Skip to main content

TOP-Key Influential Nodes for Opinion Leaders Identification in Travel Recommender Systems

  • Conference paper
  • First Online:
Advances in Model and Data Engineering in the Digitalization Era (MEDI 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1751))

Included in the following conference series:

Abstract

Travel recommender systems, also called (TRS) have recently gained significant attention in the research and industrial communities. These systems aim at identifying the travellers preferences and providing adequate suggestions to them whenever and wherever they want. Thus, TRS are very helpful for travelers, particularly, when they visit a place they have never been to before. Opinion Leaders based-technique attempts to identify the set of most important delegates who can represent as many TRS users as possible to alleviate the cold start user problem when a new user is registered to the system and has no ratings yet and the cold start item problem when a new item is added to the system and has no interactions yet. In this paper, we propose two graph based approaches for Opinion Leaders Detection in Travel Recommender Systems. The first is based on the Minimum Cover Vertex identification, while the second uses the Fragmentation method to detect the set of most influential nodes in the recommender system graph. The obtained experimental results confirm the effectiveness of our proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Q., Ma, H., Chen, E., Xiong, H.: A survey of context-aware mobile recommendations. Int. J. Inf. Technol. Decis. Mak. 12(1), 139–172 (2013)

    Article  Google Scholar 

  2. Árnason, J.I., Jepsen, J., Koudal, A., Schmidt, M.R., Serafin, S.: Volvo intelligent news: a context aware multi modal proactive recommender system for in-vehicle use. Pervasive Mob. Comput. J. 14, 95–111 (2014)

    Article  Google Scholar 

  3. Hana, J., Schmidtke, H.R., Xie, X., Woo, W.: Adaptive content recommendation for mobile users: ordering recommendations using a hierarchical context model with granularity. Pervasive Mob. Comput. J. 13, 85–98 (2014)

    Article  Google Scholar 

  4. Patra, B.K., Launonen, R., Ollikainen, V., Nandi, S.: A new similarity measure using Bhattacharyya coefficient for collaborative filtering in sparse data. Knowl. Based Syst. 82, 163–177 (2015)

    Article  Google Scholar 

  5. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based Syst. 46, 109–132 (2013)

    Article  Google Scholar 

  6. Badaro, G., Hajj, H., El-Hajj, W., Nachman, L.: A hybrid approach with collaborative filtering for recommender systems. In: 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, pp. 349–354 (2013)

    Google Scholar 

  7. Braunhofer, M.: Hybrid solution of the cold-start problem in context-aware recommender systems. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 484–489. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08786-3_44

    Chapter  Google Scholar 

  8. Sheridan, P., Onsjö, M., Becerra, C., Jimenez, S., Dueñas, G.: An ontology-based recommender system with an application to the Star Trek television franchise. Future Internet 11(9), 1–23 (2019)

    Article  Google Scholar 

  9. Nguyen, Q., Huynh, L.N.T., Le, T.P., Chung, T.: Ontology-based recommender system for sport events. In: Lee, S., Ismail, R., Choo, H. (eds.) IMCOM 2019. AISC, vol. 935, pp. 870–885. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19063-7_69

    Chapter  Google Scholar 

  10. Das, J., Mukherjee, P., Majumder, S., Gupta, P.: Clustering-based recommender system using principles of voting theory. In: International Conference on Contemporary Computing and Informatics (IC3I), pp. 230–235 (2014)

    Google Scholar 

  11. Shulman, E., Wolf, L.: Meta decision trees for explainable recommendation systems. In: Machine Learning (2020)

    Google Scholar 

  12. Shriver, D., Elbaum, S., Dwyer, M.B., Rosenblum, D.S.: Evaluating recommender system stability with influence-guided fuzzing. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019), pp. 4934–4942 (2019)

    Google Scholar 

  13. Eskandanian, F., Sonboli, N., Mobasher, B.: Power of the few: analyzing the impact of influential users in collaborative recommender systems. In: Social and Information Networks. ACM Publisher (2019)

    Google Scholar 

  14. Morid, M.A., Shajari, M., Golpayegani, A.H.: Who are the most influential users in a recommender system? In: The 13th International Conference on Electronic Commerce, pp. 1–5 (2011)

    Google Scholar 

  15. Shi, W., Wang, L., Qin, J.: Extracting user influence from ratings and trust for rating prediction in recommendations. Scientific Reports IF4.379 (2020)

    Google Scholar 

  16. Yang, J., Zhang, Y., Liu, L.: Identifying opinion leaders in virtual travel community based on social network analysis. In: Nah, F.-H., Siau, K. (eds.) HCII 2019. LNCS, vol. 11589, pp. 276–294. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22338-0_23

    Chapter  Google Scholar 

  17. Zhang, J., Chow, C.Y.: GSLR: personalized geo-social location recommendation - a kernel density estimation approach. In: Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances (2013)

    Google Scholar 

  18. Narang, K., Song, Y., Schwing, A., Sundaram, H.: FuseRec: fusing user and item homophily modeling with temporal recommender systems. Data Min. Knowl. Disc. 35(3), 837–862 (2021). https://doi.org/10.1007/s10618-021-00738-8

    Article  Google Scholar 

  19. Bambia, M.: Jointly integrating current context and social influence for improving recommendation. Ph.D. thesis, University of Paul Sabatier, Toulouse III (2017)

    Google Scholar 

  20. Wang, J., Ding, K., Zhu, Z., Zhang, Y., Caverlee, J.: Key opinion leaders in recommendation systems: opinion elicitation and diffusion. In: The 13th International Conference on Web Search and Data Mining, WSDM 2020, Texas (2020)

    Google Scholar 

  21. Chekkai, N., et al.: CSCF: clustering based-approach for social collaborative filtering. In: 2017 First International Conference on Embedded & Distributed Systems (EDiS), Oran, pp. 1–6 (2017)

    Google Scholar 

  22. Gu, J., Guo, P.: PEAVC: an improved minimum vertex cover solver for massive sparse graphs. Eng. Appl. Artif. Intell. 104 (2021)

    Google Scholar 

  23. Ekstrand, M.: Similarity Functions for User-User Collaborative Filtering (2013). https://grouplens.org/blog/%20similarity-functions-for-useruser-collaborative-filtering/

  24. Arsan, T., Koksal, E., Bozkus, Z.: Comparison of collaborative filtering algorithms with various similarity measures for movie recommendation. Int. J. Comput. Sci. Eng. Appl. (IJCSEA) 6(3), 1–20 (2016)

    Google Scholar 

  25. Yu, Y., Shanfeng, Z., Xinmeng, C.: Collaborative filtering algorithms based on Kendall correlation in recommender systems. Wuhan Univ. J. Nat. Sci. 11(5), 1086–1090 (2006)

    Article  MATH  Google Scholar 

  26. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, WWW 2001, pp. 285–295 (2001)

    Google Scholar 

  27. Yang, X., Guo, Y., Liu, Y., Steck, H.: A survey of collaborative filtering based social. Comput. Commun. J. 41, 1–10 (2012)

    Article  Google Scholar 

  28. Travel Review Ratings. https://www.kaggle.com/ishbhms/travel-review-ratings. Accessed 04 Apr 2022

  29. Hotel-Rec Dataset 8. https://www.kaggle.com/hariwu1995/hotelrec-dataset-8. Accessed 04 Apr 2022

  30. Jain, L., Katarya, R., Sachdeva, S.: Role of opinion leader for the diffusion of products using epidemic model in online social network. In: The 2019 Twelfth International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE (2019)

    Google Scholar 

  31. Sorge, M., et al.: The graph parameter hierarchy. https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.412.4918. Accessed 14 Aug 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassira Chekkai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chekkai, N., Kheddouci, H. (2022). TOP-Key Influential Nodes for Opinion Leaders Identification in Travel Recommender Systems. In: Fournier-Viger, P., et al. Advances in Model and Data Engineering in the Digitalization Era. MEDI 2022. Communications in Computer and Information Science, vol 1751. Springer, Cham. https://doi.org/10.1007/978-3-031-23119-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23119-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23118-6

  • Online ISBN: 978-3-031-23119-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics