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Abstract. Since the 1980s, and particularly with the Hopfield model,
recurrent neural networks or RNN became a topic of great interest. The
first works of neural networks consisted of simple systems of a few neu-
rons that were commonly simulated through analogue electronic circuits.
The passage from the equations to the circuits was carried out directly
without justification and subsequent formalisation. The present work
shows a way to formally obtain the equivalence between an analogue cir-
cuit and a neural network and formalizes the connection between both
systems. We also show which are the properties that these electrical
networks must satisfy. We can have confidence that the representation
in terms of circuits is mathematically equivalent to the equations that
represent the network.
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1 Introduction

During the 1980s, and particularly since the Hopfield model [8], recurrent neural
networks became a topic of great interest. In particular, latter with the works
of Funahashi, Nakamura and Kurita [5,6,9], which made it possible to link neu-
ral networks with the description of dynamic systems, this research field began
to establish as an area in itself. There are multiple papers on how neural net-
works are universal approximators, (i.e. they can approximate any continuous
function). The proofs tell that neural networks can approximate any continuous
function [12,13]. Any finite-time trajectory of a given n−dimensional dynamical
system can be approximately realized by the internal state of the output units of
a continuous-time recurrent neural network with n−output units, some hidden
units, and an appropriate initial condition [6]. It was not until the last ten years
that the current computing algorithms, the new hardware and the theory of neu-
ral networks allowed enormous developments in various areas related to natural
language, dynamical systems, neurosciences and time series analysis using such
networks [17,7].

http://arxiv.org/abs/2304.06487v1


2 M. Caruso and C. Jarne

However, with the hardware that was available at that time, the first works of
neural networks consisted of simple systems of a few neurons that were commonly
simulated through analogue electronic circuits. The passage from the equations
to those circuits in most of the works of that time was carried out in a direct
way, without much formalism. Mainly because the objective was to show how
effectively these circuits could constitute rudimentary neural networks, mind
that the analogue circuits allowed to simulate these systems. The behaviour
of the systems was studied when the parameters of the network varied. Some
current works in the area of electronics take up this idea and through circuit
simulations, or the synthesis of analogue circuits, study the properties in systems
with few neurons. One example are the transitions to chaotic systems [1,16].

On the other hand, dedicated circuits are used in another field called Neu-
romorphic engineering [10,11], which is also known as neuromorphic computing.
This is the use of very large-scale integration (VLSI) systems containing elec-
tronic analogue circuits that mimic neuro-biological architectures related to the
nervous system. A neuromorphic computer is called any device that uses physical
artificial neurons to do computations. Recently the term neuromorphic has been
used to describe analogue, digital, mixed-mode analogue/digital VLSI (and also
software systems) that implement models of neural systems used to understand
perception, motor control, or multisensory integration. The implementation of
neuromorphic computing on the hardware level is realized through oxide-based
memristors, spintronic memories, threshold switches, and transistors. Training
software-based neuromorphic systems of spiking neural networks can be achieved
using error backpropagation, e.g., using Python-based frameworks. The training
algorithms of these systems are still complex, and it is difficult to control the
network parameters.

Motivated by these developments and the gap in the literature about the
formal aspects, the present work shows how to formally obtain the equivalence
between an analogue circuit and a neural network, and formalizes the connection
between both systems. We also show which are the properties that these electrical
networks must satisfy. To the best of our knowledge, this is not explicitly found
in the literature. The aim of the analysis is to explain the case of the linear
network, meaning when the transfer function is the identity. This case is of
interest since it has been used in various works, but also because it is often used
to approximate nonlinear systems to first-order [15,14].

2 Notation and dynamics

We have a set of n−artificial neurons, for each of these there is a dynamic
quantity called activity, represented by a function hi : T −→ H ⊆ R with i∈In
and a T ⊆ R is the set of temporary labels. We will use the following compact
notation to denote the discrete set n natural numbers In={1, · · · , n}⊂N. We can
arrange these n functions in a column vector hhh=(h1, · · · , hi, · · · , hn)

t, where t

denotes matrix transposition. The vector hhh represents the state of the activity
of the network (formed by the n neurons) at that time t. On the other hand,
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there are a series of m input functions, xk : T −→ X ⊆ R with k∈Im, which can
be arranged in a column vector xxx = (x1, · · · , xk, · · · , xm)t. For recurrent neural
networks (RNN) the activity vector hhh satisfies:

ḣ̇ḣh(t) = −λλλhhh(t) + σσσ(((w hw hw h(t) + w̃wwxxx(t)))), (1)

where ḣ̇ḣh represents the total derivative with respect to time in the usual sense.
The diagonal matrix λλλ contains the inverses of the characteristic times (τk,
k∈In), of the postsynaptic modes of each neuron, λλλ−1 = diag(τ1, · · · , τk, · · · , τn).
In the case where the neural network is completely disconnected, both internally
www = 000 and externally w̃ww = 000, the activity of each neuron hk of the network decays
exponentially each with a characteristic time given by τk. The matrices www and
w̃ww are n × n and n × m, respectively. The matrix elements www, wij , contain the
synaptic connections, similar to w̃ww, σσσ : Rn −→ R

n is a vector field of activation.
Strictly speaking, these fields usually have their image in some compact set, since
the activation of the neurons has a saturation behavior, the typical examples are
hyperbolic tangent, logistics, etc., which satisfies σσσ(000) = 000 (because the activity
cannot be revived instantly, that is, the result of activating a neuron with zero
activity is null). Furthermore, each of its components is defined by applying a
single nonlinear function σ : R −→ R. That is, given a vector ξξξ ∈ R

n, expressed
in components as ξξξ=(ξ1, · · · , ξn) is has to σσσ(ξξξ) = (((σ(ξ1), · · · , σ(ξn)))), as usual.
The activity state of the network is determined by (1), which is updated as a
result of the interaction between them via www, with the external signals xxx that
intervene on the activity of neurons according to w̃ww, and together with some
initial condition. We could write (1) compactly as:

ḣ̇ḣh(t) = FFF(((hhh(t),xxx(t)))). (2)

There are two procedures that can be performed on this differential equation in
order to say something about the behavior of the system models: discretization
and linearization. The first procedure allows computing the model through an
algorithm. The second will allow us to clearly find a linear electrical network that
captures all the dynamics of the recurrent neural network. The order of these
procedures does not alter the result, or in other words, the order in which they
are applied is independent. Intuitively we can anticipate this result, since each
procedure is introduced by a different member of (2), discretization is applied on
the differential operator on the left, while linearization is done on the activation
function on the right.

3 Linearization process

As the nonlinear character of FFF is exclusively in σσσ, linearizing is a procedure that
has to do with the activation field and the neuronal activity itself, that is, the
activation object, which we are interested in considering. Within this activation
field σσσ, let us now look at each function within σ : R −→ R, and suppose that
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σ(ξ) is k−times differentiable at ξ = 0, by Taylor’s theorem, there is a function
remainder Rk(ξ) that allows us to write as

σ(ξ) = σ(0) + (((dξσ(ξ)|ξ=0)))ξ + · · ·+(((d
(k)
ξ σ(ξ)|ξ=0)))ξ

k +Rk(ξ)ξ
k. (3)

Activation functions σ are usually chosen whose tangent line has a slope equal
to 1 at ξ = 0, that is, the activation function near the origin resembles the
identity function, let us remember that σ(0) = 0. Using all this and for ξ small
enough we can approximate σ(ξ) ≃ ξ. Local linear approximations also represent
an important building block for the analysis of the behaviour of more complex,
nonlinear dynamical systems [4]. This procedure will be valid for regimes of
low neuronal activity. We are not saying that the linear approximation is valid
only in this regime, Only stating that in this regime, the intensity of neuronal
activity is so weak that there is a formal procedure that justifies the linear
approximation. In fact, this approximation was also used in the case of long
times. We understand that the reason for such a thing can be justified from the
differential equation and affirm that it is correct to assume a certain neuronal not

saturation in the long term. By long-term, we mean that over time, both because
the matrix AAA (which is diagonalizable) is such that all its eigenvalues have a real
part less than 0 (this is what is called asymptotic stability) or it can always be
considered that the neuronal activation function, which takes the weighted sum
of the activity signals of each neuron, prepares the whole situation. In any case,
the final destination of the neuronal activity is terminal, this is further ensured
by the second principle of thermodynamics, in the sense that every entity at some
point will have very poor neuronal activity. In this way, under linearization we
will have FFF(((hhh(t),xxx(t)))) ≃ −λhλhλh(t) +w hw hw h(t) + w̃wwxxx(t) thus the differential equation
(2) takes the form

ḣ̇ḣh(t) = AAAhhh(t) + w̃wwxxx(t), (4)

where AAA = www − λλλ. We are interested in studying the activity of each neuron
{hk}k∈In subject to two types of interactions due to the interconnection: inter-

neuronal connection given the weights matrix www and a series of external ex-
citation xxx affecting each neuron through w̃ww matrix. Linear systems are made
particularly attractive by the fact that their asymptotic behaviour can be un-
derstood in terms of the eigenvalues and eigenvectors of AAA [4].

4 Electrical Networks

We will identify the system described by (1), in particular its linearized form
(4) with an electrical network. An electrical network (EN) is understood as the
composition of an oriented graph, where each of its arcs has two associated func-
tions of time: current and voltage, these functions are linked by Kirchhoff’s laws
and by the arc relations that arise from the graph that represents it and the
interconnected electrical elements, e.g. resistors, inductors, capacitors, etc. [2].
Whenever the method of nodes, loops or pairs of nodes [2] is used to find the
dynamics of the network, systems of linear differential equations of first order
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or integro-differential equations will be obtained. To be able to use these meth-
ods, it is necessary to know the electrical network entirety, i.e. the elements that
compose it and their arrangement and interconnection. Since we do not have
this information, the solution must be structured on a general circuit, i.e. with-
out taking into account its graph, or the elements in each of its arcs. Therefore
it is not possible to apply any of the network analysis methods until we find
a particular network and its arc elements. The way to solve this apparent cir-
cular problem requires not the analysis of one circuit, but the synthesis of all
circuits in a given preferential family. Such requirements can be fixed from other
assumptions which we will see below.

We intend to distinguish or identify generalized coordinates in the electrical
network such that the equations (4) are satisfied. Since that equation has n de-
grees of freedom, therefore we distinguish n local regions in the network from
which voltages or currents can be measured. These regions are called ports:
a pair of terminals that allow to exchange energy with the surroundings and
have a given port-voltage and port-current. We conclude such an electrical net-
work has n independent ports perfectly identified. The general structure that
we propose is an electrical network composed of n dipoles listed as {Nk}k∈In ,
also called one−port networks, interconnected through a n−port interaction net-
work N [2,3]. We see that each of one−port network introduces a port−voltage
or port−current, that will be corresponds to a coordinate, hk from hhh in (4), see
figure 1. Since www is time−independent, then the dynamics of the power grid must
be invariant under time translations, this implies that this part of the N network
does not contain internal generators. In fact, by observing (4) we can conclude
that such generators are well identified with the excitation signals xxx. The initial
conditions will be given on each dipole (or one−port network), and also in the
external excitation xxx, the energy initially contained by the interaction network N
can be nonzero. In this way, the theory of multi−port networks can be perfectly
used to synthesise N as an active electrical network [2]. In this scenario is possi-
ble to define a transfer matrix function of N written as the quotient between the
Laplace transformation to certain output signals and the Laplace transformation
of certain input signals. Depending on which signals are considered as inputs and
outputs, there are four general representations: transmission, impedance, admit-
tance, or hybrid. Note that the last case of hybrid representations of N is ruled
out, otherwise, the input and output signals, voltages and currents, from differ-
ent ports would be mixed, thus losing the possibility that each network {Nk}k∈In

represents, per se, one and only one of the coordinates {hk}k∈In described by
(4). In conclusion, we have interested in transmission, impedance or admittance
representation of the n−port network N . The energy is initially provided by the
list of one−port networks {Nk}k∈In . The corresponding dynamics of an electric
network is defined by the appropriate use of the Kirchhoff rules that take care of
the topology of the network, schematically represented in figure 1. We have said
that the generalized coordinates will be port-voltages or port-current of each of
the n networks of the list {Nk}k∈In . Therefore, the n−port network N acts as an
interaction in the sense that it physically interconnects the n dipoles networks.
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NNN

N1N1N1

N2N2N2

NkNkNk

NnNnNn

Fig. 1. There are n dipole networks, denoted by {Nk}k∈In interconnected through an
interaction network N .

So the non-interaction case corresponds to disconnecting the N network. In a
RNN this interaction-free responds to the fact that the weights matrix satisfies
www = 000 and the external excitation xxx = 000 or its weithgts matrix w̃ww = 000, so that
following (4) each neuron has an activity signal given by hk(t)=αke

−λk t, for a
given λk∈R. In other words neurons do not see each other. Mathematically, this
is due because the evolution equation (4) take the form

ḣ̇ḣh(t) = −λhλhλh(t), (5)

and given the matrix λλλ is diagonal the system of equations is uncoupled, the
activity of the neurons is relegated to its initial condition and to a behavior that
decays exponentially with a characteristic time matrix.

In order to compare directly with the result from the network synthesis
method, let’s apply the Laplace transform (L) of the above linear differen-
tial equation (5) and taken the k−component of hhh(t) denoted by hk(t), then
Hk(s)= hk(0)/(s + λk), where Hk(s)=L(((hk(t))))(s) and a nonnegative matrix
λλλ = diag(· · · , λk, · · · ). Note that each Hk(s) is conceived as a characteristic
function of a one-port Rk‖Ck in parallel or one-port Rk⊞Lk in series [2], these
circuits are to be dual to each other. The identification (=̂) with the equation
(4) is as follows: λ−1

k =̂RkCk and hk=̂vk or λ−1
k =̂Rk/Lk and hk=̂ik. It should

be noted that in each case the variable chosen is common to all of its elements:
voltages and current for the parallel and series cases, respectively. Figure 2 sum-
marize this situation. Note that the voltage source vk(0) and the current source
ik(0) in figure 2 represent not only the initial condition but also mention that the
initial energy is stored in the reactive elements. From an electromagnetic point
of view, the initial potential difference in the capacitor Ck refers to the stored
electrical energy given by 1

2Ckv
2
k(0). While the initial current in the inductor Lk

refers to the stored magnetic energy given by 1
2Lki

2
k(0). That is, both reactive

elements are the initial source and thus provide the initial condition in each case.
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−
+ vk(0) Rk Ck

ak

bk

ik(0)

Rk

Lk

ak

bk

Fig. 2. Alternatives networks for each Nk in non-interaction case, i.e. a terminal dipole
network of the list {Nk}k∈In and its initial excitation, depending on which signal:
voltages vk (left and red) or currents ik (right and blue) is chosen to describe the
coordinate hk of (4).

As we have said, the interaction of the components of neuronal activity vector
hhh is due to an internal connection between neurons regulated by the internal
weights matrix www and to an external connection regulated by the excitation xxx
and the external weights matrix w̃ww. To establish the RNN correspondence with
the electrical networks in this linear context, we need to connect the interaction
network N in order to identify it with the matrices www and w̃ww and the external
excitation xxx.

We claim that for a given a recurrent neural network regulated by (4), there
are two electrical circuits, ‖-parallel and ⊞-series networks, that are dual to each
other and reproduce the dynamics proposed by (5).

−
+ vk(0) Rk

kkk

Ck

ak

bk

ik(0)

Rk

Lk

ak
kkk

bk

Fig. 3. Alternatives networks for Nk, i.e. a terminal dipole network of the list {Nk}k∈In

and its initial excitation, depending on which signal: now are port−voltages vk (left
and red) or port−currents ik (right and blue) is chosen as a coordinate hk of (4).

Note that the radical difference of each subnetwork Nk between the figure 2
and 3 is that the common signal vk (ik) for the parallel (serial) case is transmitted
to the network N ; so each pair of terminals (ak, bk) are arranged to ensure this
effect. To complete the electrical configuration of the complete network in 1,
each pair of terminals (ak, bk) conforms a port that is connected to the k−port
of N . Depending on whether you choose to use a description in terms of voltages
or currents, you will have to use an admittance or impedance representation for
the associated N network.
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To fix ideas we choose the parallel network and port−voltages of each subnet-
work of the list {Nk}k∈In as generalized coordinates, vvv = (v1, · · ·, vk, · · ·, vn), at
left on the figure 3. For each k∈In, a subnetwork Nk is a Rk‖Ck tandem circuit,
which is connected to the k−port of the network N as showed in figure 1. The
k−node conform the k−port given by the pair of terminals (ak, bk), applying
Kirchhoff’s first law at this k−node: iCk

+ iRk
− ik=0, using that iRk

=vk/Rk and

iCk
=Ckdtvk, thus Ckv̇k(t) + R−1

k vk(t) − ik(t) = 0, performing a Laplace trans-

form (L) then CksVk(s) − Ckvk(0) + R−1
k Vk(s) − Ik(s) = 0. The last equation

can be expressed in matrix form as

sVVV (s)− vvv(0) +ΛΛΛVVV (s)−CCC−1III(s) = 000, (6)

where CCC = diag(C1, · · · , Cn) and RRR = diag(R1, · · · , Rn), the matrix ΛΛΛ=(RCRCRC)−1

contains the inverse of the characteristics times of each Rk‖Ck subnetworks. In
such a way, it all comes down to synthesizing the N network in the sense of
the [2] circuit theory, in order to obtain a relation between the port-currents ik
and the port-voltages vk. If the RNN does not have external excitation then the
synthesis of the EN, N , allows to express III(s) = YYY (s)VVV (s), we have used the
admittance representation of N . Applying the inverse Laplace (L−1) transform
to obtain the equation in the time domain

v̇̇v̇v(t) +ΛvΛvΛv(t)−CCC−1
L

−1[YYY (s)VVV (s)](t)=000. (7)

The matrix elements of YYY (s) are rational functions: quotients of polynomials in s.
A necessary and sufficient condition for that the equation (7) has the form of (4)
is YYY (s) = ααα, where the constant matrix ααα of conductances can be synthesized
using the general method exposed in [3]. There is non restrictions about the
symmetry of the matrix ααα, in other words if we are interested in considering
ααα that is not necessarily symmetric, then the network N is said to be non-
reciprocal. This implies that it can be synthesized using gyrators [3]. Comparing
equations (7) and (4) we obtain the identification www=̂CCC−1ααα=:ΩΩΩ.

If we consider the complete description of RNN with the external excitation
xxx then the electrical network N must be synthesized by III(s) = αααVVV (s) + βββUUU(s),
where UUU(s)=L[uuu(t)](s) and uuu(t) = (u1, · · · , um) are the voltages sources that

act as the external excitation xxx, in these case the weight matrix w̃ww=̂CCC−1βββ=:Ω̃ΩΩ.
A similar procedure can be repeated in the impedance representation of the

network N simply by interchanging the following quantities: voltages by cur-
rents, inductances by capacitances, conductances by resistances in order to ob-
tain identical equations to (4) so that now the generalized coordinates are the
port−currents iii.

The procedure we have described can be summarized in the following steps:

1. Propose the general topology of n sub-networks {Nk}k∈In connected to a N
network, hoping to be able to associate each artificial neuron in the RNN
with a sub-network of {N}k∈In .

2. Identify the case of no interaction in both systems, in this case, RNN and
EN.
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3. Look for a dynamic quantity common to the, and representative of the sub-
lattice Nk that corresponds to hk. Note that it needs to be common and
representative to capture that shared in Nk and to be able to identify the
dynamics of each Nk with that of each hk.

4. In the case considering interaction, this common and representative informa-
tion of each Nk must be transferred to N . This is achieved by transferring
the potential difference (vk) or the current flowing through the arc ak and bk
(vk) or the current between ak and bk (by previously opening such terminals)
to the k−gate of N .

The dynamics of the Electrical Network follows the differential equation

v̇̇v̇v(t) = −ΛvΛvΛv(t) +ΩΩΩvvv(t) + Ω̃ΩΩuuu(t)=000, (8)

we summarize the identification of the elements of an RRN (4) and the class of

Electrical Networks (8) under study: hhh=̂vvv, λλλ=̂ΛΛΛ, ωωω=̂ΩΩΩ, ω̃ωω=̂Ω̃ΩΩ and xxx=̂uuu.
For the nonlinear case, where the activation function σ plays am essential

role, then we must consider the use of nonlinear amplifiers synthesis method
with feedback in N .

5 Discussion

It is well known that any finite-time trajectory of a given n−dimensional dy-
namical system can be approximately realized by the internal state of the output
units of a continuous-time recurrent neural network with noutput units. From
this idea, and with the advance of the last ten years which includes current com-
puting algorithms, the new hardware and the theory of neural networks, we have
enormous developments in various areas related to natural language, dynamical
systems, neuroscience and time series analysis.

While it may seem like an unnecessary step, being able to formalize and
ground fundamental connections that are directly used from the very beginning
allows us to learn more about systems in the process. It allows us to contextualize
the types of circuits used and identify their characteristics and the parameters
of the recurrent networks.

We have also carried out a review that allows us to present the current state
of the art in the field of recurrent neural networks. We can perform simulations
where we have an accurate representation of the phenomena associated with
these systems. We have now the confidence that the representation is mathe-
matically equivalent to the equations that represent the network.

6 Conclusions and Future Work

Since the idea of the current work was to formalize this equivalence implemented
in the last 30 years, the objective was the development of such formalism in
present paper. We have presented a procedure summarized in 4 steps to iden-
tify the elements of the electrical network with elements of the equation that



10 M. Caruso and C. Jarne

represents the recurrent neural network. We think that a future work could ad-
dress how to include specific conditions that neural networks must meet, such
as Dale’s law, or other constraints of biological origin and how they can affect
the parameters of the circuits that emulate the networks.

Acknowledgements Present work was supported by FIDESOL, CONICET
and UNQ.
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