Skip to main content

Unsupervised Machine Learning Exploration of Morphological and Haemodynamic Indices to Predict Thrombus Formation in the Left Atrial Appendage

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13593))

Abstract

Atrial Fibrillation (AF) is the most common cardiac arrhythmia, and it is associated with an increased risk of embolic stroke. It is known that AF-related thrombus formation occurs predominantly in the left atrial appendage (LAA). However, it is still unknown the structural and functional characteristics of the left atria (LA) that promote low velocities and stagnated blood flow, thus a high risk of thrombogenesis. In this work, we investigated morphological and in-silico haemodynamic indices of the LA and LAA with unsupervised machine learning (ML) techniques, to identify the most relevant features that could subsequently be used to generate thrombus prediction models. A fully automatic pipeline was implemented to extract multiple morphological parameters from a 3D mesh of a LA. Morphological parameters were then combined with particle flow parameters from in-silico fluid simulations. Unsupervised multiple kernel learning (MKL) was used for dimensionality reduction, resulting in a latent space positioning patients based on feature similarity. Clustering applied to the MKL output space estimated clusters with different proportion of thrombus cases. The cluster with the highest risk of thrombus formation was characterised by high values of LAA height, tortuosity and ostium perimeter, as well as total number of flow particles in the LAA and low angle between the LAA and the left superior pulmonary vein, proving the usefulness of unsupervised ML techniques to extract knowledge from the data, and early identify AF patients at higher risk of thrombus formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://www.slicer.org/.

  2. 2.

    https://www.vmtk.org/.

  3. 3.

    https://www.paraview.org/.

References

  1. Aguado, A.M., et al.: In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front. Physiol., 237 (2019)

    Google Scholar 

  2. Alansary, A., et al.: Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 53, 156–164 (2019)

    Article  Google Scholar 

  3. Alenyà, M., et al.: Computational pipeline for the generation and validation of patient-specific mechanical models of brain development. Brain Multiphys. 3, 100045 (2022)

    Article  Google Scholar 

  4. Ammash, N., et al.: Left atrial blood stasis and von Willebrand factor-adamts13 homeostasis in atrial fibrillation. Arterioscler. Thromb. Vasc. Biol. 31(11), 2760–2766 (2011)

    Article  Google Scholar 

  5. Beigel, R., Wunderlich, N.C., Ho, S.Y., Arsanjani, R., Siegel, R.J.: The left atrial appendage: anatomy, function, and noninvasive evaluation. JACC: Cardiovasc. Imaging 7(12), 1251–1265 (2014)

    Google Scholar 

  6. Cresti, A., et al.: Prevalence of extra-appendage thrombosis in non-valvular atrial fibrillation and atrial flutter in patients undergoing cardioversion: a large Transoesophageal echo study. EuroIntervention 15(3), e225–e230 (2019)

    Article  Google Scholar 

  7. Di Biase, L., et al.: Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 60(6), 531–538 (2012)

    Article  Google Scholar 

  8. Fang, R., Li, Y., Zhang, Y., Chen, Q., Liu, Q., Li, Z.: Impact of left atrial appendage location on risk of thrombus formation in patients with atrial fibrillation. Biomech. Model. Mechanobiol. 20(4), 1431–1443 (2021). https://doi.org/10.1007/s10237-021-01454-4

    Article  Google Scholar 

  9. García-Isla, G., et al.: Sensitivity analysis of geometrical parameters to study Haemodynamics and thrombus formation in the left atrial appendage. Int. J. Numer. Methods Biomed. Eng. 34(8), e3100 (2018)

    Article  Google Scholar 

  10. Genua, I., et al.: Centreline-based shape descriptors of the left atrial appendage in relation with thrombus formation. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 200–208. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_22

    Chapter  Google Scholar 

  11. Harrison, J., Lorenzi, M., Legghe, B., Iriart, X., Cochet, H., Sermesant, M.: Phase-independent latent representation for cardiac shape analysis. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 537–546. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_52

    Chapter  Google Scholar 

  12. Leventić, H., et al.: Left atrial appendage segmentation from 3D CCTA images for Occluder placement procedure. Comput. Biol. Med. 104, 163–174 (2019)

    Article  Google Scholar 

  13. Mill, J., et al.: In-Silico analysis of the influence of pulmonary vein configuration on left atrial Haemodynamics and thrombus formation in a large cohort. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds.) FIMH 2021. LNCS, vol. 12738, pp. 605–616. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78710-3_58

    Chapter  Google Scholar 

  14. Nedios, S., et al.: Left atrial appendage morphology and thromboembolic risk after catheter ablation for atrial fibrillation. Heart Rhythm 11(12), 2239–2246 (2014)

    Article  Google Scholar 

  15. Pons, M.I., et al.: Joint analysis of morphological parameters and in silico Haemodynamics of the left atrial appendage for thrombogenic risk assessment. J. Interv. Cardiol. 2022, 9125224 (2022)

    Article  Google Scholar 

  16. Sanchez-Martinez, S., Duchateau, N., Erdei, T., Fraser, A.G., Bijnens, B.H., Piella, G.: Characterization of myocardial motion patterns by unsupervised multiple kernel learning. Med. Image Anal. 35, 70–82 (2017)

    Article  Google Scholar 

  17. Walker, D.T., Humphries, J.A., Phillips, K.P.: Anatomical analysis of the left atrial appendage using segmented, three-dimensional cardiac CT: a comparison of patients with paroxysmal and persistent forms of atrial fibrillation. J. Interv. Card. Electrophysiol. 34(2), 173–179 (2012). https://doi.org/10.1007/s10840-011-9638-1

    Article  Google Scholar 

  18. Watson, T., Shantsila, E., Lip, G.Y.: Mechanisms of Thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373(9658), 155–166 (2009)

    Article  Google Scholar 

  19. Yaghi, S., et al.: Left atrial appendage morphology improves prediction of stagnant flow and stroke risk in atrial fibrillation. Circ. Arrhythm. Electrophysiol. 13(2), e008074 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101016496 (SimCardioTest).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Saiz-Vivó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saiz-Vivó, M. et al. (2022). Unsupervised Machine Learning Exploration of Morphological and Haemodynamic Indices to Predict Thrombus Formation in the Left Atrial Appendage. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics