the right shift x→i as the inverse operation. Note that
x←i[j]

◦
= x[j + i]

◦
and x→i[j]

◦
= x[j − i]

◦
.

Theorem 4. EPG Short Traversal is NP-hard and W[1]-hard with respect
to the combined parameter |G|+ k even if G is a path.

Intuitively, the above result is obtained by a reduction from PCA where the
strings of the PCA instance are put as labels on an (a, b)-path of length k and
the label of the i’th edge is shift i positions to the right. Therefore, if the PCA
instance aligns at a common 1, the path is appearing edge by edge in the order
of the path allowing for a traversal without any delay.

Proof. We reduce from PCA. Let X = {x1, . . . , x|X|} be an instance of PCA.
We describe how to obtain an equivalent instance I := (G = (V,E, τ), a, b, k)
of EPG Short Traversal, where the underlying graph G has |X | edges and
where k = |X |. The W[1]-hardness of EPG Short Traversal when param-
eterized by |G| + k follows then directly from the W[1]-hardness of Periodic
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Character Alignment when parameterized by |X |. We set V := {vj | j ∈
[0, |X |]} and E := {ej := {vj−1, vj} | j ∈ [1, |X |]}. Hence, G is a path with |X |
edges. Moreover, we set τ(ei) := xi

→(i−1), a := v0, b := v|X|, and k := |X |.
This completes the construction of I. Next, we show that X is a yes-instance

of PCA if and only if I is a yes-instance of EPG Short Traversal.
(⇒) Let t be an index such that x[t]

◦
= 1 for each x ∈ X . We show that,

starting at time step t at vertex a, we can reach vertex b at time step t + |X |
by only traversing one edge per time step. By construction τ(ei) = xi

→(i−1)

and thus τ(ei)[t+ i− 1]
◦
= x[t]

◦
= 1 for each i ∈ [1, |X |]. Hence, in time

step t+ i− 1 the edge ei can be traversed and thus, in time step t+ k − 1 one
can reach vertex b when starting from vertex a at time step t. Thus, I is a
yes-instance of EPG Short Traversal.

(⇐) Suppose that I is a yes-instance of EPG Short Traversal. Since
the unique (a, b)-path in G contains k = |X | edges, there is a time step t such
that τ(ei)[t+ i − 1]

◦
= 1 for each i ∈ [1, |X |]. By construction τ(ei)[t+ i− 1]

◦
=

xi
→(i−1)[t+ i− 1]◦ = xi[t]

◦ and thus xi[t]
◦ = 1. Hence, X is a yes-instance of

PCA.

Theorem 5. EPG Short Traversal is W[1]-hard when parameterized by
the vertex cover number of the underlying graph and k, even if #1max = 1.

Proof. We reduce from Multicolored PCA which is W[1]-hard when param-
eterized by k even if each string contains at most one 1.

Let I = (X1, . . . , Xk) be an instance of Multicolored PCA. We describe
how to obtain an equivalent instance I ′ = (G = (V,E, τ), a, b, k′) of EPG Short
Traversal, where the underlying graph G has a vertex cover of size |X | +
1 and where k′ = 2 · k and the label of each edge contains exactly one 1.

Let Xi := {x1i , . . . , x
|Xi|
i } for each i ∈ [1, k]. We start with an empty graph G

and add vertices v0, . . . , vk to G. Afterwards, we add for each i ∈ [1, k] and
each j ∈ [1, |Xi|] a vertex vji to G which is adjacent to exactly the vertices vi−1
and vi. This completes the construction of the underlying graph G. The edge
labels are assigned as follows: for each i ∈ [1, k] and each j ∈ [1, |Xi|] we

set τ({vi−1, v
j
i }) := xji

→2·(i−1)
and τ({vji , vi}) := xji

→2·(i−1)+1
. Finally, we

set k′ := 2k, a := v0 and b := vk.
The idea of the construction is, that starting from vertex vi−1 at time step t,

one can reach vertex vi at the beginning of time step t+ 2 if and only if there
is some xi ∈ Xi with xi[t− 2(i− 1)]

◦
= 1.

Note that {v0, . . . , vk} is a vertex cover of size k + 1 for G and that any
shortest (a, b)-path in G has length 2k. Next, we show that I is a yes-instance
of Multicolored PCA if and only if I ′ is a yes-instance of EPG Short
Traversal.

(⇒) Let t ∈ N and let for each i ∈ [1, k], ji ∈ [1, |Xi|] such that xjii [t]
◦
= 1.

We show that starting at time step t at vertex a = v0 one can follow the
path P = (v0, v

j1
1 , v1, . . . , v

jk
k , vk) and reach vertex vk = b in at most k′ time

steps.

9



By construction, τ({vi−1, v
ji
i }) = xji

→2(i−1)
and τ({vjii , vi}) = xji

→2(i−1)+1

and thus τ({vi−1, v
ji
i })[t+ 2(i− 1)]

◦
= τ({vjii , vi})[t+ 2(i− 1) + 1]

◦
= xji [t]

◦
=

1 for each i ∈ [1, k]. Hence, starting from time step t at vertex v0, one can
traverse each edge {vi−1, v

ji
i } at time step t + 2(i − 1) and each edge {vjii , vi}

at time step t + 2(i − 1) + 1 and reach vertex vk within k′ time steps. As a
consequence, I ′ is a yes-instance of EPG Short Traversal.

(⇐) Suppose that I ′ is a yes-instance of EPG Short Traversal. Since
any (a, b)-path in G contains at least k′ edges, there is a time step t, for
each i ∈ [1, k] an index ji ∈ [1, |Xi|] such that τ({vi−1, v

ji
i })[t+ 2(i− 1)]

◦
=

τ({vjii , vi})[t+ 2(i− 1) + 1]◦ = 1 for each i ∈ [1, k]. By construction, we have

τ({vi−1, v
ji
i }) = xji

→2(i−1)
and τ({vjii , vi}) = xji

→2(i−1)+1
for each i ∈ [1, k], and

thus, xjii [t]
◦
= 1. Hence, I is a yes-instance of Multicolored PCA.

In contrast, if we combine the size of the underlying graph and the maximal
number of ones per edge label, we can obtain an FPT-algorithm. Note that the
length of each edge label τ(e), and therefore lcm(LG), is not restricted by the
combination of parameters.

Theorem 6. EPG Short Traversal is FPT with respect to the combined pa-
rameter |G|+#1max and can be solved in O(|G|·#1max)

O(|G|·#1max) ·|G|O(1) time.

Proof. Let I = (G = (V,E, τ), a, b, k) be an instance of EPG Short Traver-
sal. To obtain an FPT-algorithm, we perform two steps: First, we iterate over
all possible (a, b)-paths P = (v0, . . . , vr) in the underlying graphG, where v0 = a
and vr = b. Since we can assume that the temporal walk with the shortest
traversal time is vertex simple, that is, each vertex is visited at most once, it
remains to show that there is a time step t and an (a, b)-path in the underlying
graph, such that at time step t one can start at vertex a and reach vertex b in
at most k time steps by only traversing edges of the path P . To check if such a
time step exists for a given path P , we present the following ILP-formulation.

For each edge ei := {vi−1, vi}, we use a variable ti which is equal to the
time step in which the considered temporal walk with shortest traversal time
traverses edge ei. Since at most one edge can be traversed at a time step, we
need to ensure that ti + 1 ≤ ti+1. Moreover, an edge ei can only be traversed
at time step ti, if τ(ei)[ti mod |τ(ei)|] = 1. Hence, we first introduce two
additional variables ci and mi for each edge ei, where mi ∈ [0, |τ(ei)| − 1]
and |τ(ei)| · ci+mi = ti. That is, mi stores the value of ti mod |τ(ei)|. Finally,
we have to ensure that τ(ei)[mi] = 1. Let Ji := {j ∈ [0, |τ(ei)|] | τ(ei)[j] =
1} denote the set of positions where τ(ei) is equal to one. We introduce for
each i ∈ [1, r] and each j ∈ Ji a new binary variable ℓi,j ∈ {0, 1} which is
equal to zero if and only if mi = j. To make sure that τ(ei)[mi] = 1, the
value of exactly one ℓi,j has to be zero, which can be achieve by adding the
constraint

∑
j∈Ji

ℓi,j = |Ji| − 1. The complete ILP formulation now reads as
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follows:

ti, ci ∈ N for each i ∈ [1, r]

mi ∈ {0, |τ(ei)| − 1} for each i ∈ [1, r]

ℓi,j ∈ {0, 1} for each i ∈ [1, r], j ∈ Ji

Minimize tr − t1 subject to

ti + 1 ≤ ti+1 for each i ∈ [1, r − 1]

ci · |τ(ei)|+mi = ti for each i ∈ [1, r]

−ℓi,j · 2|τ(ei)|+ j ≤ mi for each i ∈ [1, r], j ∈ Ji

ℓi,j · 2|τ(ei)|+ j ≥ mi for each i ∈ [1, r], j ∈ Ji
∑

j∈Ji

ℓi,j = |Ji| − 1 for each i ∈ [1, r]

Note that the number of variables in this ILP-formulation is O(r·maxi∈[1,r] |Ji|).
Since r ≤ |G| and maxi∈[1,r] |Ji| ≤ #1max, this ILP can be solved in O(|G| ·

#1max)
O(|G|·#1max) · |I|O(1) time [8].

Since there are at most 2|G| many possible (a, b)-paths in G and we can solve
for each such path the corresponding ILP in O(|G| · #1max)

O(|G|·#1max)|I|O(1)

time, EPG Short Traversal can be solved in the stated running time.

Remark 1. Note that since any edge can be traversed within at most max(LG)
time steps and any vertex simple path contains at most n−1 edges, any shortest
temporal path from a to b requires at most max(LG) · (n−1) time steps. Hence,
any shortest path generalization on EPGs where we fix the start or the end time
step can be solved in polynomial time, since we can simply reduce it back to
the shortest path problems on at most O(max(LG) ·n) consecutive layers of G	.
Examples for this would be a EPG Shortest Arrival, where we want to
reach vertex b as fast as possible or EPG Latest Departure, where we want
to find the latest time step t0 such that we can reach vertex b at the latest at
time step t when starting from vertex a at time step t0.

5 Minors and Subgraphs

We now come to the main part of this paper considering the existence and non
existence of sub-structures in an EPG such as induced subgraphs and minors.
Recall that G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and
E′ ⊆ E. If further for all u, v ∈ V ′ it holds that {u, v} ∈ E′ if and only
if {u, v} ∈ E, we call G′ an induced subgraph of G. In the following, we see
subgraphs as induced subgraphs. We call G′ a minor of G if G′ can be obtained
from G, by deletion of vertices, deletion of edges, and contraction of edges. Here,
we consider the following questions: Does there exists a time step t, such that
G(t) has an subgraph/minor or is subgraph-/minor-free.
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5.1 Subgraphs

Now, we study the following two problems.

EPG Subgraph
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step
t, s.t. H is a subgraph of G(t)?

EPG Subgraph-Free
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step
t, s.t. H is not a subgraph
of G(t)?

Theorem 7. The EPG Subgraph problem is NP-complete and W[1]-hard
parameterized by |G|. This holds even if H is a path and G = H.

Proof. EPG Subgraph belongs to NP, since we may non-deterministically
choose a time step t of size at most lcm(LG) and an embedding ϕ : VH → V and

check, whether ϕ identifies H in G(t). Since t ≤ max(LG)(n
2), this certificate

can be encoded polynomially in the input size.
It remains to show that EPG Subgraph is NP-hard. LetX := {x1, . . . , x|X|}

be an instance of PCA. We define an equivalent instance (G, H) of EPG Sub-
graph. First, we define H := (VH , EH) to be a path on |X | edges e1, . . . , e|X|.
Second, we define G := (VH , EH , τ) with τ(ei) := xi for every i ∈ [1, |X |].

We next use Lemma 1 to show that X is a yes-instance of PCA if and only
if (G, H) is a yes-instance of EPG Subgraph. Observe that ϕ : VH → VH
with ϕ(v) := v is a trivial monomorphism that identifies H in the underly-
ing graph of G. Furthermore, by the definition of τ we have τ(EH) = X .
Thus, (G, H, ϕ) is anX-embedding according to Definition 1. Then, by Lemma 1
we have that X is a yes-instance of PCA if and only if there is a time step t
in which ϕ(H) exists in G(t). Consequently, X is a yes-instance of PCA if and
only if (G, H) is a yes-instance of EPG Subgraph.

Note that the length of the paths in the construction behind Theorem 7
corresponds to the size of the PCA instance. Thus, these paths might be arbi-
trarily long. If we—in contrast—assume that the size of sought subgraph H is
bounded by some constant h, we obtain a polynomial time algorithm for EPG
Subgraph. In other words, EPG Subgraph is XP when parameterized by h
as we show in the following theorem.

Theorem 8. EPG Subgraph can be solved in time O(nh · max(LG)(h
2)) ·

2O(
√
h log h), where h is the number of vertices in H.

Proof. We prove the theorem by describing the algorithm. Let (G = (V,E, τ), H)
be an instance of EPG Subgraph. The algorithm is straight forward: We it-
erate over all possible subsets W ⊆ V of size h. For each of these sets we check
whether there is a time step t ∈ [1,max(LG)(h

2)] such that G(t)[W ] is isomorphic
to H . If such a time step exists, return yes. Otherwise, return no.

The algorithm runs within the claimed running time since there are
(
n
h

)
∈

O(nh) possible choices of W . For each choice, we consider max(LG)(h
2) dis-

tinct graphs G(t) and check whether one of these graphs is isomorphic to H

in 2O(
√
h log h) time [2].
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We next show that the algorithm is correct. Suppose that the algorithm
returns yes. Then, for one choice of W and one time step t, the graph G(t)[W ]
is isomorphic to H and therefore, (G, H) is a yes-instance.

Conversely, suppose that (G, H) is a yes-instance. Let W ⊆ V be the
subset of size h such that G(t)[W ] is isomorphic to H at some time step t.
Let e1, . . . , ek ∈ E be all edges between vertices of W in (V,E). Since |W | =
h we have k ≤ h2. Thus, the least common multiple of all string lengths
|τ(e1)|, . . . , |τ(ek)| is at most max(LG)(h

2). Therefore, we may assume that t ∈

[1,max(LG)(h
2)]. Consequently, the algorithm returns yes.

Next, we consider the problem EPG Subgraph-Free. Recall that Theo-
rem 8 reveals that the NP-hardness of EPG Subgraph crucially relies on the
fact that the size of H is unbounded. In contrast, we show next that EPG
Subgraph-Free is NP-hard for every fixed size of H .

Theorem 9. EPG Subgraph-Free is NP-complete and W[1]-hard parame-
terized by |G| for every fixed subgraph H containing at least two vertices.

The containment stated in Theorem 9 is easy to see: We non-deterministically
choose a time step t of size at most the least common multiple of the individual
edge label lengths. Note that t ≤ max(LG)(n

2) and thus, t can be encoded poly-
nomially in the total input size. With t at hand, we check for every set V ′ ⊆ V
of size h, whether G(t)[V ′] is not isomorphic toH . Herein, h denotes the number
of vertices of H . Since H is a fixed subgraph, h is a constant and therefore, this
can be done in polynomial time.

We next show the NP-hardness from Theorem 9 in two steps. First, we
provide NP-hardness for edgeless graphs H containing at least two vertices and
second, we show NP-hardness for graphs H containing at least one edge.

Lemma 2. EPG Subgraph-Free is NP-hard and W[1]-hard parameterized
by |G| for every fixed edgeless graph H containing at least two vertices.

Proof. Let H be an edgeless graph on c ≥ 2 vertices. Note that H is a subgraph
of some G if and only if G has an independent set of size c. We prove the NP-
hardness by providing a reduction from PCA. Let X be an instance of PCA.
Without loss of generality, we may assume that 1 ∈ X , since otherwise, we
may replace X by the equivalent instance X̃ := X ∪ {1}. Thus, let X :=
{x1, . . . , xk, 1}.

We first describe the construction. We define an equivalent instance (G, H)
of EPG Subgraph-Free. To this end, we define the auxiliary graph F :=
(VF , EF ) as a clique on 2k vertices, and we let M := {e1, . . . , ek} ⊆ EF be
a matching of size k in F . To define G = (V,E, τ), we let the underlying
graph G = (V,E) be the disjoint union of F and c−2 isolated vertices. We then
define τ by setting τ(ei) := xi for every ei ∈M and τ(e) := 1 for every e 6∈M .

We next show that X is a yes-instance of PCA if and only if (G, H) is a yes-
instance of EPG Subgraph-Free by applying Lemma 1. Let ϕ : VF → V be
the monomorphism identifying F inG. By construction of τ we have τ(EF ) = X
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and therefore, (G, F, ϕ) is an X-embedding according to Definition 1. Lemma 1
implies that X is a yes-instance of PCA if and only if there is a time step t in
which ϕ(F ) exists in G(t). It remains to show that ϕ(F ) exists in G(t) if and
only if G(t) does not have an independent set of size c.

Suppose ϕ(F ) exists in G(t). Then, G(t) is the union of c−2 isolated vertices
and a clique of size 2k. Thus, the maximum independent set in G(t) has size c−
1 < c. Conversely, suppose ϕ(F ) does not exist in G(t). Then, one edge {u, v}
with u ∈ VF and v ∈ VF is not present in G(t). Thus, the vertices u and v
together with c−2 isolated vertices form an independent set of size c in G(t).

Lemma 3. EPG Subgraph-Free is NP-hard and W[1]-hard parameterized
by |G| for every fixed graph H containing at least one edge.

Proof. Let H be a graph with at least one edge. Again, we provide a reduction
from PCA. Let X = {x1, . . . , xk} be an instance of PCA.

We first describe the construction. We define an equivalent instance (G =
(V,E, τ), H) of EPG Subgraph-Free. We set (V,E) to be the disjoint union
of k copies of H1, . . . , Hk of the graph H . Furthermore, for every i ∈ [1, k] we
set τ(e) := xi for each edge e that belongs to the copy Hi. Recall that for a
string s, the string s is obtained by swapping every occurrence of a 0 with an
occurrence of a 1 and vice versa.

We next show that X is a yes-instance of PCA if and only if (G, H) is a
yes-instance of EPG Subgraph-Free.

Suppose that X is a yes-instance of PCA. Then, there is a position t such
that xi[t]

◦ = 1 for all xi ∈ X . Consequently, we have xi[t]
◦ = 0 for all xi ∈ X .

Due to the construction of τ , this implies that G(t) is an edgeless graph and
therefore, G(t) does not containH as an induced subgraph. Consequently, (G, H)
is a yes-instance of EPG Subgraph-Free.

Conversely, suppose that X is a no-instance of PCA. Then, for every posi-
tion t there is at least one xi ∈ X with xi[t]

◦ = 0. Consequently, for every t we
have xi[t]

◦ = 1 for some xi ∈ X . Due to the construction of τ , this implies that
at each time step t, all edges of one of the copies Hi of H are present in G(t).
Therefore, every G(t) contains H as an induced subgraph and therefore, (G, H)
is a no-instance of EPG Subgraph-Free.

Now, Theorem 9 follows from Lemma 2 and Lemma 3. In contrast, if the
subgraph H is not fixed, then the problem becomes even harder. Intuitively,
the following theorem is based on a construction from ∃∀3UNSAT, where in
the resulting EPG, we first have to guess a time step t and then need to check
that each selection of k vertices is not a clique in G(t).

Theorem 10. The EPG Subgraph-Free problem is Σ2
P -complete.

Proof. For the membership in ΣP
2 , we construct an alternating Turing ma-

chine M that solves the problem as follows. On input G = (V,E, τ), H =
(VH , EH), first existentially guess a time step t for which the snapshot graph G(t)
should beH-free. Then, universally guess a set of vertices S with |S| = |H | and a
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monomorphism ϕ : VH → S. If for all {u, v} ∈ EH it holds that ϕ({u, v}) ∈ E,
then return no, else return yes. Clearly, if M outputs yes, it found a snap-
shot graph G(t) not containing H as a subgraph. As M performs on every
input an existential guess followed by a universal guess, this classifies the EPG
Subgraph-Free problem to be contained in ΣP

2 .
Next, we show that EPG Subgraph-Free is ΣP

2 -hard. Therefore, we re-
duce from the complement of the ΠP

2 -complete problem ∀∃3SAT [31, 32, 34]
which can be described as ∃∀3UNSAT. In ∃∀3UNSAT we are given a quanti-
fied Boolean formula of the form ∃~x∀~y : ψ(~x, ~y) where ~x and ~y are existential,
respectively universal, quantified variables and ψ(~x, ~y) is a Boolean formula
without free variables. Then, the question is whether there exists an assign-
ment for the variables in ~x such that for all assignments of the variables in ~y,
the formula ψ(~x, ~y) evaluates to false. Intuitively, we will iterate through all
possible assignments to ~x with the different time steps of an EPG and then use
the reduction from 3SAT to Clique presented in [27] for the universal quanti-
fied variables in ~y. Then, a snapshot graph associated with an assignment for
~x will contain a clique of some size as a subgraph if and only if there exists an
assignment for ~y that satisfies the formula ψ(~x, ~y).

Let ψ(~x, ~y) be a Boolean formula in 3CNF containing k clauses. We construct
a graph G consisting of k clusters with a maximum number of three vertices in
each cluster. Each cluster will correspond to a clause of ψ(~x, ~y). Each vertex
in a cluster is assigned with a literal from the respective clause. Then, we put
edges between all pairs of vertices from different clusters except for pairs of the
form x,¬x, being associated with a variable and its negation. There are no
edges between vertices of the same cluster. Intuitively, if two vertices in G are
adjacent, their respective literals can be assigned true simultaneously. Now, we
still need to assign edge labels to the edges inGwhich will become the underlying
graph of the constructed EPG G. As an intermediate step, we assign labels to
the endpoints of edges and obtain the label τ(e) for the edge e by multiplying
the labels wu and wv of the two endpoints of e as follows. If |wu| = ℓu and
|wv| = ℓv, then the label of e will be of length ℓ = lcm({ℓu, ℓv}) and is defined
for 0 ≤ i ≤ l as τ(e)[i]◦ = wu[i]

◦ ∧ wv[i]
◦ where a position in a binary string is

interpreted as a truth-value. We assign for an edge e, an endpoint incident to
a literal corresponding to a universally quantified variable with the edge label
τ(e) = 1. Let m be the number of existential quantified variables. Then, let
P = {p1, p2, . . . , pm} be the set of the first m prime numbers. Note that the i’th
prime number is bounded by O(i log i) [29], hence, P be computed in polynomial
time. Then, for each remaining endpoint of an edge e being incident to some
literal associated with an existential quantified variable xi, we assign a label
10pi−1 to the endpoint of e if xi appears as a positive literal and a label 01pi−1,
otherwise. A time step t with t mod pi = 0 will then correspond to setting
variable xi to true and a time step t with t mod pi 6= 0 will correspond to
setting xi to false. Finally, we set the sought subgraph H to a clique of size k.

We claim that G has a time step t in which G(t) is H-free if and only if
∃~x∀~yψ(~x, ~y) evaluates to false. First, assume there exists a time step t for which
G(t) isH-free. In G(t) all edges incident to literals are present where both literals
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satisfy that they correspond either to literals of universally quantified variables,
to positive literals of existentially quantified variables xi with t mod i = 0, or
to negative literals of existentially quantified variables xi with t mod i 6= 0.
If one literal incident to an edge e does not satisfy any of these conditions,
then the edge e is not present in G(t). Now, if G(t) has k-clique, it contains
exactly one literal from each cluster. As all nodes of a clique are adjacent, all
corresponding literals must be assigned true simultaneously. As by assumption,
G(t) is H-free, per cluster, for each choice of the literal going into the clique,
there is at least one edge missing between the chosen literals. This means that
we picked two literals corresponding to positive and negative literals of the
same variable. As picking a literal vertex from a cluster to go into the clique
corresponds to choosing which literal satisfies the clause corresponding to the
cluster, this means that we cannot make a selection of satisfying literals per
clause that leads to a valid variable assignment. Hence, for all assignments of
~y, the formula ψ(~x, ~y) evaluates to false, when ~x is assigned such that exactly
those variables xi with t mod i = 0 are assigned true.

For the other direction, assume there exists a variable assignment for ~x such
that for all assignments of ~y, the formula ψ(~x, ~y) evaluates to false. Let t be a
time step such that for all variables xi assigned true, it holds that t mod i = 0
and for variables xi assigned false, it holds that t mod i 6= 0. As the edge
labels for variables in ~x have different prime lengths we can find such a t for
every possible assignment. Now pick an assignment for the variables in ~y. We
mark each literal that is satisfied under this assignment in G(t). By assumption,
ψ(~x, ~y) evaluates to false under the current assignment. As we are considering
a full assignment of the variables, this means that there is one cluster that does
not contain a marked literal vertex. Hence, regardless of which vertex v of this
cluster we would pick, we would find a marked literal of some other cluster
which correspond to the complementary literal of v and hence is missing an
edge with v. Therefore, we cannot complete the current vertex marking to a
k-clique. As the assignment for ~y was arbitrary it follows that for each possible
embedding of H into G(t) we would have an edge missing.

5.2 Minors

Now, we study the following two problems.

EPG Minor
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step
t, s.t. H is a minor of G(t)?

EPG Minor-Free
Input: EPG G = (V,E, τ) and
graph H = (VH , EH).
Question: Is there a time step
t, s.t. H is not a minor of G(t)?

As in the subgraph variant, we obtain ΣP
2 -completeness for EPG Minor-Free.

Theorem 11. The EPG Minor-Free problem is ΣP
2 -complete.

Proof. This theorem follows easily from the proof of Theorem 10 by changing the
sought subgraph H , being a k-clique, to H ′ = H ∪S, where S is an independent
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set of size 2k. Now, the number of vertices in H ′ is equal to the number of
vertices in G. Hence, in order to obtain H ′ as a minor, we cannot use edge
contraction as we would thereby loose a vertex. As H is a full k-clique, we can
also not use edge or vertex deletion to obtain H ′ and hence, H must already
appear as a subgraph in a considered snapshot graph.

If we fix the considered minor, the complexity falls to NP-completeness,
which is still significantly harder than the polynomial time solvability in the
case of classic static graphs [28].

Theorem 12. EPG Minor-Free is NP-complete and W[1]-hard parameter-
ized by |G| for every fixed H containing at least one edge.

Proof. The proof is similar to the proof of Lemma 3: We provide a reduction
from PCA. Let X be an instance of PCA. Without loss of generality, we may
assume that 1 ∈ X , since otherwise, we may replace X by the equivalent in-
stance X̃ := X ∪ {1}. Thus, let X := {x1, . . . , xk, 1}. We define an equivalent
instance (G = (V,E, τ), H) of EPG Minor-Free. We set (V,E) to be the
disjoint union of k copies H1, . . . , Hk of the graph H . Furthermore, for ev-
ery i ∈ [1, k] we set τ(e) := xi for each edge e that belongs to the copy Hi.
Recall that for a string s, the string s is obtained by swapping every occurrence
of a 0 with an occurrence of a 1 and vice versa.

The correctness now follows by the observation that G(t) is H-minor-free if
and only if G(t) does not contain H as a subgraph and the correctness of the
reduction in Lemma 3.

Next, we consider the case that H is edgeless. As we can delete edges to
obtain the sought minor, in contrast to the subgraph variant, we only need to
compare the number of vertices in H and G.

Proposition 1. EPG Minor-Free can be solved in linear time using loga-
rithmic space for every fixed edgeless graph H.

Proof. Since by the definition of minors, edge deletions are a valid operation
and since H is edgeless, it is sufficient to count the number of vertices in the
underlying graph G. More precisely, G(t) is H-minor-free in every time step t if
and only if |V (G)| < |V (H)|. Counting the number of vertices of the underlying
graph can be done in linear time using only logarithmic space.

Next, we study the related problem EPG Minor, in which we ask whether
a graph H exists as a minor in some time step t in an EPG. For finding an
H-minor, the problem is already NP-complete for very simple minors. More
precisely, we provide a dichotomy for minors of constant sizes into cases which
are NP-complete and those which are solvable in polynomial time. First, we
provide NP-completeness for the case that H contains at least one cycle.

Theorem 13. EPG Minor is NP-complete and W[1]-hard parameterized by
|G| for every fixed H containing a cycle.
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Proof. We present a reduction from PCA. Let X be an instance of PCA. With-
out loss of generality, we may assume that 1 ∈ X , since otherwise, we may re-
placeX by the equivalent instance X̃ := X∪{1}. Thus, letX := {x1, . . . , xk, 1}.

We define an equivalent instance (G, H) of EPG Minor as follows: Let H
be a graph containing a cycle. Furthermore, let C be an induced cycle and
let e be an arbitrary but fixed edge of C. Next, we construct the underlying
graph G of G. The graph G consists of a copy of H in which the edge e
is subdivided exactly k − 1 times, that is, we replace e = {v1, vk+1} by the
path v1, v2, . . . , vk, vk+1 of k − 1 new intermediate vertices. Observe that the
total number of cycles in G is equal to the total number of cycles in H . It
remains to define τ . We set τ({vi, vi+1}) := xi for every i ∈ [1, k]. For every
remaining edge e′ of E(G) we set τ(e′) := 1.

We next use Lemma 1 to show that X is a yes-instance of PCA if and
only if (G, H) is a yes-instance of EPG Minor. Observe that ϕ : V (G) →
V (G) with ϕ(v) := v is a trivial monomorphism that identifies G with itself.
Furthermore, by the definition of τ we have τ(E(G)) = X . Thus, (G, G, ϕ) is
an X-embedding according to Definition 1. Then, by Lemma 1 we have that X
is a yes-instance of PCA if and only if there is a time step t in which G exists
in G(t). In other words:X is a yes instance of PCA if and only if G is isomorphic
to G(t) with the identity. It remains to show that G is isomorphic to G(t) if and
only if G(t) containsH as a minor. Suppose that G is isomorphic to G(t). Hence,
each edge in E(G) exists. Contracting the edges {vi, vi+1} for each i ∈ [1, k]
leads to the graph H . Conversely, suppose that G is not isomorphic to G(t).
Hence, one of the edges {vi, vi+1} for some i ∈ [1, k] is not present at this time
step t. Thus, the vertices V (C) ∪ {vi | i ∈ [2, k]} do not form a cycle anymore.
Hence, the number of cycles of G(t) is lower than the number of cycles of H and
thus H is not a minor of G(t).

Since Theorem 13 shows hardness for each fixed minor containing a cycle,
it remains to consider fixed minors H which are forests. Second, we provide
NP-hardness for forests containing a tree with some minimum-degree vertices.

Theorem 14. EPG Minor is NP-complete and W[1]-hard parameterized by
|G| for every fixed forest H with a connected component that contains a) at
least 2 vertices of degree at least 3 or b) one vertex of degree at least 4.

Proof. For both cases a) and b) we present a reduction from PCA. Let X be an
instance of PCA. Without loss of generality, we may assume that 1 ∈ X , since
otherwise, we may replace X by the equivalent instance X̃ := X ∪ {1}. Thus,
let X := {x1, . . . , xk, 1}.

First, we show a). We define an equivalent instance (G, H) of EPG Minor
as follows: Let H be a fixed forest such that at least one connected component
ofH contains at least 2 vertices u and w of degree at least 3. Next, we let e be an
arbitrary but fixed edge on the unique path from u to w inH . Now, we construct
the underlying graph G of G. The graph G consists of a copy of H in which
the edge e is subdivided exactly k − 1 times, that is, we replace e = {v1, vk+1}
by the path v1, v2, . . . , vk, vk+1 of k− 1 new vertices. In the following, we call a
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vertex pair {x, y} of a graph F important, if both x and y have degree at least 3
in F . Observe that the number of connected important pairs in H is equal to
the number of connected important pairs of G. It remains to define τ . We
set τ({vi, vi+1}) := xi for every i ∈ [1, k]. For every remaining edge e′ of E(G)
we set τ(e′) := 1. This completes our construction.

Now, we show the correctness of our construction. We use Lemma 1 to
show that X is a yes-instance of PCA if and only if (G, H) is a yes-instance
of EPG Minor. Observe that ϕ : V (G) → V (G) with ϕ(v) := v is a trivial
monomorphism that identifies G with itself. Furthermore, by the definition of τ
we have τ(E(G)) = X . Thus, (G, G, ϕ) is an X-embedding according to Defini-
tion 1. Then, by Lemma 1 we have that X is a yes-instance of PCA if and only
if there is a time step t in which G exists in G(t). In other words: X is a yes in-
stance of PCA if and only if G is isomorphic to G(t) with the identity. It remains
to show that G is isomorphic to G(t) if and only if G(t) contains H as a minor.
Suppose that G is isomorphic to G(t). Hence, each edge in E(G) exists. Con-
tracting the edges {vi, vi+1} for each i ∈ [1, k] leads to the graph H . Conversely,
suppose that G is not isomorphic to G(t). Hence, one of the edges {vi, vi+1}
for some i ∈ [1, k] is not present at this time step t. Since G does not contain
any cycle, we thus conclude that the vertices v1 and vk+1 are not in the same
connected component in G(t). Hence, the total number of connected impor-
tant vertex pairs in G(t) is lower than the total number of connected important
vertex pairs in H and thus H is not a minor of G(t).

Second, we show b). We define an equivalent instance (G, H) of EPG Minor
as follows: Here, we assume that H is a fixed forest such that no connected
component of H contains at least two vertices of degree at least 3 and at least
one connected component of H contains a vertex of degree at least 4. Let v be
a vertex of maximum degree in H and let ℓ denote the number of vertices of H
of degree exactly degH(v). Next, we define an auxiliary graph H ′ which is then
used to define the underlying graph G of G. H ′ is obtained from H by replacing
the vertex v with two new vertices v1 and vk+1 which are adjacent. Let Z :=
NH(v) and let Y be an arbitrary subset of size exactly 2 of Z. For each vertex y ∈
Y we add the edge {v1, y} toH

′ and for each z ∈ Z\Y we add the edge {vk+1, z}
to H ′. Note that degH′(v1) = 3 and degH′(vk+1) ≥ 3 since by assumption |Z| ≥
4. Now, we construct the underlying graph G of G. The graph G consists of a
copy of H ′ in which the edge {v1, vk+1} is subdivided exactly k − 1 times, that
is, we replace {v1, vk+1} by the path v1, v2, . . . , vk, vk+1 of k − 1 new vertices.
Furthermore, note that the number of vertices of degree exactly degH(v) in G is
exactly ℓ−1. It remains to define τ . We set τ({vi, vi+1}) := xi for every i ∈ [1, k].
For every remaining edge e′ of E(G) we set τ(e′) := 1. This completes our
construction.

