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Abstract. Two cooperating, autonomous mobile robots with arbitrary
nonzero max speeds are placed at arbitrary initial positions in the plane.
A remotely detonated bomb is discovered at some source location and
must be moved to a safe distance away from its initial location as quickly
as possible. In the Bomb Squad problem, the robots cooperate by com-
municating face-to-face in order to pick up the bomb from the source
and carry it away to the boundary of a disk centered at the source in the
shortest possible time. The goal is to specify trajectories which define
the robots’ paths from start to finish and their meeting points which
enable face-to-face collaboration by exchanging information and passing
the bomb from robot to robot.
We design algorithms reflecting the robots’ knowledge about orientation
and each other’s speed and location. In the offline case, we design an
optimal algorithm. For the limited knowledge cases, we provide online
algorithms which consider robots’ level of agreement on orientation as
per OneAxis and NoAxis models, and knowledge of the boundary as per
Visible, Discoverable, and Invisible. In all cases, we provide upper
and lower bounds for the competitive ratios of the online problems.

Keywords: Boundary · Mobile Robots · Delivery · Cooperative · Com-
petitive Ratio

1 Introduction

A remotely detonated bomb is located at the center of some critical zone. Since the
time of detonation is unknown, the bomb must be removed as quickly as possible
from the critical zone by two autonomous mobile robots. How can these robots,
each with their own speeds and initial location, collaborate to carry the bomb
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out of the critical zone as quickly as possible? We assume the bomb is initially
located at a point S (the source) and must be transported at least distance D
(called the critical distance) away from the source. The critical distance defines
a disk centered at S of radius D. Each robot has its own maximum speed and
the bomb can be passed from robot to robot in a face-to-face communication
exchange. We refer to this as the Bomb Squad problem. The perimeter of the disk
centered at S and radius D is also called the boundary and encloses the critical
zone which must be rid of the bomb.

In the sequel, we study various versions of the Bomb Squad problem which
depend on what knowledge the collaborating robots have regarding the location
of the other robot and the boundary. We are interested in designing both offline
(full knowledge) and online (limited knowledge) algorithms that describe the
trajectories and collaboration of the participating robots.

1.1 Model, Notation, and Preliminaries

There are two autonomous mobile robots, r1 and r2, with maximum speeds v1 and
v2 initially placed in the plane distances d1 and d2 from the source, respectively.
We use the standard mobility model for the robots. At any time, they may stop
and start, change direction/speed, and carry the bomb when they decide to do so.
A robot trajectory is a continuous function f : [0, T ]→ R2 such that f(t) is the
location of the robot at time t and T is the duration of a robot’s trajectory. If the
robot’s speed cannot exceed v then ‖f(t)−f(t′)‖2 ≤ v|t− t′|, for all 0 ≤ t, t′ ≤ T ,
where ‖ · ‖2 denotes the Euclidean norm in the plane R2.

Robots may collect information as they traverse their trajectories. Moreover,
they may exchange information only when they are collocated (also known as
F2F model). When collocated, they may compare their speeds and decide which
robot is faster. They can recognize the bomb initially placed at location S and
can carry it around and pass it from robot to robot without their speed being
affected.

We assume robots have a common unit of distance. We consider both the
offline and online settings. In the offline setting, all information regarding the
robots (their initial positions and speeds) is available and an algorithm provides
robot trajectories and a sequence of robot meetings that relay the bomb from
the source to the boundary in optimal time.

In the online setting, a robot has limited knowledge of the other robot’s
location and the critical distance. We consider both OneAxis and NoAxis (or
Disoriented) models (see [13]). In the OneAxis model robots agree on a single
axis and direction (i.e. North). In the NoAxis model, we say robots are disoriented
and do not agree on any axis or direction. With respect to knowledge of the
critical distance, we consider three models:

1. VisibleBoundary: the boundary is always visible and thus the critical dis-
tance D is known by all robots.

2. DiscoverableBoundary: the boundary (and thus the critical distance) is
not known ahead of time but is “discoverable”. Robots can discover the
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boundary (and the critical distance) by visiting any point on the boundary
or by encountering another robot which has already discovered it.

3. InvisibleBoundary: the boundary is completely invisible and robots have no
knowledge of whether or not they’ve already visited a point on the boundary.

Each of these models has intuitive inspiration from the bomb-squad scenario. The
VisibleBoundary model considers the situation where a safe distance is known
ahead of time, while the DiscoverableBoundary model considers a situation
where a boundary — physical (i.e. a fence or a wall) or abstract (i.e. a border,
patrol line, maximum communication distance) — must be discovered by the
robots. Finally, the InvisibleBoundary model considers the situation where a
safe distance is not known by the robots (i.e. they don’t know the detonation
radius of the bomb). In this case, the goal is to deliver the bomb to an unknown
radius as quickly as possible. Interestingly, each of these models yields unique
algorithms with different competitive ratios.

In all of our algorithms, both robots start at the same time from arbitrary
locations in the plane. The delivery time TA(I) of an algorithm A solving the
Bomb Squad problem is the time it takes the algorithm A to deliver the bomb
to the boundary for an instance I of the problem (a source location S, critical
distance D, and robots’ initial positions and maximum speeds). If Topt(I) is the
optimal time of an offline algorithm for the same instance I, then the competitive
ratio of an online algorithm A is defined by the ratio CRA := supI TA(I)/Topt(I).
If A is a class of algorithms solving an online version of the Bomb Squad problem,
then its competitive ratio is defined by CRA := infA∈A CRA. Usually, the
subscripts will be omitted since the online version of the problem will be easily
understood from the context.

In proving upper bounds on the competitive ratio, if the faster robot cannot
arrive at S before the slow robot then we may restrict our attention to the case
where the slow robot starts at the source. We state this useful claim as a lemma.

Lemma 1.1. Consider any online algorithm solving an online version of the
Bomb Squad problem. Assume that the faster robot cannot arrive at S before the
slow robot does. If c is an upper bound on the competitive ratio of the algorithm
for all instances in which the slow robot starts at the source, then c is also an
upper bound on the competitive ratio for that algorithm.

Proof. Consider any online algorithm A solving the given optimization problem.
Recall that the robots can communicate only F2F. Let t be the time it takes the
slow robot to move from its starting position to the source S. The hypothesis of
the lemma implies after time t has passed the faster robot cannot arrive at the
source. Therefore algorithm A is split into two parts: the first part takes time t
and the second part is an algorithm At that assumes that the slow robot started
at S. Now observe that

CRA =
TA
TOpt

=
t+ TAt

t+ TOptt
≤ TAt

TOptt
≤ c,

where Optt is the optimal algorithm after time t has passed and the slow robot
starts at S.
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1.2 Related work

The Bomb Squad problem is closely related to the message delivery problem
with a set of robots. In that problem, the source and destination are predefined
and robots jointly work to deliver the message. Two different objective functions
have been studied. The first assumes that the robots have limited battery and
consequently the objective function is to minimize the maximum movement
(minmax). The second is to minimize the time to deliver the message. Anaya
et al. [7] study a more general minmax problem where the message must be
delivered to many destinations. The authors show that the decision problem is
NP-hard and provide a 2 approximation algorithm.

Chalopin et al. [8] study the minmax problem on a line and show that the
decision problem is NP-Complete for instances where all input values are integers.
The authors also provide an algorithm for delivering the message that runs in
O(d2 · n1+4 log d) time where d is the distance between the source and destination
for the general case. Coleman et al. [10] study the broadcast and unicast versions
of the problem on a line and present optimal offline algorithms and online
algorithms with optimal constant competitive ratio. In [12] Czyzowicz et al. study
the problem in a weighted graph and show that the problem is NP-Complete.
They also show that by allowing robots to exchange energy, the problem can be
solved in polynomial time. Carvalho et al. [6] also study the problem in weighted
graphs. They provide an offline algorithm that runs in O(kn log n + km) time
where k is the number of robots, n is the number of nodes, and m the number of
edges.

More recently, Coleman et al. [9] studied the point-to-point delivery problem
on the plane and gave an optimal offline algorithm for two robots as well as
approximation offline algorithms and online algorithms with constant competitive
ratio. The delivery problem differs significantly from the problem studied in
our current paper, where the goal is to reach any point on a given boundary
(namely the perimeter of a disk centered at the source) as opposed to a specific
destination.

The delivery problem studied in our paper focuses on the knowledge the
robots have about each other as well as the environment. To this end we design
algorithms for the OneAxis and NoAxis models. In particular, in the latter model
and based on the knowledge the robots have in Subsection 4.3 one has to design a
search algorithm that makes the robots perform a “zigzag” procedure in order to
collect appropriate information and pass the bomb to the faster robot, if feasible,
that will eventually deliver the bomb to the boundary. This has similarities to the
well-known linear search algorithms proposed by Baeza-Yates et al. [3], Beck [4]
and Bellman [5], Ahlswede et al. [1], as well as Alpern et al. [1,2]. However, search
in the previously given research works is based only on one robot while in our
case we have two collaborating robots with incomplete information about the
environment.
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1.3 Outline and results of the paper

In this paper, we design and analyze algorithms for the Bomb Squad problem
with two cooperating robots. In the offline case, we design an optimal algorithm
that assumes robots have knowledge of their own and each other’s location but
does not require knowledge of each other’s speed. For the online case Table 1

Table 1. Upper and lower bounds on the competitive ratio of online algorithms for
two cooperating robots in the OneAxis and NoAxis models for Visible, Discoverable,
and Invisible Boundary:

Axis Model Boundary Model Upper Bound Lower Bound Section

OneAxis All 1
7

(
5 + 4

√
2
)
≈ 1.5224 1.48102 3

NoAxis Visible 1 +
√

2 1 +
√

2 4.1

NoAxis Discoverable 15
4

3 4.2

NoAxis Invisible 7+
√
17

2
2 +
√

5 4.3

displays upper and lower bounds on the competitive ratio for the OneAxis and
NoAxis models, and for Visible, Discoverable, and Invisible Boundary as
well as the specific (sub)section where the results are proved. Section 2 presents
an optimal offline algorithm, Section 3 presents an online algorithm for the
OneAxis model, while Section 4 includes the results of the three Subsections for
the NoAxis model. There are many interesting open problems and in Section 5
we summarize the results and discuss potential extensions and alternatives.

2 Optimal Offline Algorithm

Our problem may be solved optimally using Algorithm 1.

Algorithm 1 Offline Delivery Algorithm for Two Robots

1: move toward S
2: if arrived at S then
3: pick up the bomb
4: move in direction of other robot
5: else if encountered other robot with bomb and other robot is slower then
6: take the bomb from other robot
7: move away from S toward boundary

Theorem 2.1. For any two robots r1, r2 such that v1 ≤ v2, the offline Algo-
rithm 1 is optimal in that it delivers the bomb to the perimeter of the circle
centered at S with radius D in minimum time

min

(
d1 +D

v1
,
d2 +D

v2
,
D − d2
v2

+ 2
d1 + d2
v1 + v2

)
(1)
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where S is the initial location of the bomb and d1, d2 are the starting distances
(from S) of the r1, r2, respectively.

Proof. First, observe that the cases where the fast robot can reach S first or
where the slow robot can deliver the bomb before the fast robot can get within a
distance D of S are trivial and justify the first two arguments of the min term
in (1). In each case the robot which reaches S first simply completes the delivery
by itself and the algorithm is optimal. In all other cases, the slow robot reaches
S first and must hand the bomb over to the fast robot at some point M which
then delivers it to the boundary. Observe that the trajectory of the bomb itself
must be a straight line since the closest point from M to the perimeter of the
circle must be along SM (by the definition of a circle).

Consider all the candidate trajectories of the bomb. Since it must travel a
total distance of exactly D, the trajectory which minimizes the delivery time is
clearly that which involves the faster of the two robots carrying the bomb for
the greatest portion of this distance. In other words, if s is the distance the slow
robot carries the bomb before handing it over to the fast robot (Figure 1), then
the delivery time is

s

v1
+
D − s
v2

=
s(v2 − v1) +Dv1

v1v2

which is clearly minimized when s is minimum since v1 ≤ v2. Intuitively, this
means the slow robot should carry the bomb as short a distance as possible.
Clearly, s is minimum when the slow robot moves directly toward the fast robot.

S

K

M

M ′

Boundary

s′
s

Fig. 1. Two candidate trajectories given by robot meeting points M and M ′, where
the slow robot starts at S and the fast robot at K. Clearly, M is superior since s < s′

and the faster robot spends a larger portion of the bomb’s trajectory carrying it. In
other words, the bomb is moving at the faster speed v2 for a larger portion of its trip
to the boundary.

The delivery time for this case can then be easily written as the sum of the
time for the robots to meet and the time for the fast robot to travel back to the
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boundary for delivery:

d1 + d2
v1 + v2

+
1

v2

(
D −

((
d1 + d2
v1 + v2

− d1
v1

)
v1

))
=
D − d2
v2

+ 2
d1 + d2
v1 + v2

.

3 Online Algorithm for the OneAxis Model

Here we assume the robots agree on a single axis and direction and can therefore
choose to move along the same radius emanating from S. We start by proving a
lower bound.

Theorem 3.1. Any online algorithm for the OneAxis model has a competitive
ratio of at least 1.48102.

Proof. Without loss of generality, let the source be at the origin S = (0, 0) and the
critical distance D = 1. Consider two robots r1 and r2 with speeds v1 = 1/(1 +x)
and v2 = 1 for some x > 0 whose value will be determined below. Suppose also
that the slower robot r1 starts at the source (d1 = 0) and the faster robot starts
at distance x away from the source (d2 = x) in some direction to be determined
below. Observe the movement of the bomb (which moves with speed at most
v1 when carried by r1) during the time period [0, x] and let (x1, y1) denote the
final position of the bomb after time x. Then let r2’s initial position be the point
at distance x from S in the opposite direction of (x1, y1) (or any direction if
x1 = 0 and y1 = 0). Observe that the trajectories taken by the bomb (via r1)
and r2 cannot overlap during the time period [0, x] except at (0, 0). Indeed, at
time t ≤ x, the bomb must be either at S, on the opposite side of S as r2, or on
the same side and within distance (x− t)v1 of S (since it must be at or on the
opposite side by time x). On the other hand r2 is at least a distance x− (v2t)
away from S. Multiplying out we see that (x − t)v1 ≤ x − (v2t) is equivalent
to 1 ≤ 1 + x. Thus, for any online algorithm, we can always place r2 so that it
cannot encounter the bomb before time x.

First, observe the optimal offline delivery time in this case is

x

1 + 1
1+x

+

(
1−

(
x

1 + 1
1+x

· 1

1 + x

))
=
x2 + x+ 2

x+ 2
.

Also, observe any algorithm that does not involve both robots must take at least
1 + x time and so the competitive ratio can be written as

1 + x
x2+x+2
x+2

which has a maximum value of 1
7 (5 + 4

√
2) at x =

√
2. Let us now consider

algorithms which do involve both robots. Without loss of generality, suppose
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the bomb ends up at some position (x1, 0) (on the positive x-axis such that
0 ≤ x1 ≤ x/(1 + x)) and thus r2’s initial position is at (−x, 0) (for some x ≥ 0
yet to be determined). Then let t+ x denote the time at which r2 acquires the
bomb. Observe any algorithm for which t > 1 has a worse competitive ratio than
the no-cooperation algorithm analyzed above. Then, we may assume for any
optimal online algorithm t ≤ 1 and thus the delivery time is at least t+ x. Thus,
one lower bound for the competitive ratio can be written

x+ t
x2+x+2
x+2

. (2)

We can derive a second lower bound for this case though. Observe the delivery
time of the algorithm can be written

x+ t+

(
1−

√
x22 + y22

)
where (x2, y2) is the location at which r2 acquires the bomb. Observe, then that
−t/(1 + x) ≤ x2 ≤ t since r1 cannot move the bomb further than t/(1 + x) from
x1 and r2 cannot make it further than t+ x from its starting position in time t
(see Figure 2). Thus, |x2| ≤ t. Also observe that |y2| ≤ t/(1 + x) since the bomb

(−x, 0)

(0, 0)

(x1, 0)

t

r2’s range at time x

r2’s range at time x+ t

boundary

x-axis

Fig. 2. If the robots are to meet, it must be within the boundary outlined by the thick
black lines, due to the positions/speeds of robots r1 and r2 at time x.
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must be on the x-axis at time x. Thus, the delivery time is at least

x+ t+ 1−

√
t2 +

t2

(1 + x)2
= 1 + x+ t

(
1−

√
1 +

1

(1 + x)2

)

Thus, the competitive ratio is at least

1 + x+ t
(

1−
√

1 + 1
(1+x)2

)
x2+x+2
x+2

. (3)

Since Lower Bound (2) is increasing with respect to t, and Lower Bound (3) is de-
creasing with respect to t and Bounds (2) and (3) intersect at t = 1/

√
1 + 1/(1 + x)2,

the competitive ratio is at least

x+ 1√
1+ 1

(1+x)2

x2+x+2
x+2

.

Finally, we achieve the lower bound of 1.48102 by observing the above expression
is maximized at x = 1.67696.

Now, we propose the following Algorithm 2 and prove its competitive ratio is
at most 1

7

(
5 + 4

√
2
)
.

Algorithm 2 Online Delivery Algorithm for the OneAxis Model

1: move toward S, taking the bomb from any slower robot encountered
2: upon reaching S, move along common axis/direction away from S, taking the bomb

from any slower robot encountered

Theorem 3.2. Algorithm 2 has competitive ratio 1
7

(
5 + 4

√
2
)
.

Proof. If the fast robot arrives at the center first, then clearly the algorithm is
optimal (it completes the delivery entirely by itself). Similarly, if the optimal
algorithm involves only the slow robot (i.e. the fast robot is too far away to help),
the algorithm is also optimal. Thus, we may consider only the case where the slow
robot arrives first and where an optimal offline algorithm involves cooperation
between the two robots.

Unlike in the optimal algorithm, the slow robot will not move directly toward
the fast robot, since it doesn’t know where it is. Rather, the slow robot will move
along the shared axis in a previously agreed-upon direction (i.e. North). The fast
robot will continue to move toward the source and, seeing the bomb is no longer
there, begin to move along the shared axis. If the fast robot is fast enough, it
will catch the slow robot, take the bomb, and complete the delivery. Otherwise,
the slow robot will deliver the bomb.

Let d1 and d2 be the initial distances of the slow and fast robots to the source,
respectively. Without loss of generality, suppose D = 1 and the fast robot moves
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at speed v2 = 1. By Lemma 1.1, setting d1 = 0 cannot decrease the competitive
ratio, and so a bound on the competitive ratio can be written as

min
{

1
v1
, d2 + 1

}
d2
v1+1 +

(
1− d2

v1+1v1

) =
min

{
1
v1
, d2 + 1

}
d2

1−v1
1+v1

+ 1
.

For the first case, where 1
v1
≤ d2+1, we can write an upper bound by substituting

1/(d2 + 1) for v1 since 1/v1 decreases w.r.t v1 and 1−v1
1+v1

increases w.r.t v1:

1
v1

d2
1−v1
1+v1

+ 1
≤ 1 +

2d2
2 + d2 + d22

which is maximized when d2 =
√

2 (giving a value of 1
7

(
5 + 4

√
2
)
). For the

second case, when 1
v1
> d2 + 1, observe:

d2 + 1
d2
v1+1 (1− v1) + 1

=
(1 + v1) + d2(1 + v1)

(1 + v1) + d2(1− v1)
≤ 1 + v1

1 + v1(2v1 − 1)

which is maximized when v1 =
√

2− 1 (giving a value of 1
7

(
5 + 4

√
2
)
).

Remark 1. This algorithm makes no use of the critical distance and thus applies to
all three boundary-knowledge models (VisibleBoundary, DiscoverableBoundary,
and InvisibleBoundary).

4 Online Algorithms for the NoAxis Model

The previous algorithms made use of a common axis and direction between the
two robots. Now we consider an even weaker model where robots are disoriented
(they have no common axis or sense of direction). We consider the three boundary-
knowledge models introduced in Section 1.

We begin with the following lemma which will be useful for the analysis of
online algorithms.

Lemma 4.1. Assume at the start the slow robot is at S. Any online algorithm
that involves the robots meeting at any point other than S cannot have constant
competitive ratio.

Proof. Consider any algorithm A. Then there must be instances for which the
robots must meet at some point before the final delivery of the bomb to the
perimeter. Indeed, if the robots do not meet, A cannot have a constant competitive
ratio.

Let the slow robot at S be r1 with speed v1, while the other robot, say r2 with
speed v2 > v1, is at some other point P in the plane at that time. Let the meeting
point of the two robots be different from S, say at distance x from S. However,
in the NoAxis model the robots have no sense of direction and the robot r1 has
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P

S

M

x

R

Fig. 3. Meeting at a point other than S in the NoAxis model. Robot r1 has speed v1
and is located at S, while robot r2 has speed v2 and is located at P .

no way of knowing in what direction the robot r2 is coming from. Therefore since
the robot system is rotation invariant both robots must maintain their distance
x from the source S while at the same time circulating the perimeter of the
resulting curve so as to meet each other; clearly, in our case, this curve must be
a circle of radius x. As depicted in Figure 3, the robot r2 reaches the curve at
some point R on the perimeter of the circle by heading towards S.

Assume the two robots meet at a point M on the perimeter of the circle at
distance x from S. The adversary can arrange the directions of movement of r1, r2
so that the robots spend time at least 2πx−ε

v2−v1 , where ε > 0 is arbitrarily small, in
order to meet at the point M . It follows that the two robots will meet at M in

total time at least |PR|v2
+ 2πx−ε

v2−v1 and it will take that plus at least (D − x)/v2
time to deliver the bomb. The optimal time, though, is at most

|PR|+ x

v1 + v2
+
D − x
v2

.

It follows, then, that the competitive ratio is unbounded (as v2 − v1 → 0)

4.1 VisibleBoundary Model

First, we study the model where the critical distance D is known. Clearly, the
optimally competitive algorithm for the OneAxis is not feasible in this model, since
robots cannot decide on a common axis or direction to move along and potentially
meet for a handover. By Lemma 4.1, the robots only hope for cooperation is by
meeting at S. So if robots are going to collaborate, at least one of the robots
will need to wait at S for the other robot to arrive. Clearly, it cannot do this
forever though — it may be the case that the other robot is so far away or slow
that the first robot may as well have delivered the bomb by itself! On the other
hand, if the first robot simply commits to delivering the bomb by itself without
waiting for the other robot to arrive, it may miss an opportunity to deliver the
bomb very quickly if the other robot arrives at S shortly after and is very fast.
It would seem, then, that an optimal algorithm must balance the cost of waiting
for the other robot to arrive and completing the delivery without collaboration.
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The main result of this section is the following theorem:

Theorem 4.1. There exists an algorithm in the NoAxis/VisibleBoundary model
with optimal competitive ratio 1 +

√
2.

Proof. The proof is a consequence of the following two Lemmas 4.2, 4.3.

We’ll start by proving that there exists no algorithm with a better competitive
ratio:

Lemma 4.2. Any online algorithm for the NoAxis/VisibleBoundary model has
competitive ratio at least 1 +

√
2.

Proof. Consider the case where one robot starts with the bomb at the source
(d1 = 0) and has a speed of v1 = 1. Suppose also there is another robot, but its
distance d2 and speed v2 are unknown. First, observe that in this case there must
exist an optimal algorithm of the following form: The first robot waits a time t
and, if the other robot has not yet arrived, takes the bomb to the boundary for
delivery. Otherwise, the faster robot takes the bomb. This follows from the fact
that the robots cannot meet at any point other than the source (Lemma 4.1)
and immediately leaving with the bomb for some finite time t > 0 has arbitrarily
large competitive ratio (by placing a fast robot with speed v′ at a distance d′ the
competitive ratio is at least t · v′/(d′ +D) which is arbitrarily large as v′ →∞
and d′ → 0).

We will show that for any t, we can choose a v2 and d2 which forces the
competitive ratio to be at least 1 +

√
2. The case where t ≤ 1√

2
is fairly simple.

We can simply set v2 = 2
ε and d2 = 1 + 2t

ε . Observe d2/v2 = t+ ε/2 (so robot 2
arrives after the waiting period) and (d2 + 1)/v2 = t+ ε, so for any arbitrarily
small ε > 0, the second robot could have delivered the bomb in time t+ ε. Then
the competitive ratio is at least

t+ 1

t+ ε
≥ 1 +

√
2

1 +
√

2ε

which follows since the expression is decreasing with t and t > 1/
√

2. Observe
then, that the competitive ratio can be made arbitrarily close to 1 +

√
2 with

some ε > 0.
The more interesting case is when t > 1/

√
2. In this case, we set

v2 =

(
2 +
√

2
)
t−
√

2

2
√

2t− 2

and then

d2 =
−tv2 − tv − v2 +

√
2v +

√
2 + 1

−
√

2v − v +
√

2 + 1
.

Observe d2 and v2 are defined and d2/v2 > t for all t > 1/
√

2, so the second
robot always arrives after the waiting period (and thus does not participate).
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Finally, a little algebra and simplification shows the competitive ratio in this
case is exactly 1 +

√
2:

t+ 1

d2
v2

+
(

1− d2
v2

)
/v2

= 1 +
√

2.

Now, we propose Algorithm 3 and then prove its competitive ratio to be at
most 1 +

√
2.

Algorithm 3 Online Algorithm for NoAxis model for robot with speed v

1: move to S and wait for D/v time
2: if other robot arrives within D/v time then
3: faster of two robots picks up bomb and moves toward boundary for delivery
4: else
5: pick up bomb and move toward boundary for delivery

Lemma 4.3. Algorithm 3 has a competitive ratio of at most 1 +
√

2.

Proof. Consider two robots with initial distances from the bomb d1, d2 and
speeds v1, v2, respectively. Suppose, without loss of generality that v1 ≤ v2 and
that D = 1. Throughout the proof, we’ll refer to the robot with speed v1 as “the
slow robot” and the robot with speed v2 as “the fast robot”. For Algorithm 3,
there are four interesting cases.
Case 1: the slow robot arrives first and the fast robot does not arrive within the
waiting period, or d1+1

v1
< d2

v2
. In this case, the delivery time of Algorithm 3 is

(d1+1)/v2. The competitive ratio depends on the optimal delivery time, for which
there are two possibilities. Either the slow robot and the fast robot cooperate to
deliver the bomb or the fast robot is so far away that it does not participate in
the optimal algorithm. In the latter situation, observe the competitive ratio is:

(d1 + 2)/v1
(d1 + 1)/v1

= 1 +
1

d1 + 1
≤ 2.

In the former situation, however, the optimal delivery time is

d1 + d2
v1 + v2

+
1−

(
d1+d2
v1+v2

v1 − d1
)

v2
=

1− d2
v2

+
2(d1 + d2)

v1 + v2
(4)

and so the competitive ratio is

d1+2
v1

1−d2
v2

+ 2(d1+d2)
v1+v2

≤ 2d2(1 + d2)

1 + d22
(5)

≤ 1 +
√

2. (6)
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Inequality (5) follows by Lemma 1.1 (a maximum competitive ratio results
in setting d1 = 0) and by substituting d2v1

d1+1 for v2 (since d1+1
v1

< d2
v2

). Then (6)

follows directly since the expression is maximized when d2 = 1 +
√

2.
Case 2: the fast robot arrives first and the slow robot does not arrive within the
waiting period, or d2+1

v2
< d1

v1
. In this case, the delivery time of Algorithm 3 is

(d2 + 2)/v2 while the optimal delivery time is at least (d2 + 1)/v2 since the fast
robot arrives at the bomb first and would deliver it without collaboration. Thus,
the competitive ratio for this case is at most 2:

(d2 + 2)/v2
(d2 + 1)/v2

= 1 +
1

d2 + 1
≤ 2.

Case 3: the fast robot arrives first and the slow robot arrives during the waiting
period — d2

v2
< d1

v1
≤ d2+1

v2
). Similarly, the delivery time of Algorithm 3 in this

case is (d1 + 2)/v1 while the optimal delivery time is at least (d1 + 1)/v1 since
the fast robot is so far away that it cannot arrive within a distance of 1 from the
bomb in that time. Thus the competitive ratio for this case is also at most 2:

(d1 + 2)/v1
(d1 + 1)/v1

= 1 +
1

d1 + 1
≤ 2.

Case 4: the slow robot arrives first and the fast robot arrives during the waiting
period: d1

v1
< d2

v2
≤ d1+1

v1
. In this case, an optimal-time delivery must involve

cooperation between the two robots, and thus is given by (4). The competitive
ratio can then be written

d2+1
v2

1−d2
v2

+ 2(d1+d2)
v1+v2

≤
d2+1
v2

1−d2
v2

+ 2d2
v1+v2

≤ 1 +
2d2

1 + d22
≤ 2

which follows since, by Lemma 1.1, setting d1 = 0 cannot decrease the competitive
ratio (first inequality) and then by substituting v2

d2
for v1 (since d2

v2
≤ d1+1

v1
) and

simplifying (second inequality). Finally, the last inequality follows since 1 + 2d2
1+d22

has a maximum value of 2 (at d2 = 1).

4.2 DiscoverableBoundary Model

In this section, we consider the scenario where the robots are disoriented (NoAxis
model) and do not know the distance D of the boundary from the source, but
can discover it by passing through a point on the boundary or by encountering
another robot which has previously discovered it.

Theorem 4.2. Any algorithm for the NoAxis / DiscoverableBoundary model
has competitive ratio at least 3.

Proof. Suppose a robot r1 starts at the source and the other robot at some initial
position not at the source. Then the robot, as its first step in an algorithm, can
do one of three things:
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1. Wait for some time t > 0
2. Leave the source with the bomb
3. Leave the source without the bomb

We will show for each of these cases that there is a configuration that results in
a competitive ratio of at least 3.

First, let’s consider Case 1 (the robot waits for some time t > 0). In this case,
we let r1 be the fast robot with speed v1 = 1, set the distance of the boundary
D = t/3, and position the other robot so that it does not arrive in time t to the
source. Observe in this case the fast robot could have delivered the bomb by
itself in time t/3 but instead takes time at least t.

For Case 2 (the robot leaves the source with the bomb), we simply set r1 to
be the slow robot and set the fast robot so close that it arrives just after the r1
leaves with the bomb. For example, suppose r1 leaves the source and travels a
maximum distance x from the source with the bomb. Then, we let D = x and
v1 = 1 (so that the slow robot delivers the bomb at time 1) , d2 = 1/2, v2 = 9

2D
then observe the fast robot could have delivered the bomb in time D/3.

For Case 3 (the robot leaves the source without the bomb), we consider
two subcases. First, if the robot never returns to the source, then clearly the
algorithm is unbounded because by setting v2 = ε for some arbitrarily small
ε > 0, the bomb will take an arbitrarily long amount of time to be delivered
to the destination. That leaves the case where the robot leaves the source and
returns after traveling a maximum distance x from the source. In this case, we
can simply set r1 to be the fast robot with speed v1 = 1 and r2 to be a useless
slow robot with speed v2 = ε for some arbitrarily small ε > 0. Then by setting
D = x, the robot takes at least time 3D to deliver the bomb (2x = 2D time to
travel x and back to the source and another D time to deliver the bomb) while
the optimal offline algorithm clearly would take just D time.

Now, we present Algorithm 4 with competitive ratio of 15/4.

Algorithm 4 Online Algorithm for DiscoverableBoundary Model for robot
with speed v
1: move to S
2: if discovered boundary on the way to S then
3: wait time D/v;
4: else
5: move away from S (without the bomb) until arriving at the boundary
6: return to S
7: if bomb is still at S then
8: take bomb to the boundary

Theorem 4.3. Algorithm 4 has a competitive ratio of exactly 15/4.

Proof. For the lower bound, let D = 1, d1 = 0, v1 = 2/(3− 2ε), d2 = 1− ε, and
v2 = 1 for some arbitrarily small ε > 0. Observe r1 delivers the bomb in this case
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since 2/v1 < (2 + d2)/v2 ⇔ 3− 2ε < 3− ε. Thus, the competitive ratio can be
written:

3
v1

1
1+v1

+ 1− 1
1+v1

· v1
=

3(1 + v1)

2v1
= 3 +

9− 18ε

12− 10ε+ 4ε2

whose limit is 15/4 as ε→ 0.
For the upper bound, observe that if the faster robot arrives at S first, then

the optimal offline delivery time is (1 + d1)/v1 and there are three possible
outcomes for the online algorithm. First, if the fast robot started outside the
critical zone (d2 > 1), then the delivery time is (2 + d2)/v2 and the competitive
ratio is

(2 + d2)/v2
(1 + d2)/v2

≤ 2.

If the fast robot started inside the critical zone, however, then it is possible the
slow robot takes the bomb before the fast robot returns from searching for the
boundary ((d1 + 1)/v1 < (d2 + 2)/v2) (Clearly this can only occur if the slow
robot starts outside the critical zone, and thus discovers the boundary on its way
to S). In this case, since v1 > v2(d1 + 1)/(d2 + 2), the competitive ratio is

(d1 + 2)/v1
(d2 + 1)/v2

=
v2
v1

d1 + 2

d1 + 1
≤ (2 + d1)(2 + d2)

(1 + d1)(1 + d2)
.

Observe the expression clearly increases w.r.t. d0 and decreases w.r.t. d1 and
thus is maximized when d1 = 1 and d2 = 0, yielding an upper bound of 3 on the
competitive ratio in this case. Finally, if the slow robot does not arrive in time
to take the bomb, the competitive ratio is

(d2 + 3)/v2
(d2 + 1)/v2

≤ 3.

Thus, if the faster robot arrives at S first, the competitive ratio of Algorithm 4
is at most 3.

Now we focus our attention on the slightly more involved scenario where
the slow robot arrives at S first. Clearly if in an optimal offline algorithm, the
slow robot delivers the bomb by itself (when (d1 + 1)/v1 ≤ (d2 − 1)/v2), then
Algorithm 4 is also optimal. Thus, we may assume (d1 + 1)/v1 > (d2 − 1)/v2.
Furthermore, since we assume the slow robot arrives at S first, a maximum
competitive ratio must exist when d1 = 0 (by Lemma 1.1). Considering these
assumptions, the optimal offline delivery time, then, is

d2
v1 + v2

+

(
1− d2

v1 + v2
v1

)
/v2 =

1− d2
v2

+
2d2

v1 + v2
.

There are three cases to consider.
Case 1: The fast robot starts outside the critical zone d2 ≥ 1 and the slow robot
delivers the bomb 2/v1 < (d2 + 1)/v2. In this case, the competitive ratio is

3/v1
1−d2
v2

+ 2d2
v1+v2

<
3

2
+

6d2
3 + d22

<
3 + 2

√
3

2
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since v2 < v1(d2 + 1)/2 and the left-hand side of the first inequality above is
increasing w.r.t v2. The second inequality follows since the middle expression is
maximized at d2 =

√
3.

Case 2: The fast robot starts outside the critical zone d2 ≥ 1 and the fast robot
delivers the bomb 2/v1 ≥ d2/v2. In this case, the competitive ratio is

min [(d2 + 1)/v2, 1/v1] + 1/v2
1−d2
v2

+ 2d2
v1+v2

.

First, suppose (d2 + 1)/v2 ≤ 1/v1, then the competitive ratio is

(d2 + 2)/v2
1−d2
v2

+ 2d2
v1+v2

≤ (d2 + 2)2

2 + d2 + d22
≤ 16

7

since the middle expression is maximized at d2 = 2/3. On the other hand, if
(d2 + 1)/v2 > 1/v1, then the competitive ratio is

1/v1 + 1/v2
1−d2
v2

+ 2d2
v1+v2

≤ (2 + d2)(v1 + v2)

v1 − d2v1 + v2 + d2v2
=
v1(2 + d2) + v2(2 + d2)

v1(1− d2) + v2(1 + d2)
(7)

≤ (2 + d2)2

2 + d2 + d22
(8)

≤ 9

4
. (9)

Inequality (7) follows by substituting v1 in the numerator with v2/(d2 + 1) (since
v1 > v2/(d2 + 1)). After simplifying, it’s clear that Inequality (8) follows for
the same reason. Then Inequality (9) follows since the right-hand side of (8) is
maximized (on d2 ≥ 1) at d2 = 1.
Case 3: The fast robot starts inside the critical zone d2 < 1 and the slow robot
delivers the bomb 2/v1 < (d2 + 2)/v2. In this case, observe the competitive ratio
is

3/v1
1−d2
v2

+ 2d2
v1+v2

<
3(2 + d2)(4 + d2)

2(4 + d2 + d22)
<

15

4

since v2 < v1(d2 + 2)/2 and the left-hand side of the first inequality is increasing
w.r.t. v2. The second inequality follows since the middle expression is maximized
at d2 = 1.
Case 4: The fast robot starts inside the critical zone d2 < 1 and the fast robot
delivers the bomb 2/v1 ≥ (d2 + 2)/v2. In this case, the competitive ratio is

(d2 + 3)/v2
1−d2
v2

+ 2d2
v1+v2

≤ (3 + d2)(4 + d2)

4 + d2 + d22
≤ 5

3
+

8
√

2/5

3
.

The first inequality above follows since v1 ≤ 2v2/(d2+2) and the second inequality
follows since the middle expression is maximized at d2 = 2/3 ·

(√
10− 2

)
.

Case 3’s competitive ratio of 15/4 dominates all other cases and is exactly
the situation used to show the lower bound for the algorithm above.
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4.3 InvisibleBoundary Model

Finally, we analyze an online algorithm under much stricter conditions. Robots
cannot perceive the boundary at any time and therefore can never know the
critical distance. It follows, then, that any valid algorithm must involve robots
carrying the bomb away from the source without knowing how far they must
take it in order to terminate.

Assume the slow robot starts at the source. By Lemma 4.1 there is no online
algorithm with bounded competitive ratio unless the two robots have a meeting
at the source. Further, it is easy to see that if the slow robot leaves the source
without the bomb then unless it returns to the source there can be no online
algorithm with bounded competitive ratio.

Lemma 4.4. There exists no algorithm with constant competitive ratio for any
instance of the problem under the NoAxis/InvisibleBoundary model in which
one robot starts at S and no lower bound on D is known to the robots.

Proof. Suppose robot r1 with speed v1 is initially placed at the source. Then it
may do one of three things:

1. wait at S for a time t
2. leave S for a time t without the bomb
3. leave S for a time t with the bomb

In the first and second cases, we simply set D to be so small that the robot
could have delivered the bomb to the boundary in an arbitrarily small fraction of

the time it waited or left S for. The competitive ratio is at least D/v1+t
D/v1

= 1 + v1t
D

which approaches infinity as D → 0. In the third case, we set D = t and v1 = 1
and configure a second, much faster robot to arrive at S just after r1 leaves
with the bomb. By Lemma 4.1, the robots must meet at the source, otherwise,
the algorithm has unbounded competitive ratio. Thus, the robots cannot meet
before time t and the competitive ratio is at least t

(d2+D)/v2
= v2t

d2+D
since t is the

earliest time the two robots can meet. Again, this approaches infinity as v2 →∞
for any constant d2.

In order to provide an online algorithm with constant competitive ratio, we
make the necessary assumption (by Lemma 4.4) that the critical distance D ≥ 1.
In the sequel, we provide an algorithm that involves the first robot arriving at S
taking the bomb a certain distance away from S and then returning (without the
bomb) to see if a faster robot has arrived. If a faster robot has arrived, it shares
information about the distance and direction of the bomb and allows the faster
robot to complete the delivery. Otherwise, it travels back to where it left the
bomb and carries it a bit further, expanding the distance each time. Formally,
we present Algorithm 5 below.

We now prove a theorem that gives an upper bound on the competitive ratio
of Algorithm 5. Note that Algorithm 5 uses the as yet unspecified expansion

factor a > 1. The optimal selection of a will turn out to be a = 3+
√
17

4 and this
will be determined in the course of the proof of the following theorem.
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Theorem 4.4. For two robots, Algorithm 5 with a = 3+
√
17

4 delivers the bomb

to the boundary in at most 7+
√
17

2 times the optimal offline time.

Proof. Let D ≥ 1 be the critical distance (distance from S to the boundary)
which is at least the common unit distance. Consider two robots r1, r2 with
respective speeds v1 < v2 and let di be the distance of the initial position of
robot ri from the source S, for i = 1, 2.

First, we consider the case where the faster robot when moving at full speed
cannot arrive at S before the slow robot does. In view of Lemma 1.1, without
loss of generality we may assume the slow robot r1 starts at the source S, i.e.,
d1 = 0, and d2 is the distance of robot r2 from the source at that time. Consider
Algorithm 5. We consider two main cases depending on whether or not the faster
robot r2 arrives at S during robot r1’s waiting period.
Case 1. Robot r2 arrives during robot r1’s initial waiting period.

In this case r2, after comparing its speed with r1, will deliver the bomb.
Observe that in this case d2

v2
≤ 2

v1
, i.e., d2 ≤ 2 v2v1 . To compute the resulting

competitive ratio we must take into account whether or not the two robots meet
inside the circle centered at S and radius D. In the optimal algorithm if we
assume the robots are moving towards each other at full speed they will meet at
time d2

v1+v2
.

If d2v1
v1+v2

≥ D then in the optimal algorithm robot r1 will deliver the bomb to
the perimeter. Since d2 ≤ 2 v2v1 we conclude that

CR ≤
d2+D
v2
D
v1

≤ v1
v2

+
2

D
≤ 3.

If d2v1
v1+v2

< D then in the optimal algorithm the two robots will meet, robot r1
will hand over the bomb to r2 which in turn will deliver it to the perimeter.
Therefore we have that

CR ≤
d2+D
v2

d2
v1+v2

+
D− d2v1

v1+v2

v2

=
d2+D
v2

d2
v1+v2

(
1− v1

v2

)
+ D

v2

≤
d2+D
v2

d2
2v2

(
1− v1

v2

)
+ D

v2

=
d2 +D

d2
2

(
1− v1

v2

)
+D

Finally, we show that the right-hand side above is at most 4. Indeed, this is

equivalent to showing that d2 +D ≤ 4d22

(
1− v1

v2

)
+ 4D. This simplifies to the

equivalent inequality

1 ≤ 2

(
1− v1

v2

)
+ 3

D

d2
. (10)

Using the fact that d2 ≤ 2 v2v1 we observe that

2

(
1− v1

v2

)
+ 3

D

d2
≥ 2− 4

d2
+ 3

D

d2
≥ 1 +

6D − 4

d2
≥ 1, (11)



20 J. Coleman et al.

where Inequality (11) is valid since by assumption D ≥ 1. This confirms Inequal-
ity (10) and completes the proof for the case when robot r2 arrives during robot
r1’s initial waiting period.
Case 2. Robot r2 arrives after robot r1 has completed its initial waiting period,
i.e. d2

v2
> 2

v1
.

In the case where robot r2 does not arrive at S before robot r1 has completed its
last visitation of the source S during its zigzag trajectory then r1 will deliver the
bomb. Consider the last round k such that ak < D. It follows that ak < D ≤ ak+1.
Clearly, the total distance covered by the robot r1 until the boundary was reached
is equal to

2
(
a0 + a1 + · · ·+ ak

)
+D = 2

ak+1 − 1

a− 1
+D.

It follows that this is traversed in total time

2a
k+1−1
a−1 +D

v1
<

2a
k+1

a−1 +D

v1
<

2 aD
a−1 +D

v1
(12)

The resulting competitive ratio satisfies

CR ≤
2 aD

a−1+D

v1
D
v1

=
2a

a− 1
+ 1 (13)

Now consider the case where robot r2 does arrive at S before robot r1
has reached the boundary. This also means r2 arrives at S before robot r1 has
completed its last visitation of the source S during its zigzag trajectory. Therefore
since the robot r2 is at distance d2 from S, for some round i we must have that

2

v1

(
a0 + a1 + · · ·+ ai−1

)
<
d2
v2
≤ 2

v1

(
a0 + a1 + · · ·+ ai

)
, (14)

which is readily simplified to

2

v1
· a

i − 1

a− 1
<
d2
v2
≤ 2

v1
· a

i+1 − 1

a− 1
. (15)

Since the bomb is not at S, the robot r2 must wait until robot r1 arrives at time
2
v1
ai+1−1
a−1 to learn its location. By exchanging speeds, robot r1 now knows that

r2 is the faster robot and shares the direction of the bomb with it which is then
delivered to the boundary in additional time D

v2
(the fast robot moves to the

bomb, picks it up, and continues moving away from S). Also, observe that

ai

v1
< D (16)

since r1 could not reach the boundary during the ith round. It follows that
the total time required for the bomb to be delivered to the boundary using
Algorithm 5 is at most

2

v1
· a

i+1 − 1

a− 1
+
D

v2
. (17)
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Next, we consider the running time Topt of the optimal algorithm. Observe
that the robots could meet in time d2

v1+v2
because at the start robot r1 is at the

source S and hence they are at distance d2. Therefore

1. if d2
v1+v2

> D
v1

then Topt = D
v1

, and

2. if d2
v1+v2

≤ D
v1

then Topt = d2
v1+v2

+
D− d2v1

v1+v2

v2
.

If d2
v1+v2

> D
v1

then by assertion 1 above, Topt = D
v1

and hence the competitive
ratio of Algorithm 5 is easily seen to satisfy

CR ≤
2
v1
· a

i+1−1
a−1 + D

v2
D
v1

≤ 2a

a− 1
+
v1
v2
≤ 2a

a− 1
+ 1, (18)

since v1 ≤ v2.
So assume that d2

v1+v2
≤ D

v1
in which case assertion 2 above is valid and the

optimal time is given by the formula

Topt =
d2

v1 + v2
+
D − d2v1

v1+v2

v2

and the competitive ratio of Algorithm 5 satisfies

CR ≤
2
v1
· a

i+1−1
a−1 + D

v2

d2
v1+v2

+
D− d2v1

v1+v2

v2

. (19)

Next, we consider two cases depending on whether or not robot r2 starts
inside or outside the boundary.

Case 1. Assume d2 ≤ D, namely robot r2 starts inside the boundary.
By Inequality (19) we have

CR ≤
2
v1
·
(
ai+1−a
a−1 + 1

)
+ D

v2

d2
v1+v2

+
D− d2v1

v1+v2

v2

<
d2
v2
a+ 2

v1
+ D

v2

d2
v1+v2

(
1− 1

v2

)
+ D

v2

(by Inequality (15), 2
v1
ai−1
a−1 < d2

v2
)

≤
d2
v2
a+ 2

v1
+ D

v2

d2
2v2

(
1− 1

v2

)
+ D

v2

(since v1 ≤ v2)

≤ a+ 3. (20)

To prove the last Inequality (20), multiply out and observe

d2
v2
a+

2

v1
+
D

v2
≤ (a+ 3)

d2
2v2

(
1− 1

v2

)
+ (a+ 3)

D

v2
,
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which is easy to prove since 2
v1
< 2D

v2
, by Inequality (15), and by assumption

d2 ≤ D.
Case 2. Assume d2 > D, namely robot r2 starts outside the boundary.

Recall that we have that d2
v1+v2

≤ D
v1

. By Inequality (19) we have

CR ≤
2
v1
· a

i+1−1
a−1 + D

v2

d2
v1+v2

(
1− v1

v2

)
+ D

v2

<
d2a
v2

+ d2
v2

d2
v1+v2

(
1− v1

v2

)
+ d2

v1+v2
· v1v2

(using Inequality (15) and D < d2)

=
a
v2

+ 1
v2

1
v1+v2

(after dividing by d2 and simplifying)

≤ 2a+ 2 (since v1 ≤ v2) (21)

If we consider Inequalities (20), and (21) we see that a + 3 ≤ 2a + 2 and
therefore using Inequality (18) we conclude that

CR ≤ max

{
2a

a− 1
+ 1, 2a+ 2

}
.

Clearly, the upper bound above is minimized when 2a
a−1 +1 = 2a+2 since 2a

a−1 +1
is decreasing on a ≥ 1 and 2a+ 2 is increasing on a ≥ 1. If we solve the resulting

quadratic for a we derive that a = 3+
√
17

4 and therefore CR ≤ 7+
√
17

2 .
We now consider the case where the faster robot when moving at full speed

arrives at S before the slow robot does. We will prove that the bound CR ≤ 7+
√
17

2
on the competitive ratio is valid in this case as well.

According to Algorithm 5, there are two cases to consider: 1) The slow robot
arrives at S during the faster robot’s waiting period, and 2) the slow robot arrives
at S after the faster has completed its initial waiting period.

In the first case, we have that d1
v1
≤ 2

v2
and the faster robot can take the

bomb and move away from S (toward the boundary). Therefore the competitive
ratio satisfies

D+d2+2
v2

D+d2
v2

≤ 1 +
2

D + d2
≤ 3,

where the last inequality is valid because D ≥ 1.
In the second case, we have that d1

v1
> 2

v2
in which case the faster robot r2

will pick up the bomb and execute a zigzag algorithm with expansion factor
a > 1. Now the proof is similar to the proof for the slow robot in Inequality (15),
namely, we obtain the following inequality

2

v2
· a

i − 1

a− 1
<
d1
v1
≤ 2

v2
· a

i+1 − 1

a− 1
. (22)

This also means that the two robots will meet and robot r2, upon learning it is
the faster robot, will move away from S forevermore without turning back. The
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resulting competitive ratio satisfies

CR ≤

2aD
a−1+D

v2
d2+D
v2

≤
2aD
a−1 +D

d2 +D
≤ 2a

a− 1
+ 1. (23)

It is now easily seen that for a = 3+
√
17

4 the right-hand side of the previous

Inequality (23) is at most 7+
√
17

2 . The proof of Theorem 4.4 is now complete.

Before proceeding to show a lower bound of 2 +
√

5 for any online algorithm
for the NoAxis/InvisibleBoundary model, we introduce a few basic concepts
and ideas. Assume two robots r1, r2 with v1 = 1 < v2 and a source S. Recall that
each robot knows the location of the source and its own location and speed but
not the speed and location of the other robot. If the two robots meet, they can
exchange information and determine which of the two is faster. If a robot knows
it is faster than the other robot then if/when it acquires the bomb, it should
simply move away from S forever to guarantee eventual delivery. If a robot holds
the bomb and is “searching” for the perimeter but does not know whether it is
the faster robot then it must return to the source (without the bomb) to check
whether or not the other robot is waiting there. If it is, then it will share the
direction of the bomb so that the fast robot can complete the delivery. Therefore
the slow robot is forced to execute a zigzag strategy as defined below, otherwise,
the adversary will make the competitive ratio arbitrarily large.

A general algorithm is encapsulated by a strategy in which the robot starts
at the source and executes Algorithm 6 implying a search at a distance xk in the
k-th round of the algorithm, for each k ≥ 1. The algorithm is parameterized by an
infinite ordered sequence of positive distances X = {x1, x2, . . . , xk, . . .} measured
from the source that specifies the turning points that a moving robot will make.
In the argument below we assume that given a strategy X the adversary has
the power to choose the speed of the fast robot and its initial distance from the
source S.

To ensure progress in searching, each trip away from the source should explore
farther towards the perimeter than in the previous trip: this is formalized by the
requirement that xk < xk+1 for all k ≥ 1. Moreover, limk→∞ xk = +∞ (if not,
the strategy could not solve all instances of the problem).

Consider a strategy X. Let the perimeter be at an unknown distance D. In
each round k for which the perimeter is not found the robot must return to the
source and will therefore cover a length 2xk. The total length covered up to and
including round k will be equal to 2

∑k
i=1 xi. If the perimeter is found during the

next round the total distance covered by the robot will be D + 2
∑k
i=1 xi. The

resulting competitive ratio will be equal to

D + 2
∑k
i=1 xi

D
= 1 +

2
∑k
i=1 xi
D

Since the perimeter can be placed arbitrarily close to xk by an adversary it
follows that the highest lower bound on the competitive ratio for this step will
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Algorithm 5 Online Algorithm for the InvisibleBoundary Model for a robot
speed v and expansion factor a
1: i← 0
2: while never encountered another robot do
3: move to S
4: if faster robot is at S then
5: share direction of bomb with faster robot and stay at S forever
6: else if slower robot is at S then
7: get direction of bomb from slow robot (if not already known)
8: move to bomb, pick it up, and continue moving away from S forever
9: else if bomb is at S then

10: Wait for another robot for at most time 2/v
11: if faster robot has not arrived then
12: pick up bomb
13: move away from S for a distance a
14: set the bomb down
15: else
16: stay at S forever

17: else if bomb is not at S but its location is known then
18: move toward the bomb a distance of ai distance away from S
19: pick up bomb
20: move another ai distance away from S
21: set the bomb down, marking its location
22: else
23: wait for other robot to return
24: if other robot is slower then
25: get direction of the bomb from other robot

26: i← i + 1

Algorithm 6 Zig-Zag Delivery Algorithm (X)

1: Input: Infinite sequence X = {x1, x2, . . . , xk, . . .} with 0 < xk < xk+1 for all k ≥ 1;
2: for k ← 1, 2, 3, . . . do
3: if k = 1 then
4: move distance xk away from S (in any direction)
5: else
6: move distance xk away from S in diretion of bomb, picking it up on the way

7: set down bomb
8: return to source and k ← k + 1

be equal to

1 + sup
D>xk

2
∑k
i=1 xi
D

= 1 +
2
∑k
i=1 xi
xk

= 3 +
2
∑k−1
i=1 xi
xk
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It follows from the previous discussion that the resulting competitive ratio of the
strategy X will satisfy

CRX = 3 +
2 supk≥1

∑k−1
i=1 xi

xk
. (24)

Observe that the lower bound obtained in Equation (24) is valid for two
robots provided the adversary can force the slow robot to execute the zigzag
strategy. So we consider an optimal strategy X = {x1, x2, . . . , xk, . . .}. Let xk be
the last move of this strategy with which we reach the destination perimeter.

Now we are ready to complete our analysis in the InvisibleBoundary model
by proving the following:

Theorem 4.5. The competitive ratio of every strategy X solving the bomb squad
problem in the InvisibleBoundary model must satisfy CRX ≥ 2 +

√
5.

Proof. Consider the sum s :=
∑k−1
i=1 xi which arises from the right-hand side of

Equation (24). Let 0 < α < 1 be a real number which is to be determined below.
We distinguish two cases depending on the size of the sum s.
Case 1: s ≥ αxk.
From Inequality (24) above we have that

CR ≥ 3 +
2s

xk
≥ 3 + 2α. (25)

Case 2: s < αxk.
The adversary places the robot r2 at a distance d2 so that d2

v2
≈ s+ ε (so that

the robots don’t meet before r1 leaves S for the k-th time) and ensures the speed
is such that r2 is the robot that delivers optimally. It is clear that the optimal
algorithm is for robot r1 to meet robot r2 and hand the bomb which in turn
delivers it to the perimeter. The time it takes to do that is equal to

d2
1 + v2

+
xk − d2

1+v2

v2
=

d2
1 + v2

(
1− 1

v2

)
+
xk
v2
≈ d2
v2

+
xk
v2

= s+ ε+
xk
v2
,

where the last approximation follows from the fact that the adversary can make
d2, v2 arbitrarily large and at the same time maintain the constant ratio d2

v2
≈ s+ε.

However, the cost of the strategy X will be at least s+ 2xk (since the slow robot
has the bomb but just missed the perimeter—placed at distance D > xk—and
has to return to the source) plus xk

v2
for the faster robot to deliver the bomb. It

follows from the previous discussion that

CRX ≥
s+ xk

v2
+ 2xk

s+ ε+ xk

v2

≈ 1 +
2xk
s+ xk

v2

≥ 1 +
2

α
. (26)

Using Inequalities (25) and (26), we obtain the lower bound CRX ≥ max{3 +
2α, 1 + 2

α}. The lower bound is maximized when 1 + 2
α = 3 + 2α since 1 + 2

α is
decreasing and 3 + 2α is increasing on 0 ≤ α ≤ 1. If we multiply both sides of
this equation by α

2 , we derive the quadratic α2 +α− 1 = 0 from which we obtain

the solution α = −1+
√
5

2 . The resulting lower bound on the competitive ratio is

CRX ≥ 3 + 2α = 2 +
√

5.
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5 Conclusion

The main focus of the paper was to investigate algorithms for delivering a bomb to
a safe location and compare the performance of online algorithms under several
models which describe the knowledge the two robots have about each other
and the environment (in this case the boundary). There are many interesting
and challenging open problems remaining. For the two-robot case studied in
the present paper, one can see the gaps remaining by glancing at the results
displayed in Table 1. An interesting class of problems arises in the multi-robot
(more than two robots) case, where, generally, it is much harder to give tight
performance bounds. Finally, it would be interesting to investigate algorithms
that are resilient to faults that arise either from robot miscommunication or faults
caused by the planar environment on which the robots operate (e.g. based on
visibility obstructions, distance constraints, etc.) and/or are sensitive to energy
consumption limitations.
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