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Abstract. The devices designed for the Internet-of-Things encompass a
large variety of distinct processor architectures, forming a highly hetero-
geneous zoo. In order to tackle this, we employ a simulator to estimate
the performance of the matrix-matrix multiplication (gemm) kernel on
processors designed to operate at the edge. Our simulator adheres to the
modern implementations of gemm, advocated by GotoBLAS2, BLIS,
OpenBLAS, etc., to carefully account for the amount of data transfers
across the memory hierarchy of different algorithmic variants of the ker-
nel. A small collection of experiments provide the necessary data to
calibrate the simulator and deliver highly accurate estimations of the
execution time for a given processor architecture.

Keywords: Performance analysis · matrix multiplication · high perfor-
mance · IoT processors.

1 Introduction

Deep learning (DL) technologies are currently being deployed at the edge in
order to improve safety and privacy, reduce the latency for the end-user, and/or
decrease energy consumption [4, 7, 12]. The IoT (Internet-of-Things) appliances
operating in this scenario comprise a myriad of different processor designs, facing
limited computational and memory capacities as well as strict restrictions in
power supply and, sometimes, time-to-response. As a consequence, the software
running on these devices has to be carefully optimized.

The general matrix-matrix multiplication (gemm) is a key kernel for the re-
alization of the convolutional deep neural networks (DNNs) employed in signal
processing and computer vision, as well as for the transformers applied to natu-
ral language processing tasks [10]. However, developing an efficient realization of
gemm is a time-consuming chore, aggravated by the heterogeneity of IoT archi-
tecture designs, which requires a good expertise on high performance computing
and computer architecture.

In this paper we contribute toward dealing with the development of optimized
realizations of gemm for IoT processors leveraging a performance simulator to
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experiment with different algorithmic alternatives for this kernel, prior to actu-
ally implementing and testing them. Our simulator, built upon the GotoBLAS2
ideas [2] and the BLIS framework [5,11], mimics the algorithm behavior in order
to capture the data transfers across the memory hierarchy, and requires only
a few experimental data which can be collected via simple calibration experi-
ments. The result delivers highly accurate estimations of the execution time on
an GAP8 parallel-ultra-low power processor (PULP).

2 Blocked Algorithms for GEMM

2.1 The baseline algorithm for GEMM

Consider the gemm C += AB, where the dimensions of the matrix operands A,
B and C are m×k, k×n and m×n, respectively. Many current high performance
realizations of this kernel, in open-source as well as commercial linear algebra
libraries, adhere to the GotoBLAS ideas [2] to implement it as a collection of
five nested loops around a micro-kernel that performs a tiny gemm. In rough
detail, the instances of gemm in these libraries apply tiling (blocking) to the
matrix operands so that 1) a kc × nc block of B is packed into a buffer Bc

that is intended to reside in the L3 cache memory; 2) an mc × kc block of A
is packed into a buffer Ac for the L2 cache memory; and 3) a specific kc × nr

block of Bc, say Br, is expected to reside in the L1 cache memory during the
execution of the micro-kernel. Furthermore, 4) the micro-kernel performs all the
arithmetic, retrieving the data of Ac from the L2 cache, Br from the L1 cache,
and C directly from memory; see Figure 1. These techniques are adopted, for
example, in BLIS [11], OpenBLAS [6], AMD BLIS and, presumably, Intel MKL,
among others.

The baseline algorithm for gemm presented in this section, hereafter referred
to as B3A2C0,3 features a micro-kernel that comprises a sixth loop, and is usually
encoded directly in assembly (or in C with vector intrinsics). At each iteration,
this loop updates an mr × nr micro-tile of C, say Cr, by performing an outer
product involving (part of) one row of Ac and one column of Br, as illustrated
by loop L6 in Figure 1. The cost of loading/storing Cr can be expected to
be amortized over the kc iterations of this loop, as mr, nr ≪ kc in practice.
Furthermore, a specialized packing of Ac and Bc ensures that their entries are
retrieved with unit stride from the micro-kernel; see Figure 2.

2.2 A family of algorithms for GEMM

A different re-ordering of the gemm loops, combined with an appropriate selec-
tion of the loop strides, result in other variants for gemm, which favor that the

3 The notation introduced in [9] refers to the baseline algorithm as B3A2C0, where
each letter denotes one of the matrix operands, and the subsequent number indi-
cates the cache level where that operand resides (with 0 referring to the processor
registers). The same matrix operand resides in both the L1 and L3 caches.
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L1 | for ( jc=0; jc<n; jc+=nc )

L2 | for ( pc=0; pc<k; pc+=kc ) {

| Bc := B(pc:pc+kc-1,jc:jc+nc-1); (Mem->L3)

L3 | for ( ic=0; ic<m; ic+=mc ) {

| Ac := A(ic:ic+mc-1,pc:pc+kc-1); (Mem->L2)

L4 | for ( jr=0; jr<nc; jr+=nr )

L5 | for ( ir=0; ir<mc; ir+=mr )

| // Micro-kernel

L6 | for ( pr=0; pr<kc; pr++ )

| Cc(ir:ir+mr-1,jr:jr+nr-1) (Mem->Reg)

| += Ac(ir:ir+mr-1,pr) (L2->Reg)

| * Bc(pr,jr:jrnr-1); (L1->Reg)

| } }

Fig. 1: The baseline algorithm of gemm. Here Cc is a notation artifact, introduced
to ease the presentation of the algorithm while Ac and Bc are actual buffers that
maintain copies of certain blocks of A and B.
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Fig. 2: Packing in the baseline algorithm of gemm. Note how the entries of A,B
are re-organized into Ac, Bc in micro-panels ofmr rows, nr columns, respectively.

matrix blocks of A,B,C reside in specific levels of the memory hierarchy, from
the main memory to the cache(s) and processor registers. This was analyzed
in [3, 9], and more recently, in the context of DL inference, in [1].

Figure 3 shows the algorithms for two of these variants: C3B2A0 and B3C2A0.
In the former case, 1) an mc×nc block of C is packed into a buffer Cc for the L3
cache memory; 2) a kc×nc block of B is packed into a buffer Bc for the L2 cache
memory; and 3) an mr × nc block of Cc, say Cr, is intended to reside in the L1
cache memory. In the B3C2A0 case, the roles of C and B are swapped. Further-
more, 4) in both variants the micro-kernel operates with a mr × kr micro-tile
of A, streamed directly from the memory to the registers, performing a small,
mr × kr matrix-vector product per iteration of Loop L6 (nc iterations), each
involving a single column of Cr and (part of) Bc; see Figure 3. In addition,
in order to ensure accessing the entries of C and B with unit stride from the
micro-kernel, both Cc and Bc are stored following the same pattern shown for
Ac in Figure 2, with Cc also re-organized in micro-panels of mr rows but Bc in
micro-panels of kr rows.

To close this section, we note that swapping the roles of A and B in the
three previous algorithms, yields three alternative variants: A3B2C0, C3A2B0,
A3C2B0 [1]. However, given the symmetric role of the input operands of gemm
(A,B), these other variants present no significant differences from the point of
view of the performance model proposed in this work and, therefore, we do not
consider in the following.

3 A Performance Simulator for GEMM Algorithms

3.1 IoT architecture model

We make the following considerations with respect to the target IoT processor:

– The processor is equipped with a single core, with a SIMD (single instruction
multiple data) arithmetic units capable of working with 32 vector registers
of width 32 bits (4 INT8 numbers).
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L1 | for ( jc=0; jc<n; jc+=nc )

L2 | for ( ic=0; ic<m; ic+=mc ) {

| Cc = C(ic:ic+mc-1,jc:jc+nc-1); (Mem->L3)

L3 | for ( pc=0; pc<k; pc+=kc ) {

| Bc := B(pc:pc+kc-1,jc:jc+nc-1); (Mem->L2)

L4 | for ( ir=0; ir<mc; ir+=mr )

L5 | for ( pr=0; pr<kc; pr+=kr )

L6 | for ( jr=0; jr<nc; jr++ )

| Cc(ir:ir+mr-1,jr) (L1->Reg)

| += Ac(ir:ir+mr-1,pc:pc+kr-1) (Mem->Reg)

| * Bc(pc:pc+kr-1,jr); (L2->Reg)

| }

| C(ic:ic+mc-1,jc:jc+nc-1) = Cc; (L3->Mem)

| }

------------------------------------------------------------

L1 | for ( jc=0; jc<n; jc+=nc )

L2 | for ( pc=0; pc<k; pc+=kc ) {

| Bc := B(pc:pc+kc-1,jc:jc+nc-1); (Mem->L3)

L3 | for ( ic=0; ic<m; ic+=mc ) {

| Cc := C(ic:ic+mc-1,jc:jc+nc-1); (Mem->L2)

L4 | for ( pr=0; pr<kc; pr+=kr )

L5 | for ( ir=0; ir<mc; ir+=mr )

L6 | for ( jr=0; jr<nc; jr++ )

| Cc(ir:ir+mr-1,jr) (L2->Reg)

| += Ac(ir:ir+mr-1,pc:pc+kr-1) (Mem->Reg)

| * Bc(pc:pc+kr-1,jr); (L1->Reg)

| C(ic:ic+mc-1,jc:jc+nc-1) := Cc; (L2->Mem)

| } }

Fig. 3: Variants of the family of algorithms for gemm with A resident in the
processor registers: C3B2A0 (top) and B3C2A0 (bottom).

– The memory comprises four levels, from fastest/smallest to slowest/largest
referred to as R (for processor registers), L1, L2, and M (for main memory).

– There is a strict control of the data transfers between memory levels. The
L1 and L2 levels can thus be viewed as “scratchpad” memories instead of
conventional caches.

– The capacity of each memory level will be denoted as CL, with L denoting
the corresponding level.

– The transfer rates between two levels will be referred to as TO,D, with the
subindices O/D specifying the origin/destination memory levels.

From the point of view of the algorithms, for simplicity we assume that compu-
tation is not overlapped with data transfers involving the scratchpad memories.

3.2 Validation

Hardware platform. For the validation of our performance simulator, in this



6 C. Ramı́rez et al.

Transfer Mbytes/s B3A2C0 C3B2A0 B3C2A0

Packing TM,M 1.62E+00 B to Bc C to Cc B to Bc

Packing TM,L2 5.30E−01 A to Ac B to Bc C to Cc

Unpacking TL2,M 6.54E−01 – – Cc to C

Copy TM,L1 8.81E+00 Bc to Br Cc to Cr Bc to Br

Stream from TM,R 4.87E−01 C to reg. A to reg. A to reg.

micro- TL1,R 1.78E+02 Br to reg. Cr to reg. Br to reg.

kernel TL2,R 7.18E+00 Ac to reg. Bc to reg. Cc to reg.

Table 1: Transfers rates in the GAP8 FC. The packing/unpacking rates (three
first rows) were measured when transferring chunks of r = 4 elements at a time.

work we target the GAP8 PULP, from GreenWaves Technologies. This system
comprises 1) a fabric controller (FC) core for control, communications, and se-
curity functions; 2) a cluster of 8 cores designed for the execution of parallel al-
gorithms; and 3) a specialized accelerator (HWCE). All these components share
the same 512-KB L2 memory area (MA). Furthermore, the FC has a 16-KB L1
MA while the cluster cores and HWCE share a 64-KB multi-banked TCDM L1
(data/instruction) MA. Several DMA (direct memory access) units allow fast
transfers between MAs. The banks of the shared L1 MA can be accessed from
the cluster cores in a single cycle. In comparison, accessing data in external
MAs (referred to as L3 memory,) incurs a very high cost and, therefore, should
be avoided whenever possible. The GAP8 relies on DMA units to transfer data
to/from peripherals and in between the internal L1 and L2 MAs, which can
be viewed as “scratchpads”. The DMA unit is used to transfer data to/from
peripherals, including the L3 memory.

Following our assumptions on the IoT processor, we only target the FC core,
and associated MAs, for the validation and experimentation in the remainder of
the paper. Repeating the analysis for the GAP8 cluster, using a multi-threaded
version of gemm, is left as part of future work.

Calibration.We conducted a series of experiments to estimate the data transfer
rates between the MAs in the GAP8 FC, with the results offered in Table 1.
The first block-row there comprises the packing/unpacking operations associated
with blocking (tiling) and are performed by the three outermost loops of the
algorithms. They all involve the L3 MA (M in the model), and the results were
obtained using DMA programmed transfers of r = 4 elements “at a time”. This
type of calibration is required because packing/unpacking the matrix operands
into their corresponding buffers, requires a reorganization that copies the data
in “chunks” of r consecutive elements in memory; see Figure 2. We could also
verify that, when multiplying r by a factor s, the transfer rate also increased
in the same proportion. For example, for algorithm B3A2C0, B is packed into
the buffer Bc taking into account the dimension nr = 4 of the micro-kernel, and
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proceeds at a rate of 1.62 MBytes/s. If the micro-kernel for this algorithm is
modified to use nr = 8, we experimentally observed that the rate was doubled,
to 3.24 MBytes/s. Our simulator takes this consideration into account.

The second block-row in the table (consisting of a single row) corresponds
to the copy between the L3 and L1 MAs. This copy is implicit in the case of
the conventional gemm algorithms, which assume a cache system (and therefore,
they do not appear reflected in the formulation of the algorithms), but they need
to be explicitly programmed in the case of scratchpads.

The third block-row of results are for the data streaming performed from
inside the micro-kernel.

A separate experiment with a micro-kernel designed for the GAP8 FC, with
A resident in the processor registers and the two other operands placed in the
proper MAs, showed an arithmetic performance of 5.64 billions of INT8 arith-
metic operations per second (INT8 GOPS).
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Fig. 4: Distribution of costs among the different components of the B3C2A0
algorithm using micro-kernels of dimension 4× 4, 4× 8, and 4× 12. The labels
starting with “E” and “T” below each bar distinguish between results from
experimentation and the simulator, respectively.

Validation. We next leveraged our implementation of the C3B2A0 algorithm
for the GAP8 FC described in [8] in order to assess the accuracy of our simu-
lator. For this purpose, we selected a gemm of moderate dimensions: m,n, k =
256, 784, 2304. (These particular dimensions were chosen because they arise when
applying the lowering approach [10] to transform the convolution operator in
layer #10 of MobileNetV1 DNN into a gemm.) Once we fixed the micro-kernel
dimension (mr × kr, for this particular variant), we then set the scratchpad
configuration parameters (mc, nc, kc) so that Cr, Bc respectively maximize the
occupancy of the L1, L2 MAs of the GAP8 FC.
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Figure 4 shows that the simulator, tuned with the calibrated transfer and
arithmetic rates, estimates the execution time of the actual implementation re-
markably well. Overall, the relative errors of the simulator in all these tests
remained below 2%.

4 Performance Analysis

As argued in the introduction of this paper, the ultimate goal of our performance
simulator for gemm is to experiment with different algorithmic alternatives for
the kernel, prior to going through the effort of implementing and testing any of
them on a specific IoT processor.

In this section we evaluate the three algorithmic variants for gemm discussed
earlier: B3A2C0, C3B2A0 and B3C2A0, comparing their estimated performance
as a function of the dimension of the internal micro-kernel (mr ×nr for the first
variant; and mr × kr for last two), and initially leveraging the same problem
case from the previous section: m,n, k = 256, 784, 2304. The size of the selected
micro-kernels was determined following the assumptions on the width of the
SIMD arithmetic unit (32 bits) and number of vector registers (32) made in
Section 3.

Figure 5 shows the distribution of the arithmetic and data/transfer costs,
for the three variants, using the performance simulator calibrated for the GAP8
platform. An assumption of our basic simulator is that the arithmetic rate is
independent of the micro-kernel dimension and this results in all cases reporting
the same cost due to arithmetic. (This assumption may be reasonable for very
simple IoT processor designs, but we will discuss this aspect further at the end of
this section.) In contrast, for this particular gemm shape, the distribution of costs
and the global execution time is highly dependent on the algorithmic variant and
micro-kernel dimensions. Thus, for this particular layer of MobileNetV1, both
B3A2C0 and B3C2A0 tend to favor “low-and-fat” micro-kernels, such as 4× 24,
while C3B2A0 yields better performance for “squarish” ones: 8× 12 and 12× 8.

Finally, Figure 6 compares the estimated execution time for the gemm re-
sulting from the application of lowering to all the convolution layers of Mo-
bileNetV1. The particular dimensions of these layers are specified in Table 2,
together with the optimal micro-kernel dimension for each algorithmic variant
and layer dimensions. (Layer #28 is skipped because it does not correspond to
a convolution operator.)

The results in this final experiment show that a high variability of the exe-
cution time, in accordance with the heterogeneity of the gemm shapes for the
distinct layers, but also a general advantage of the B3A2C0 variant. This was
not totally unexpected as B3A2C0 mimics the baseline algorithm in BLAS in-
stances such as those in GotoBLAS2, OpenBLAS and BLIS, and presents the
advantage of reducing the number of stores in memory during the update of the
result C. However, we note that this variant depends on the underlying archi-
tecture offering an efficient SIMD support for the outer product, which may not
be the case for all Iot processors. For example, the GAP8 architecture is espe-
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Fig. 5: Execution time of the three algorithms for the gemm in layer #10 of Mo-
bileNetV1 estimated using the performance simulator calibrated for the GAP8.

cially designed to deliver high performance for the scalar (or dot) product, which
favors the gemm variants with A resident in the processor registers (C3B2A0
and B3C2A0). This would be reflected in a different (INT8) GOPS rates in our
simulator, depending on the type of micro-kernel and architecture design. This
architecture-specific adaptation of the simulator to the arithmetic units in the
target processor is left as part of future work.
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#Layer ID m n k B3A2C0 C3B2A0 B3C2A0

1 32 12544 27 4×24 24×4 8×12
2 32 12544 288 4×24 8×12 4×24
3 64 12544 32 4×24 24×4 12×8
4 64 3136 576 4×24 12×8 4×24
5,7 128 3136 128 4×24 24×4 4×24
6 128 3136 1152 4×24 12×8 4×24
8 128 784 1152 4×24 12×8 4×24
9 256 784 128 4×24 24×4 8×12
10 256 784 2304 4×24 12×8 4×24
11 256 784 256 4×24 12×8 4×20
12 256 196 2304 4×24 12×8 4×24
13 512 196 256 4×24 24×4 4×24

14,16,18,20,22 512 196 4608 4×24 12×8 4×24
15,17,19,21,23 512 196 512 4×24 12×8 4×24

24 512 49 4608 8×12 12×8 4×24
25 1024 49 512 8×12 12×8 4×24
26 1024 49 9216 8×12 12×8 4×24
27 1024 49 1024 8×12 12×8 4×24
29 1024 1000 1 4×24 24×4 24×4

Table 2: gemm operations in the convolution layers arising in MobileNetV1 trans-
formed via lowering, and dimension of the optimal micro-kernel.

5 Discussion and Future Work

In order to address the heterogeneous zoo of IoT processor designs for edge com-
puting, we have leveraged a performance simulator for estimating the execution
costs of gemm that offers very useful information about which algorithmic vari-
ant can better fit a particular architecture.

At the same time, we recognize this work needs to be extended and improved
along several paths. As part of future work, we plan to explore several avenues:
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– Micro-kernels with A/B or C resident in registers are usually cast in terms
of distinct assembly SIMD (single instruction, multiple data) instructions.
This needs to be taken into account in the calibration experiments.

– Also, most current processors architectures are equipped with DMA con-
trollers. This complicates programming in order to orchestrate asynchronous
transfers with computation, and requires double buffering thus reducing the
amount of memory for the buffers in the intermediate memory levels.

– Finally, we plan to modify the memory model to take into account actual
cache memories instead of scratchpads. This introduces challenges associ-
ated with modeling the effects of cache associativity, cache eviction, and
replacement policies.
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