Now, we show the correctness of our construction. We use Lemma 1 to
show that X is a yes-instance of PCA if and only if (G, H) is a yes-instance
of EPG Minor. Observe that ϕ : V (G) → V (G) with ϕ(v) := v is a trivial
monomorphism that identifies G with itself. Furthermore, by the definition of τ
we have τ(E(G)) = X . Thus, (G, G, ϕ) is an X-embedding according to Defini-
tion 1. Then, by Lemma 1 we have that X is a yes-instance of PCA if and only
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if there is a time step t in which G exists in G(t). In other words: X is a yes in-
stance of PCA if and only if G is isomorphic to G(t) with the identity. It remains
to show that G is isomorphic to G(t) if and only if G(t) contains H as a minor.
Suppose that G is isomorphic to G(t). Hence, each edge in E(G) exists. Con-
tracting the edges {vi, vi+1} for each i ∈ [1, k] leads to the graph H . Conversely,
suppose that G is not isomorphic to G(t). Hence, one of the edges {vi, vi+1} for
some i ∈ [1, k] is not present at this time step t.

To show that H is no minor of G(t) we rely on the following observation:
Contracting any adjacent vertices x and y of degree dx and dy into a new
vertex z in some graph F may only leads to a degree dz > max(dx, dy) if
both dx and dy are at least 3. Now, observe that by our assumption each
connected component of H does not contains two vertices of degree 3 and at
least one connected component of H contains a vertex of degree at least 4.
Hence, each connected component of H contains at most one vertex of degree
at least 3. According to our construction of G, the underlying graph of G(t), the
unique connected component containing at least two vertices of degree 3 is the
connected component containing vertices v1 and vk+1. Now, since {vi, vi+1} is
not present at time step t and since G is a forest, we conclude that G(t) has no
connected component with at least two vertices of degree at least 3. Hence, by
the above observation, no series of edge contractions can increase the maximum
degree of any connected component of G(t). Now, since the number of vertices
of degree degH(v) in G(t) is ℓ− 1, we conclude that H is no minor of G(t) since
the number of vertices of degree degH(v) in H is ℓ.

For all remaining cases, that is, each connected component of H is either a
path, or a tree with exactly one vertex of degree 3 and no vertex of degree at
least 4, we provide a polynomial time algorithm. More precisely, we present an
XP-algorithm for the parameter h, the number of vertices of H . The algorithm
works completely analogue to the algorithm of Theorem 8 for EPG Subgraph.
This algorithm also works for minors, since for this structure of H the minor
must already be contained as a subgraph.

Corollary 2. The EPG Minor problem can be solved in O(nh ·max(LG)(h
2)) ·

2O(
√
h log h) time if H is a forest such that each connected component of H con-

tains no vertex of degree at least 4 and at most one vertex of degree 3.

Finally, we take a closer look on the parameterized complexity of the 4
problems concerning minors and subgraphs.

Corollary 3. The problems EPG Subgraph, EPG Subgraph-Free, EPG
Minor, and EPG Minor-Free are

• NP-hard even if G is a disjoint union of paths and #1max ∈ O(1) and

• NP-hard even if G is a disjoint union of paths and #0max ∈ O(1).

Proof. The proofs of Lemma 3 and Theorem 12 show reductions from Periodic
Character Alignment to EPG Subgraph-Free and EPG Minor-Free
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respectively, for each fixed H containing at least one edge. Moreover, for an
instance X of Periodic Character Alignment, the underlying graph G of
the constructed EPG is a disjoint union of |X | copies of H and the set of labels
of the edges of the constructed EPG is the set X := {x | x ∈ X}, where x
is obtained from x by replacing each 0 by a 1 and vice versa. By Theorem 1
and Theorem 2, Periodic Character Alignment is NP-hard if #1max ∈
O(1) and NP-hard if #0max ∈ O(1). Thus, for H being the graph consisting of a
single edge, Lemma 3 and Theorem 12 imply NP-hardness for EPG Subgraph-
Free and EPG Minor-Free even if G is a matching and #1max ∈ O(1)
or #0max ∈ O(1).

The proof of Theorem 7 shows NP-hardness for EPG Subgraph even ifH =
G is a path and where the set of edge labels is exactly the set of strings X
from the Periodic Character Alignment-instance. By the above, this
implies NP-hardness for EPG Subgraph even if G is a path and #1max ∈ O(1)
or #0max ∈ O(1).

Note that this also holds for EPG Minor, since H = G and thus, G(t)
containsH as a minor if and only if G(t) containsH as an induced subgraph.

Theorem 15. The problems EPG Subgraph, EPG Subgraph-Free, EPG
Minor, and EPG Minor-Free are W[1]-hard when parameterized by the ver-
tex cover number of the underlying graph even if #1max = 1.

Proof. We reduce from Periodic Character Alignment which is W[1]-hard
when parameterized by |X |. First, we describe a general reduction for all four
problems and afterwards, we show the correctness for them individually.

Let X = {x1, . . . , x|X|} be an instance of Periodic Character Align-
ment. For each xi ∈ X , let Ji := {j ∈ [0, |xi| − 1] | xi[j] = 1} denote the
positions of 1’s of xi. For each i ∈ [1, |X |], we define Xi := {xji | j ∈ Ji}, as

the split of xi, where x
j
i has the same length as xi and only one 1 at position j.

Note that for t ≥ 0, xi[t]
◦
= 1 if and only if there is some j ∈ Ji with x

j
i [t]
◦
= 1.

Moreover, for every t ≥ 0, there is at most one j ∈ Ji with x
j
i [t]
◦ = 1.

We define an EPG G = (V,E, τ) as follows: We start with an independent
set {v0, . . . , v|X|} and add for each xi ∈ X and each j ∈ Ji a vertex vji to V

and edges {vi−1, v
j
i } and {vji , vi} to E, both with label xji . This completes the

construction of the EPG. Note that {v0, . . . , v|X|} is a vertex cover of size |X |+1
of the underlying graph G and that each edge label contains exactly one 1.

Next, we show that there is a time step t in which G(t) contains a path
of 2 · |X | edges as an induced subgraph if and only if xi[t]

◦ = 1 for each xi ∈ X .
(⇒) If G(t) contains a path of 2 · |X | edges as an induced subgraph, then by

construction and the fact that for any xi ∈ X and any j ∈ Ji, the edge labels
for all incident edges of vji are equal, for each xi ∈ X , there is some j ∈ Ji
with τ({vi−1, v

j
i })[t]

◦
= xji [t]

◦
= 1. Hence, xi[t]

◦
= 1 for each xi ∈ X and

thus X is a yes-instance of Periodic Character Alignment.
(⇐) Suppose that xi[t]

◦
= 1 for each xi ∈ X . Then, by the above, for

each xi ∈ X , there is some ji ∈ Ji with τ({vi−1, v
ji
i })[t]

◦
= xjii [t]

◦
= 1
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and τ({vi−1, vki })[t]
◦
= xki [t]

◦
= 0 for each k ∈ Ji distinct from ji. Hence,

(v0, v
j1
1 , v1, . . . , v

j|X|

|X| ) is an induced path of 2 · |X | edges in G(t).

This shows the stated hardness for EPG Subgraph. Next, we argue that
this reduction also works for EPG Minor. Recall that for each xi ∈ X and
each t, there is at most one j ∈ Ji such that xji [t]

◦
= 1. Hence, if for some

time step t, the graph G(t) contains no induced path of 2 · |X | edges, then G(t)
contains at most 2 · |X | − 2 edges in total, which implies that G(t) contains no
path of 2 · |X | as a minor. Thus, the stated hardness for EPG Minor follows.

It remains to show that the hardness also holds for EPG Subgraph-Free
and EPG Minor-Free. To this end, the only thing we have to change is that
we initially do not use the split of the strings of X as the edge labels, but the
splits of the complement strings ofX . That is, letX ′ be an instance of Periodic
Character Alignment, we define X := {xi := x′i | x

′
i ∈ X ′}. Moreover, let

again Ji denote the set of positions where xi has a 1 and let for j ∈ Ji, x
j
i denote

the string having length equal to the length of xi and a single 1 at position j.
Thus, asking if there is some t such that for each x′i ∈ X ′, x′i[t]

◦
= 1 is equivalent

to asking if xi[t]
◦
= 0 which is further equivalent to asking if xji [t]

◦
= 0 for

each j ∈ Ji. Hence, X is a yes-instance of Periodic Character Alignment
if and only if there is a time step t where G(t) is edgeless. As a consequence,
the stated hardness also follows for EPG Subgraph-Free and EPG Minor-
Free.

Theorem 16. The problems EPG Subgraph, EPG Subgraph-Free, EPG
Minor, and EPG Minor-Free are FPT with respect to the combined param-
eter min(#1max,#0max) plus the number of vertices |V | of G.

Proof. We prove the theorem by providing a class of FPT-algorithms solving the
four considered problems. Intuitively, our algorithms iterate over all possible
graphs that can be present in some time step and check, whether these graphs
(not) contain H as an induced subgraph or as a minor, respectively. To this
end, we introduce an auxiliary problem that asks whether there exists a time
step where G(t) consists of a specific edge set.

EPG Present Edges
Input: An EPG G = (V,E, τ) and an edge set E′ ⊆ E
Question: Is there a time step t such that G(t) = (V,E′)?

Claim 1. EPG Present Edges is FPT for |V |+min(#1max,#0max).

We prove the claim by providing a parameterized reduction to PCA param-
eterized by the total number of runs of 1’s, that is, the number of groups of
consecutive 1’s, in all strings, which is known to be FPT [24].
Proof: We prove the claim by providing a parameterized reduction to PCA
parameterized by the total number of runs of 1’s, i.e., the number of groups of
consecutive 1’s, in all strings, which is known to be FPT [24].

Let (G = (V,E, τ), E′) be an instance of EPG Present Edges. We de-
fine X := {xe | e ∈ E} by setting xe := τ(e) for all e ∈ E′ and xe := τ(e)
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for all e ∈ E \ E′. Recall that given a string s, the string s results from s by
converting all 1’s into 0’s and vice versa.

We first show that the total number of runs of 1’s in all strings in X is
bounded by some function in our parameter |V |+min(#1max,#0max). To this
end, we show that the total number of runs of 1’s is a) bounded by a function
in |V |+#1max and b) bounded by a function in |V |+#0max. We first show a):
Let s be a string with ℓ runs of 1’s. Then, s has at most ℓ + 1 runs of 1’s.
Thus, the total number of runs of 1’s in X is upper-bounded by |E| · #1max

plus one run for each edge e ∈ E \ E′, which is at most |E| · (#1max + 1). We
next show b): Let s be a string with ℓ runs of 1’s. Then, s has ℓ runs of 0’s
and s has at most ℓ + 1 runs of 0’s. Thus, the total number of runs of 1’s
in X is bounded by |E| ·#0max plus one run for each edge e ∈ E′, which is at
most |E| · (#0max + 1).

We complete the proof of the claim by showing that the reduction is correct.
Clearly, (G, E′) is a yes-instance of EPG Present Edges if and only if there
is a time step t such that τ(e)[t]◦ = 1 for all e ∈ E′ and τ(e)[t]◦ = 0 for all e ∈
E \ E′. By the construction of X , this is equivalent to the fact that xe[t]

◦ = 1
for all xe ∈ X . Therefore, (G, E′) is a yes-instance of EPG Present Edges if
and only if X is a yes-instance of PCA. �

We next describe the FPT-algorithms for EPG Subgraph, EPG Subgraph-
Free, EPG Minor, and EPG Minor-Free. Let (G = (V,E, τ), H) be an
instance of one of these problems. We iterate over every possible E′ ⊆ E and
check if (V,E′) (not) contains an induced H or (not) contains H as a minor,
respectively. If this is the case, we check whether (G, E′) is a yes-instance of
EPG Present Edges and return yes or no accordingly.

The correctness follows by the fact that we consider every possible graph
(V,E′) that might be present in some time step. It remains to consider the
running time. Due to the previous claim, checking whether (G, E′) is a yes-
instance of EPG Present Edges can be performed in FPT time parameterized
by |V | + min(#1max,#0max). Checking whether H is a minor of (V,E′) or H
is an induced subgraph of (V,E′) can clearly be done in a running time only
depending on the graph size |V |. Consequently, the four considered problems
are FPT when parameterized by |V |+min(#1max,#0max).
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