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Abstract. The use of digitally reconstructed radiographs (DRRs) to
solve inverse problems such as slice-to-volume registration and 3D recon-
struction is well-studied in preoperative settings. In intraoperative imag-
ing, the utility of DRRs is limited by the challenges in generating them in
real-time and supporting optimization procedures that rely on repeated
DRR synthesis. While immense progress has been made in accelerat-
ing the generation of DRRs through algorithmic refinements and GPU
implementations, DRR-based optimization remains slow because most
DRR generators do not offer a straightforward way to obtain gradients
with respect to the imaging parameters. To make DRRs interoperable
with gradient-based optimization and deep learning frameworks, we have
reformulated Siddon’s method, the most popular ray-tracing algorithm
used in DRR generation, as a series of vectorized tensor operations. We
implemented this vectorized version of Siddon’s method in PyTorch, tak-
ing advantage of the library’s strong automatic differentiation engine to
make this DRR generator fully differentiable with respect to its param-
eters. Additionally, using GPU-accelerated tensor computation enables
our vectorized implementation to achieve rendering speeds equivalent to
state-of-the-art DRR generators implemented in CUDA and C++. We
illustrate the resulting method in the context of slice-to-volume registra-
tion. Moreover, our simulations suggest that the loss landscapes for the
slice-to-volume registration problem are convex in the neighborhood of
the optimal solution, and gradient-based registration promises a much
faster solution than prevailing gradient-free optimization strategies. The
proposed DRR generator enables fast computer vision algorithms to sup-
port image guidance in minimally invasive procedures. Our implementa-
tion is publically available at https://github.com/v715/DiffDRR.

Keywords: DRRs · Differentiable programming · Inverse problems.

1 Introduction

Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images gen-
erated from 3D computational tomography (CT) volumes using a variety of ray-
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tracing techniques. While DRRs are widely used in preoperative settings (e.g.,
optimizing dose delivery in radiation oncology), many potentially valuable in-
traoperative use cases (e.g., real-time multimodal registration for image-guided
procedures) are infeasible due to computational bottlenecks in generating DRRs
and using them in slice-to-volume registration. Most open-source CPU-based
implementations take about 1 sec to generate a single DRR [9], which is not
fast enough for intraoperative imaging systems with sampling rates of about 7.5
frames per second [8]. Numerous GPU-accelerated DRR generators have been
proposed with run times on the order of 100 m sec [1,5,7], but to the best of our
knowledge, no publically available implementation exists.

The second limitation of currently available DRR generators is that it is
challenging to efficiently compute derivatives using these renderers because they
are implemented in low-level languages such as CUDA and C++. DRR genera-
tors are often used in conjunction with numerical optimization schemes to solve
fundamental medical imaging problems (e.g., slice-to-volume registration), and
the difficulty in computing derivatives means that gradient-based optimization
techniques are often infeasible [13]. While many end-to-end deep learning ap-
proaches can solve X-ray to CT registration problems with high accuracy [2,3],
these methods often require large amounts of training data, which can make
them impractical for specialized interventional problems. Instead, many applica-
tions use iterative gradient-free methods, such as the Nelder-Mead method [11],
to optimize an image similarity metric with respect to the parameters of the
DRR generator [3,13]. While these methods are effective for optimizing highly
nonlinear loss functions, we show that the loss landscapes for slice-to-volume reg-
istration in particular is convex in a large region around the optimum, making
this problem better suited for gradient-based optimization methods.

We present a fast vectorized renderer that generates DRRs and their deriva-
tives with respect to image geometry parameters automatically. We utilize Py-
Torch as a GPU-accelerated tensor algebra library with robust source-to-source
automatic differentiation to implement differentiable DRRs. That is, using our
implementation, DRR generation can be used as a differential operator to train
deep learning algorithms for fast reconstruction and registration algorithms. We
analyze the performance of our implementation and the correctness of the auto-
matically obtained derivatives, and demonstrate an experiment where our differ-
entiable DRR generator solves a slice-to-volume registration problem. Our hope
is that this open-source package will be useful for translating computer vision
algorithms to real-time implementations for interventional applications.

2 Methods

We start by summarizing Siddon’s method [10], commonly used for ray-tracing
in DRR synthesis, and its extensions that accelerate rendering speed. We then
describe our vectorized implementation of Siddon’s method, which achieves ren-
dering speeds equivalent to those of existing GPU-accelerated methods while
also being fully differentiable.
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Fig. 1. DRR synthesis. (a) We assume an idealized model of a projectional radiogra-
phy imaging system: X-ray beams are emitted with a fixed initial energy from a point
source s ∈ R3, beam energy diminishes as the X-rays travel through the CT volume V,
and energy in the attenuated beams is measured when the X-rays hit a point on the
detector p ∈ R3, producing the DRR. (b) In Siddon’s method, the image location value
at p is a weighted average of the intensities of the voxels through which the ray passes,
where the weight is the length of the ray’s intersection with the voxel. The values αm
and αm+1 parameterize the intersection of the ray with two adjacent planes, and the
midpoint

αm+1+αm

2
identifies the current voxel through which the ray is passing. (c)

Our vectorized Siddon’s method generates a 200 × 200 DRR in 72.7 m sec ± 10 µ sec
on an NVIDIA GeForce RTX 2080 Ti.

2.1 DRR Generation

The process of generating a DRR models the geometry of an idealized projec-
tional radiography system (Fig. 1a). Let s ∈ R3 be the X-ray source, and p ∈ R3

be a target pixel on the detector plane. Then R(α) = s + α(p − s) is a ray
that originates from s (α = 0), passes through the imaged volume, and hits the
detector plane at p (α = 1). The total energy attenuation experienced by the
X-ray by the time it reaches pixel p is given by the following line integral:

E(R) = ‖p− s‖2
∫ 1

0

V (s + α(p− s)) dα, (1)

where V : R3 7→ R is the imaged volume. The term ‖p−s‖2 endows the unit-free
dα with the physical unit of length. For DRR synthesis, V is approximated by
a discrete 3D CT volume, and Eq. (1) becomes

E(R) = ‖p− s‖2
M−1∑
m=1

(αm+1 − αm)V

[
s +

αm+1 + αm
2

(p− s)

]
, (2)

where αm parameterizes the locations where ray R intersects one of the orthogo-
nal planes comprising the CT volume, and M is the number of such intersections
(Fig. 1b). Note that this model does not account for patterns of reflection and
scattering that are present in real X-ray systems. While these simplifications
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preclude synthesis of realistic X-rays, the model in Eq. (2) has been widely and
successfully used in slice-to-volume registration [13]. Additionally, our approach
of vectorizing DRR generation might also be interoperable with more sophisti-
cated image synthesis models, an extension we examine further in the Discussion.

2.2 Siddon’s Method and Its GPU Extensions

Siddon’s method [10] provides a parametric method to identify the plane inter-
sections {αm}Mm=1. Let ∆X be the CT voxel size in the x-direction and bx be
the location of the 0-th plane in this direction. Then the intersection of ray R
with the i-th plane in the x-direction is given by

αx(i) =
bx + i∆X − sx

px − sx
, (3)

with analogous expressions for αy(·) and αz(·). We can use Eq. (3) to compute the
values αx for all the intersections between R and the planes in the x-direction:

αx = {αx(imin), . . . , αx(imax)},

where imin and imax denote the first and last intersections of R with the x-
direction planes. Defining αy and αz analogously, we construct the array

α = sort(αx,αy,αz), (4)

which contains M values of α parameterizing the intersections between R and
the orthogonal x-, y-, and z-directional planes. We substitute values in the sorted
set α into Eq. (2) to evaluate E(R), which corresponds to the intensity of pixel
p in the synthesized DRR.

A faster variant determines consecutive intersecting planes iteratively [4].
For example, the value of α at the second plane intersected by R is given by
α2 = min{αx(imin + 1), αy(jmin + 1), αz(kmin + 1)}. The algorithm iteratively
finds the next value of α until we reach the edge of the CT volume, making this
approach more memory efficient by requiring fewer intermediate values to be
stored. This modified algorithm, known as Siddon-Jacobs’ method, is commonly
implemented in CUDA and C++ to create multi-threaded GPU-accelerated DRR
generators that exploit data parallelism by assigning each thread to trace an
independent ray intersecting the detector plane [1,5,7].

2.3 Vectorizing Siddon’s Method

While Siddon-Jacobs’ method is more memory efficient, the iterative loop it relies
on is not amenable to implementations in vectorized tensor algebra libraries.
Thus we vectorize the original Siddon’s method as follows. Let P ∈ RH×W×3

contain the 3D pixel coordinates of a DRR with dimension H×W . We compute
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the α values for intersections with all of the x-, y-, and z-planes for all p ∈ P in
parallel:

A =

bxby
bz

+

 ij
k

⊗
∆X∆Y
∆Z

− s

� (P− s) ∈ RH×W×(nx+ny+nz), (5)

where (nx, ny, nz) are the dimensions of the CT volume V, (i, j, k) are the
CT voxel indices, (∆X,∆Y,∆Z) are the CT voxel sizes, and ⊗ and � are the
Hadamard product and division operators, respectively. Rather than explicitly
compute the indices (imin, imax), (jmin, jmax), and (kmin, kmax) for each ray, as is
done in Siddon’s original method, we instead compute the minimum and maxi-
mum values of α, corresponding to when each ray enters and exits the volume:

αmin = max
{

min{αx(0),αx(nx)},min{αy(0),αy(ny)},min{αz(0),αz(nz)}
}

αmax = min
{

max{αx(0),αx(nx)},max{αy(0),αy(ny)},max{αz(0),αz(nz)}
}
,

where αmin,αmax ∈ RH×W . We filter A to include only values in the range
[αmin,αmax] and sort each row A(h,w, ·) for h ∈ {1, . . . ,H}, w ∈ {1, . . . ,W}.
Finally, we evaluate Eq. (2) with this sorted tensor to compute the intensity for
each pixel in the DRR, completing a chain of vectorized tensor operations.

Because we reformulated the original Siddon’s method as a series of tensor
operations, our vectorized version benefits from the mature GPU compilers and
memory allocators developed for optimizing large-scale deep learning models. For
empirical evaluation of our method, we also implemented a partially-vectorized
version of Siddon-Jacobs’ method in which the α updates are still computed
iteratively (i.e., with a loop), but the updates are applied in a vectorized form
to every target pixel in the detector plane.

2.4 Differentiating DRRs with Respect to Imaging Parameters

We specify the 3D position of the X-ray source and detector plane relative to
the CT volume with the following seven geometric parameters: radius ρ that
acts as a scaling factor; three rotational degrees of freedom (DoF) (θ, ϕ, γ); and
three translational DoF (bx, by, bz). Using spherical coordinates, we express the
position of the X-ray source as s = (ρ, θ, ϕ), where ρ is half of the source-to-
detector distance, and θ and ϕ are the azimuthal and polar angles, respectively.
We assume the detector plane is tangent to this implied sphere at the point
opposite s. The orientation of this plane is determined by a rotation about the
x-axis by the angle γ. We add the translation (bx, by, bz) to the coordinates of the
X-ray source and detector plane to create a reference frame wherein the patient
is not perfectly centered relative to the X-ray scanner.

Since every step of our pipeline, from the generation of the pixels on the
detector plane to the computation of the pixel intensities, is performed in Py-
Torch’s tensor framework, the resulting DRRs are differentiable with respect
to the parameters described above. That is, the gradient ∇ηL(I(η)) of the
loss function L(·) evaluated for the DRR I(η) with respect to the parameters
η = (ρ, θ, ϕ, γ, bx, by, bz) is obtained automatically for any differentiable L(·).
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3 Experiments

We evaluate the proposed efficient implementation of the algorithm on a ref-
erence chest CT scan from Slicer3D [6]. We compare the performance of the
method to two baseline approaches and illustrate its application for gradient-
based slice-to-volume registration.

3.1 Performance Analysis

We compare our vectorized GPU version of Siddon’s method (VGS) to two base-
line approaches: a widely used CPU implementation in the Plastimatch package
(CP) [9], and our vectorized GPU implementation of Siddon-Jacobs’ method
(VGSJ) which we described in Section 2.3. Note that the CUDA-accelerated
DRR generator in Plastimatch is not working at the time of publication. GPU
benchmarks are run on an NVIDIA GeForce RTX 2080 Ti, and CPU benchmarks
are run on an 18-core Linux computer with Intel(R) Xeon(R) CPU E5-2697 v4
@ 2.30GHz processors.

Results. Table 1 summarizes statistics for the run time and accuracy of our
method and the two baseline approaches, as well as intensity differences between
our method and Plastimatch, and gradient differences between our method and
FFD. Our implementation is much faster than Plastimatch, which is to be ex-
pected as Plastimatch is executed on the CPU. Numerically, the two imple-
mentations are very similar with an average root-mean-square error (RMSE)
of (8.3±1.9) ×10−4 where the images are normalized to the range of [0, 1]. For
DRRs smaller than H = 500, our method is faster than the vectorized ver-
sion of Siddon-Jacobs’ despite our method’s high memory requirements. How-
ever, at H = 500, they have roughly equivalent run times. For smaller image
sizes, our DRR generator achieves equivalent run times to previously reported
GPU-accelerated implementations [1,5,7]. The gradients obtained via PyTorch
auto-differentiation for our method are within 0.05±0.01 of those computed via
forward finite differences with a step size of 10−6 and are an order of magnitude
more efficient to generate (35.1 ms ± 73.3 µs vs 400.5 ms ± 821.4 µs).

Table 1. Benchmark results. The dimension of the DRRs is H×W . Each metric is
averaged over 20 runs. (VGS = Vectorized GPU Siddon’s method, VGSJ = Vectorized
GPU Siddon-Jacobs’ method, and CP = CPU Plastimatch.)

Timing (ms) RMSE Autograd vs FFD

H = W VGS VGSJ CP VGS vs CP VGS

100 17.6 ± 0.05 380 ± 20.9 1028 ± 132 (6.9±2.2)×10−4 0.03 ± 0.02
200 72.7 ± 0.01 424 ± 4.2 1784 ± 488 (8.7±2.7)×10−4 0.06 ± 0.01
300 165 ± 0.13 432 ± 19.2 2941 ± 821 (6.4±1.2)×10−4 0.08 ± 0.02
400 296 ± 0.06 425 ± 2.8 6472 ± 643 (9.0±1.9)×10−4 0.03 ± 0.005
500 453 ± 41.2 425 ± 4.6 8472 ± 478 (11.7±4.3)×10−4 0.07 ± 0.006
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3.2 DRR-based Gradient Descent for Slice-to-Volume Registration

We use our auto-differentiable DRR generator to implement slice-to-volume reg-
istration with synthetic DRRs. Specifically, we generate a fixed DRR from a
set of ground truth parameters η∗ = (θ, ϕ, γ, bx, by, bz), and generate a second
moving DRR from a set of random initial parameters η0. We use basic gradient
descent to minimize the negative Zero-Normalized Cross-Correlation (ZNCC)
between the fixed DRR and the moving DRR.

Image Similarity Metrics are Locally Convex. First, we conduct a simula-
tion study to show that the loss landscape generated by negative ZNCC is convex
in a neighborhood around η∗. We generate moving DRRs by sampling rotational
and positional displacements. We sample all parameters uniformly from ranges
of 90◦ for θ and ϕ, 45◦ for γ, and 30 mm for bx, by, and bz around the ground
truth parameters η∗. Although our generator provides gradients with respect to
other model parameters like the source-to-detector distance (2ρ) and the DRR’s
dimensions and pixel spacing (H,W,∆x,∆y), we assume that those parameters
are fixed (e.g., provided in the DICOM header), and instead focus our analysis
on this 6 DoF registration problem. We observe that negative ZNCC is locally
convex (Fig. 2), suggesting that it would be an apt loss function to optimize
with gradient descent. We observed similar loss landscapes for the L2 norm.
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Fig. 2. Negative ZNCC is convex around the optimal DRR parameters.
Rotational and positional displacements were sampled uniformly from ranges of 90◦

for θ and ϕ, 45◦ for γ, and 30 mm for bx, by, and bz.
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Fig. 3. Differentiable DRRs can be used to perform slice-to-volume regis-
tration. We generated a moving DRR from randomly initialized parameters and used
gradient descent to maximize similarity with a fixed DRR. Convergence was achieved
for 745/1000 simulated DRRs in an average 66 iterations (1.92 sec). Examples of the
optimization process are visualized at initial, intermediate (the 20th and 40th itera-
tions), and final steps. DRRs for which convergence fails to occur get stuck in a local
minimum with low negative ZNCC.
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Differentiable DRR Registration Converges Quickly. Given a fixed DRR
and a moving DRR, we optimized the parameters of the moving DRR with a
basic implementation of gradient descent. We used different update rates for
the rotational and translational parameters because they have different units
(βθϕγ = 5.3×10−2 and βxyz = 7.5×101), and momentum λ = 0.9. Additionally,
to investigate the local minima in which our gradient descent algorithm could
get stuck, we expanded the space of possible initializations beyond a convex
neighborhood to 120◦ for θ, ϕ, and γ, and 60 mm for bx, by, and bz. The size of
the CT volume is 360 mm × 360 mm × 332.5 mm.

For each randomly initialized DRR, we ran 250 iterations of gradient descent
and determined that the moving DRR had converged to the fixed DRR if the
negative ZNCC between the two images was less than −0.999. If this did not
occur within 250 iterations, we treated the run as having failed to converge.
Of the 1,000 randomly initialized DRRs we generated, 745 converged and 255
failed to converge (Fig. 3a). The initializations that converged solved the 6 DoF
slice-to-volume registration problem 65.48± 14.27 iterations (1.92 ± 0.43 sec).

We visualize multiple optimization steps for our gradient descent registration
algorithm (Fig. 3c). From the examples that converged, our model successfully
recovers the true pose parameters from challenging initializations, reaching a
more reasonable estimate by the intermediate 20th iteration (Fig. 3b). In one
example of an initialization that failed to converge, we see that the model gets
stuck in a local minimum (Fig. 3c). In the final iteration in this example, the
estimated DRR is orthogonal to the sagittal plane. The geometry of this scene
looks similar to the coronal DRR (ground truth), giving the illusion of two lungs.
We emphasize that our goal is not to propose a novel registration algorithm, but
to provide an efficient DRR synthesis procedure that can support numerous
downstream optimization applications, including registration.

4 Discussion

We present a fast auto-differentiable DRR generator that can be used to solve
inverse problems in intraoperative imaging. By reformulating Siddon’s method
for ray-tracing through a CT volume as series of vectorized tensor operations,
we obtain gradients of image loss functions with respect to DRR generating
parameters while achieving rendering speeds equivalent to multi-threaded GPU-
accelerated generators written in low-level languages such as CUDA and C++.
This approach promises to enable fast solutions to DRR-based optimization
problems with gradient methods, a strategy which was previously infeasible due
to the inefficiency of generating gradients with finite differences. We demonstrate
the effectiveness of this approach by solving a 6 DoF slice-to-volume registration
problem using a locally convex image loss function.

Our future research on auto-differentiable DRRs will investigate their use in
a deep learning framework to pre-train for specific intraoperative imaging tasks
(e.g., spatiotemporal registration in interventional cardiology). Such pre-training
could yield even faster solutions to inverse problems by finding better initializa-
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tions or powering end-to-end models. One issue that might limit the effectiveness
of such pre-training is that DRRs generated using Siddon’s method are not re-
alistic because they do not model any form of scattering. We will investigate
fusing our method with DeepDRR [12], a deep learning framework that esti-
mates scattering effects using Monte Carlo simulations, to produce DRRs that
are simultaneously realistic, fast, and differentiable.
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