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Abstract. Image registration is an essential but challenging task in
medical image computing, especially for echocardiography, where the
anatomical structures are relatively noisy compared to other imaging
modalities. Traditional (non-learning) registration approaches rely on the
iterative optimization of a similarity metric which is usually costly in time
complexity. In recent years, convolutional neural network (CNN) based
image registration methods have shown good effectiveness. In the mean-
time, recent studies show that the attention-based model (e.g., Trans-
former) can bring superior performance in pattern recognition tasks. In
contrast, whether the superior performance of the Transformer comes
from the long-winded architecture or is attributed to the use of patches
for dividing the inputs is unclear yet. This work introduces three patch-
based frameworks for image registration using MLPs and transformers.
We provide experiments on 2D-echocardiography registration to answer
the former question partially and provide a benchmark solution. Our
results on a large public 2D echocardiography dataset show that the
patch-based MLP/Transformer model can be effectively used for unsu-
pervised echocardiography registration. They demonstrate comparable
and even better registration performance than a popular CNN registra-
tion model. In particular, patch-based models better preserve volume
changes in terms of Jacobian determinants, thus generating robust regis-
tration fields with less unrealistic deformation. Our results demonstrate
that patch-based learning methods, whether with attention or not, can
perform high-performance unsupervised registration tasks with adequate
time and space complexity. Our codes are available 1.

Keywords: Unsupervised Registration · MLP · Transformer · Echocar-
diography.

1 Introduction

Image registration is essential for clinical usage; for example, the registration
of cardiac images between end-diastole and end-systole is meaningful in my-
ocardium deformation analysis. Non-rigid echocardiography image registration

* These authors contributed equally to this work
1 https://gitlab.inria.fr/epione/mlp_transformer_registration
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is one of the most challenging image registration tasks, as finding the deformation
field between noisy images is a highly nonlinear problem in the absence of ground
truth deformation. Specifically, various image registration problems require the
mapping between moving and fixed images to be folding-free [2, 7, 32]. Tradi-
tional non-learning approaches rely on optimizing similarity metrics to measure
the matching quality between image pairs [10,26,31]. With the rapid promotion
of deep learning, various frameworks of convolutional neural networks (CNN)
have been introduced in image registration and have shown impressive perfor-
mance in many research works.

We consider a 2D non-rigid machine learning-based image registration task in
this work. With two given images: INfix, N ∈ R and INmov, N ∈ R, we want to learn
a model Tω(Imov, Ifix)→ φ(θ) that generates a constrained transformation φ(θ)
based on a similarity measurementM to warp the moving image by minimizing
the loss function:

L = argmin
θ
M(Ifix, Imov ◦ φ(θ)) + λC(φ(θ)) (1)

where the transformation φ is parameterised by the parameter θ and constrained
by a regularisation term C(φ(θ)) to ensure φ to be a spatially smooth transfor-
mation. However, iterative optimization of Eq. 1 is very time-consuming, whereas
a well-trained CNN does not need any iterative minimization of the loss function
at test time. This advantage drives researchers’ attention to learning-based regis-
tration. Learning-based registration methods can be categorized into supervised
and unsupervised registration approaches.

Supervised Registration The supervised learning registration methods [6, 27, 33]
are primarily trained on a ground-truth training set for which simulated or reg-
istered displacement fields are available. The training dataset is usually gener-
ated with traditional registration frameworks or by generating artificial defor-
mation fields as ground truth for warping the moving images to get the fixed
images. [28,34]. One of the limitations of the supervised registration approaches
is the registration quality, which is highly influenced by the nature of the training
set of the deformation map, although the requirement in terms of the training set
can be partially alleviated by using weakly-supervised learning [4, 5, 12,14,15].

Unsupervised Registration In unsupervised registration [4,9,13,17,24], we rely on
a similarity measure and regularisation to optimize the neural network for learn-
ing the transformations between the fixed and moving images. Usually, a CNN is
used directly for warping the moving images, which is then compared to the fixed
image with the similarity loss. The displacement field can also be obtained from
a generative adversarial neural network, which introduces a discriminator neural
network for assessing the generated deformation field quality. [11, 23,29,36].

Multi-layer Perceptron and Transformers MLP is one of the most classical neural
networks and consists of a stack of linear layers along with non-linear activation
[30]. For several years, CNN has been widely used due to its performance on
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vision tasks and its computation efficiency [19]. Recently, several alternatives to
the CNN have been proposed such as Vision Transformer (ViT) [1] or MLP-
Mixer [16] which demonstrated comparable or even better performance than
CNN on classification or detection tasks. There are currently intense discussions
in the community of whether patching, attention or simple MLP plays the most
important role in a such good performance.

In this paper, we propose three MLP/Transformer based models for echocar-
diography image registration and compare them with one representative CNN
model in unsupervised echocardiography image registration. There are already
works using transformers to register medical images, such as TransMorph [8]
and Dual Transformer [35], but they are mostly restricted to high signal-to-
noise medical images, such as MRI images and CT images. While ultrasound
images (2D) are actually the most popular imaging modality in the real world.
Our inspiration not only comes from the trending debate over Transformer and
MLP but also stems from the intuition that patch-based learning methods share
similar logic to a traditional block-matching method for cardiac tracking.

Our contributions are two-folded. First, we show the effectiveness of patch-
based MLP/Transformer models in medical image registration compared with a
CNN-based registration model. Second, we conduct a thorough ablation study
of the influence of different structures (MLP, MLP-Mixer, Transformer) and
different scales (single scale or multiple scales). Our results provide empirical
support to the observation that the attention mechanism may not be the only
key factor in the SOTA performances. [21,25], at least in the field of unsupervised
image registration.

2 Methodology

2.1 Diffeomorphic Registration

We estimate a diffeomorphic transform between images, which preserves topol-
ogy and is folding-free. Our model generates stationary velocity field v(θ) [3]
instead of generating displacement maps, thanks to an integration layer applied
to the velocity field leading to diffeomorphism φ(θ). Formally, the diffeomorphic
transformation φ is the solution to a differential equation related to the predicted
(stationary) velocity field V [9]:∂φt

∂t = v(φt);φt=0 = Id. In a stationary velocity
field setting, the transformation φ is defined as the exponential of the velocity
field φ = exp(v) [2]. The integration (exponential) layer applies the scaling and
squaring method to approximate the diffeomorphic transform [18]. The obtained
transformation φ is then used by a spatial transform layer to deform the image.

2.2 Proposed frameworks

Given two images, Ifix and Imov, we would to estimate the transformation φ(θ)
that transforms the moving image to the fixed image so that Ifix ≈ Imov ◦
φ(θ). We approximate the ideal φ(θ) by the following proposed frameworks.
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The following three propositions are all based on patch-wise manipulations and
share a similar general architecture. As shown in Fig.1, Ifix and Imov are both
processed by an identical feature extractor (green block) separately. The two
feature maps are then passed through the cross-feature block (blue block). After
two linear layers, we obtain their corresponding velocity field. The velocity field
passes through an integration layer and we obtain the final displacement field
by up-sampling it to the original image size.

Pure MLP registration framework The same MLP block (Block I in Fig.1)
is used for the feature extractor and the cross-feature block in this model. The
outputs from two separate feature extractors (shared weights) are added together
before feeding into the cross-feature block. We note this model PureMLP for
abbreviation in the following paper.

MLP-Mixer registration framework The MLP-Mixer registration frame-
work is very similar to the former Pure MLP framework. The only difference is
that the three MLP blocks used for separate feature extraction and cross-feature
processing are replaced by MLP-Mixer blocks [16] (Block II in Fig.1). The MLP-
Mixer block has an identical structure to the MLP block, but with a feature map
transpose to obtain channel-wise feature fusion (the red cell of Block II in Fig.1).
We note this model MLPMixer for abbreviation in the following paper.

Swin-Transformer registration framework This model uses the MLP block
(Block I in Fig.1) to first extract patch-based features for both Ifix and Imov. For
cross feature block, we adapt the recent Swin Transformer [22] to do the cross-
patch attention locally (Swin Block in Fig.1). Our Swin block accepts feature
input from both images (Ifix and Imov), where keyK and value V are normalized
Ifix features while query Q comes from normalized Imov features. Swin block
calculates the cross-attention within a pre-defined window region. We perform
normal window partition for Ifix features and one normal partition, one shifted
partition for Imov features. The cross-attention under the two types of window
partition configurations is summed together before feeding to the final linear
layers. Due to the page limit, we invite interested readers to refer to [22] for
a detailed description of the Swin transformer mechanism. We note this model
SwinTrans for abbreviation in the following paper.

2.3 Multi-scale features

In order to enforce different reception fields for patch-based models, we decide to
combine multi-scale models together. This is accomplished by adopting models
of different patch sizes together. It is quite similar to how CNN achieves this goal,
by applying a larger kernel or adding pooling layers. In particular, our multi-
scale model consists of several parallel independent single-scale child models.
The output of each child model is upsampled and then combined together to
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Fig. 1. The detailed composition of proposed three frameworks. Here we only show
single-scale models. Please read Section.2.2 for more description.

form the final estimation of velocity field v(θ)

v(θ) =

N∑
C=1

ωCOutC (2)

where OutC is the output of child model C. The final velocity field v is then
passed to calculate the final transform φ as depicted in former subsections.

3 Experiments and Results

3.1 Dataset

To evaluate the effectiveness of our unsupervised registration models, we use a
publicly accessible 2D echocardiography dataset CAMUS2. This dataset consists
of 500 patients, each having 2D apical 4-chamber (A4C) and 2-chamber (A2C)
view sequences. Manual annotation of cardiac structures (left endocardium, left
epicardium and left atrium) was acquired by expert cardiologists for each patient
in each view, at end-diastole (ED) and end-systole (ES) [20]. The structure
annotations of 450 patients are publicly available while that of the other 50
patients are unreleased. In total, we have 1000 pairs of ED/ES images and we
randomly split (still considering age and image quality distribution) the 900
pairs (with annotations) into training (630), validation(90), and test data (180).
The 100 pairs (without annotations) are included into the training set (730).

3.2 Implementation

We compare our proposed three models with a very popular CNN registration
model VoxelMorph [4]. To be consistent with our setting, we make use of the
2 https://www.creatis.insa-lyon.fr/Challenge/camus/
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diffeomorphic version of the VoxelMorph model (we use the abbreviation Vxm
in the following paper). We train all the models with input images resized to
128x128 pixels and use an Adam optimizer (learning rate = 0.0001). We set
the training epoch to be 500 and training is early stopped when there is no
improvement on the validation set over 30 epochs.

Loss function In order to enforce the diffeomorphic property of our registration
model, we apply a symmetric loss function for all the unsupervised models:

argminL = Lmse(φ̂(Imove), Ifix) + Lmse(φ̂
−1(Ifix), Imove) + λ ∗ Ldiff (φ̂) (3)

where φ̂−1 is the inverse of φ̂ and Ldiff is a diffusion regularizer for smooth-
ness Ldiff =

∫
||∇xφ+∇yφ||2 and set λ = 0.01 according to [4].

Data augmentation In order to improve model generalization and avoid out-
fitting, we apply the same random data augmentation tricks for each image
pair during the training phase. The following augmentation techniques: rota-
tion, cropping and resizing, brightness adjustment, contrast change, sharpening,
blurring, and speckle noise addition are conducted with a probability of 0.5 sep-
arately. No augmentation is applied during the validation or test phase.

3.3 Experiments

Multi-scale models (abbreviation: model name + _M) we apply three child
models for PureMLP, MLPMixer and SwinTrans (with patch sizes of 4x4, 8x8,
and 16x16 respectively). For child models of size 4x4, 8x8, and 16x16 in Swin-
Trans, we set the number of window sizes to 8, 4, and 2, and the number of
heads to 32, 16, and 8 respectively. The dimension of patch embedding is set to
be 128 for all patch-based methods. ωC in Equation.2 is set to be 0.5, 0.3, 0.2
for the child model with patch sizes of 4x4, 8x8, and 16x16 separately.

Single-scale models (abbreviation: model name + _S) we run single-scale
models for PureMLP, MLPMixer, and SwinTrans three proposed frameworks
(using patch size of 4x4 pixels). The same configuration is set as for the child
model with patch-size 4x4 in multi-scale models.

3.4 Results

Since our SwinTrans model relies mostly on features of Ifix (with skip-connection
of Ifix features), we report only the metrics related to the transformation φ(θ)
that Ifix ≈ Imove ◦φ(θ). For the CAMUS test dataset, we report the Dice score,
Hausdorff distance (HD), and mean surface distance (MSD) between the ground
truth ED mask and transformed ES mask and the Jacobian determinant in the
area of myocardium region.
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Fig. 2. Comparison of evaluation metrics (Dice score, Hausdorff distance (HD), mean
surface distance (MSD), and Jacobin determinant) on a test dataset of CAMUS. The
Jacobin determinant is only computed in the myocardium region. Except for the Ja-
cobin determinant figure, the higher the boxplot is in the figure, the better performance
it will be.

Evaluation on CAMUS dataset From Fig.2 we can observe that on the
CAMUS test dataset, almost all the proposed models, no matter whether it is
multi-scale or single-scale, no matter what kind of sub-block it contains (MLP or
Transformer or MLP-Mixer), have achieved comparable performance than the
CNN model (Vxm), in particular for the whole left ventricle and left atrium
registration. In addition, the distribution of the Jacobin determinant shows that
our patch-based methods tend to generate a more plausible transform, i.e. closer
to real ES/ED myocardium area change. This is consistent with the Hausdorff
distance results, which indicates that while preserving comparable registration
performance, patch-based methods are more resistant to the estimation of false
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Fig. 3. The same registration example on CAMUS test data with transformed ES
masks. Colorful patches are corresponding estimations while bold contours are the
ground truth (Yellow: left atrium, Purple: left ventricle, Green: myocardium).

large deformation (see the atrium and myocardium region of example in Fig.3).
What’s more, single-scale models and multi-scale models have similar perfor-
mance. With single-sized patches, we are already capable to let feature informa-
tion flow through the whole image area and estimating registration transform
efficiently (see time and space complexity in Table.1).

Table 1. Time and space complexity between different models (evaluated on a GTX
2080Ti)

Model GPU Memory Train time (s/pair) Test time (s/pair)
Vxm 1365 MiB 0.020 0.0047

PureMLP_S 1411 MiB 0.020 0.0038
MLPMixer_S 1447 MiB 0.020 0.0038
SwinTrans_S 1479 MiB 0.029 0.0047

4 Conclusion

In summary, we propose three novel patch-based registration architectures using
only MLPs and Transformers. We show that our single and multi-scale models
perform similarly and even better to CNN-based registration frameworks on a
large echocardiography dataset. The three proposed models demonstrate similar
performance among themselves. Our experiments show that patch-based models
using MLP/Transformer can perform 2D medical image registration. We shared
a similar conclusion with previous works [21,25] that the success of Transformer
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in vision tasks cannot be simply attributed to the attention mechanism, at least
in image registration tasks. Future works will concentrate on the application of
MLP/Transformer in time-series motion tracking.
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