Skip to main content

Transposition Distance Considering Intergenic Regions for Unbalanced Genomes

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2022)

Abstract

In seminal works of genome rearrangements, the distance between two genomes is measured by the minimum number of rearrangements (e.g., reversals, transpositions, DCJs, or combination of them) needed to transform a given permutation into another, where permutations represent gene orders of genomes with the same gene content. For the past few years, researchers have been extending the traditional models of genome rearrangement distance by either considering unbalanced genomes or adding more features to the representation of the genomes to be compared. In this work, we make progress in this direction by studying the intergenic transposition distance on unbalanced genomes, which also considers insertions and deletions as non-conservative rearrangements in the set of possible rearrangements to compute the distance. The best previously known result for this problem is a 4.5-approximation using breakpoints. In this paper, we use an adaptation of the breakpoint graph, a structure used in the literature on genome rearrangements, to present a new lower bound for the distance and a 4-approximation algorithm.

This work was supported by the National Council of Technological and Scientific Development, CNPq (grants 425340/2016-3 and 202292/2020-7), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and the São Paulo Research Foundation, FAPESP (grants 2013/08293-7, 2015/11937-9, and 2019/27331-3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexandrino, A.O., Brito, K.L., Oliveira, A.R., Dias, U., Dias, Z.: Reversal distance on genomes with different gene content and intergenic regions information. In: Martín-Vide, C., Vega-Rodríguez, M.A., Wheeler, T. (eds.) AlCoB 2021. LNCS, vol. 12715, pp. 121–133. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74432-8_9

    Chapter  Google Scholar 

  2. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Genome rearrangement distance with reversals, transpositions, and indels. J. Comput. Biol. 28(3), 235–247 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Incorporating intergenic regions into reversal and transposition distances with indels. J. Bioinform. Comput. Biol. 19(06), 2140011 (2021)

    Article  CAS  PubMed  Google Scholar 

  4. Alexandrino, A.O., Oliveira, A.R., Dias, U., Dias, Z.: Labeled cycle graph for transposition and indel distance. J. Comput. Biol. 29(03), 243–256 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM J. Discret. Math. 11(2), 224–240 (1998)

    Article  Google Scholar 

  6. Biller, P., Guéguen, L., Knibbe, C., Tannier, E.: breaking good: accounting for fragility of genomic regions in rearrangement distance estimation. Genome Biol. Evol. 8(5), 1427–1439 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Biller, P., Knibbe, C., Beslon, G., Tannier, E.: Comparative genomics on artificial life. In: Beckmann, A., Bienvenu, L., Jonoska, N. (eds.) CiE 2016. LNCS, vol. 9709, pp. 35–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40189-8_4

    Chapter  Google Scholar 

  8. Braga, M.D., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–1184 (2011)

    Article  CAS  PubMed  Google Scholar 

  9. Brito, K.L., Jean, G., Fertin, G., Oliveira, A.R., Dias, U., Dias, Z.: Sorting by genome rearrangements on both gene order and intergenic sizes. J. Comput. Biol. 27(2), 156–174 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Brito, K.L., Oliveira, A.R., Alexandrino, A.O., Dias, U., Dias, Z.: A new approach for the reversal distance with indels and moves in intergenic regions. In: Jin, L., Durand, D. (eds.) Comparative Genomics (RECOMB CG 2022). LNCS, vol. 13234, pp. 205–220. Springer, Cham (2022)

    Chapter  Google Scholar 

  11. Bulteau, L., Fertin, G., Tannier, E.: Genome rearrangements with indels in intergenes restrict the scenario space. BMC Bioinform. 17(14), 426 (2016)

    Article  Google Scholar 

  12. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 222–234. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4_20

    Chapter  Google Scholar 

  13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)

    Article  Google Scholar 

  14. Kolman, P., Waleń, T.: Reversal distance for strings with duplicates: linear time approximation using hitting set. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 279–289. Springer, Heidelberg (2007). https://doi.org/10.1007/11970125_22

    Chapter  Google Scholar 

  15. Oliveira, A.R., Brito, K.L., Dias, Z., Dias, U.: Sorting by weighted reversals and transpositions. In: Alves, R. (ed.) BSB 2018. LNCS, vol. 11228, pp. 38–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01722-4_4

    Chapter  Google Scholar 

  16. Oliveira, A.R., et al.: Sorting signed permutations by intergenic reversals. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2870–2876 (2021)

    Article  Google Scholar 

  17. Oliveira, A.R., Jean, G., Fertin, G., Brito, K.L., Dias, U., Dias, Z.: Sorting permutations by intergenic operations. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(6), 2080–2093 (2021)

    Article  CAS  Google Scholar 

  18. Willing, E., Zaccaria, S., Braga, M.D., Stoye, J.: On the inversion-indel distance. BMC Bioinform. 14, S3 (2013)

    Article  Google Scholar 

  19. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinform. 21(16), 3340–3346 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexsandro Oliveira Alexandrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira Alexandrino, A., Rodrigues Oliveira, A., Jean, G., Fertin, G., Dias, U., Dias, Z. (2022). Transposition Distance Considering Intergenic Regions for Unbalanced Genomes. In: Bansal, M.S., Cai, Z., Mangul, S. (eds) Bioinformatics Research and Applications. ISBRA 2022. Lecture Notes in Computer Science(), vol 13760. Springer, Cham. https://doi.org/10.1007/978-3-031-23198-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23198-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23197-1

  • Online ISBN: 978-3-031-23198-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics