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Abstract. In computer vision there has been significant research inter-
est in assessing potential demographic bias in deep learning models. One
of the main causes of such bias is imbalance in the training data. In medi-
cal imaging, where the potential impact of bias is arguably much greater,
there has been less interest. In medical imaging pipelines, segmentation
of structures of interest plays an important role in estimating clinical
biomarkers that are subsequently used to inform patient management.
Convolutional neural networks (CNNs) are starting to be used to auto-
mate this process. We present the first systematic study of the impact of
training set imbalance on race and sex bias in CNN-based segmentation.
We focus on segmentation of the structures of the heart from short axis
cine cardiac magnetic resonance images, and train multiple CNN seg-
mentation models with different levels of race/sex imbalance. We find no
significant bias in the sex experiment but significant bias in two separate
race experiments, highlighting the need to consider adequate represen-
tation of different demographic groups in health datasets.
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1 Introduction

In the field of healthcare, artificial intelligence (AI) is increasingly being used
to automate decision-making processes by aiding the diagnosis and analysis of
medical images, producing performances that are equal to, or better than, that
of clinicians . Although the use of Al has improved performances for a broad
range of tasks, biases found in the wider world have also been found in these
AT models. For example, commercial gender classification models were found
to perform better on lighter-skinned male faces than on darker-skinned female
faces . This difference was attributed to the lack of representation of women
and non-white faces in the publicly available datasets that the models were
trained on.

* Joint last authors
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Fig.1: An illustration showing that biases occur in medical image segmenta-
tion models as a result of the imbalances of protected attributes in the training
datasets.

In the past few years, research has highlighted the impact of data imbalance
on medical imaging tasks. For example, 1] investigated the impact of demo-
graphic imbalance on skin lesion classification models, whilst [7] performed a
systematic study of sex bias for X-ray classification tasks. Furthermore, |10, |11]
demonstrated the existence of racial bias in Al models for segmenting cardiac
magnetic resonance (CMR) images. These biases are caused by a combination
of training data imbalance and distributional differences between the images
acquired from different demographic groups. For example, in X-ray imaging,
breast tissue can cause perceptible differences in image characteristics between
males and females |4]. Other recent work has suggested that information about
protected attribute status can be predicted from a range of medical imaging
modalities [3} 5], suggesting that these distributional differences are widespread
and there is a high potential for bias in AI models applied to medical imaging.

In this work, we perform a systematic study of how training set imbalances in
the numbers of subjects from protected groups, such as race and sex, affect the
performance of an Al-based segmentation model (see Fig. . We use a dataset of
CMR images to design three experiments: the first studies imbalances in sex by
using male and female subjects, the second studies imbalances in race by using
white and black subjects, and the third also studies imbalances in race using
white and Asian subjects. For each of these experiments, we systematically vary
the level of demographic imbalance and measure the performance of the resulting
AT models for different protected groups. Our key contributions are:

1. We significantly extend the preliminary work of |10} [11] (which only high-
lighted the presence of race bias) to systematically analyse the impact of sex
and race imbalance on CMR segmentation model bias.

2. We assess the bias in terms of conventional segmentation performance met-
rics as well as derived clinical measures of cardiac function.
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3. We perform an intersectional study of Al-based segmentation bias, analysing
bias effects on groups such as black females, white males, etc.

2 Materials

In this study we use CMR images from the UK Biobank [9]. The images were
acquired at four centres across the UK and all centres used the same CMR
acquisition protocol. The dataset consists of end diastolic (ED) and end systolic
(ES) cine short-axis images from 1,761 subjects. These were a random subset of
subjects with no cardiovascular disease or cardiovascular risk factors. We limited
our dataset to these subjects to minimise the impact of other potential sources
of variation on our analysis (i.e. apart from sex and race). The demographic data
for these subjects were also gathered from the UK Biobank database and can be
seen in Table [I| for the subjects used in this study. It is important to note that
although the UK Biobank uses the term ‘gender’ in their records, in practice the
term is more similar to biological ‘sex’ [13].

For each subject, ground truth segmentations for the left ventricular blood
pool (LVBP), left ventricular myocardium (LVM) and right ventricular blood
pool (RVBP) were obtained for the ED and ES images via manual segmentation
of the LV endocardial and epicardial borders and the RV endocardial border
using cvi42 (version 5.1.1, Circle Cardiovascular Imaging Inc., Calgary, Alberta,
Canada). Each ground truth image was annotated by one expert from a panel of
ten who were briefed using the same guidelines. Each expert received a random
sample of images from subjects with different sexes and races. The experts were
not provided with demographic information about the subjects such as their race
or sex.

Table 1: Clinical characteristics of subjects used in the experiments. Average
values are presented for each characteristic with standard deviations given in
brackets. Statistically significant differences, determined using a two-tailed Stu-
dent’s t-test, are indicated with an asterisk * (p < 0.05).

Health measure ‘ Overall ‘ Male Female ‘ ‘White Black Asian
#Subjects 1761 889 872 1220 238 303
Age (years) 63.3 (7.9) | 63.7 (8.1) 629 (7.7) |64.8 (7.6) * 58.9 (7.0) * 60.6 (8.0) *

Weight (kg) 76.5 (14.7)|83.0 (12.9) * 69.9 (13.3) *| 76.8 (14.5) 81.5 (15.9) * 71.3 (12.9) *
Standing height (cm) [169.0 (9.2)[175.3 (6.5) * 162.5 (6.8) *|169.8 (9.2) * 168.7 (9.3) 165.9 (8.8) *
Body Mass Index (kg)| 26.7 (4.3) | 27.0 (3.6)  26.5 (4.8) | 26.6 (4.2) 28.6 (5.0) * 25.8 (3.6) *

2.1 Experimental setup

To investigate how imbalances in the training datasets affect segmentation per-
formance for different protected groups, we designed three experiments using
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datasets with varying levels of imbalance in both sex and race. For each of the
three experiments, we created five training datasets in which the proportions
of the subjects varied according to the protected attribute being investigated.
For example, when investigating the effect of varying proportions of males and
females in the dataset (Experiment 1), the proportion of males and females in
Dataset 1 is 0%/100%, the proportion in Dataset 2 is 25%/75% and so on. We
controlled for race in this sex experiment, i.e. for each of the five datasets 50%
of the subjects were black and 50% were white. To investigate the effect of racial
imbalance (Experiment 2), the same method as above was applied but here,
the five datasets had varying proportions of black and white subjects. Each of
the datasets was 50% male and 50% female. For both of these experiments, the
same test data were used which contained 50% black and 50% white subjects,
and 50% male and 50% female subjects. Experiment 3 also investigated racial
bias and was performed using the same method as Experiment 2 but used white
and Asian subjects, whilst controlling for sex. The test set for this experiment
was comprised of 50% Asian and 50% white subjects, and 50% male and 50%
female subjects. For each of the experiments, there were 176 subjects in the
training set and 84 in the test set.

3 Methods

To assess segmentation performance, the nnU-Net segmentation network [6]
was used to segment the LVBP, LVM and RVBP from the subjects’ ED and ES
images. The loss function £ was a combination of the cross entropy loss L. and
the Dice loss Lgice,

L= Ece + ﬁdice- (1)

Specifically, Lg;ce is implemented as

2 Dieruivl
)
K| heK Dier uf + Dicr vy

where K is the number of classes, I is the number of pixels in the training image,
u; is a vector of softmaxed predicted class probabilities at the i-th pixel, and v;
is the corresponding one hot encoding of the ground truth class at this pixel.
All models were trained on an NVIDIA RTX A6000. The models were op-
timised using stochastic gradient descent with a ‘poly’ learning rate schedule,
where the initial learning rate was 0.01 and the Nesterov momentum was 0.99.
A batch size of 16 was used and the models were trained for 500 epochs. Dur-
ing training, data augmentation was applied to the images including mirroring,
elastic deformation, gamma augmentation, rotation and scaling. The nnU-Net
was trained using five-fold cross validation on the training set and the resulting
five models were used as an ensemble when applied to the test set. Connected
component analysis was applied to the predicted segmentations, with only the
largest component retained for each class. The softmax probabilities of the five

ﬁdice - - (2)
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Table 2: Overall median DSC for each of the three experiments broken down by
the protected attributes used in the experiments. In each experiment we report
the results for the respective protected groups and the whole test set. The train
percentage signifies the percentages of protected groups used in training in the
three experiments. The first and second percentage values correspond with the
order of the protected groups in the three experiments, i.e. in Experiment 1,
0%/100% corresponds with 0% female, 100% male; in Experiment 2, 0%/100%
corresponds with 0% black, 100% white, etc. Best results shown in bold.

Train Experiment 1 Experiment 2 Experiment 3
Percentage|Female Male All |Black White All |Asian White All
0%/100% | 0.955 0.954 0.955|0.924 0.953 0.940|0.912 0.944 0.930
25%/75% | 0.957 0.963 0.959|0.956 0.954 0.950|0.955 0.944 0.949
50%/50% | 0.957 0.959 0.958|0.964 0.952 0.955|0.972 0.944 0.954
75%/25% | 0.958 0.962 0.961|0.969 0.951 0.960|0.974 0.936 0.957
100%/0% | 0.959 0.960 0.960|0.970 0.928 0.953|0.974 0.913 0.943

models were averaged when applying the ensemble to the test set to produce the
final predicted segmentations.

3.1 Model evaluation

Model performance was assessed using the Dice similarity coefficient (DSC)
which measures the spatial overlap between two sets. For a ground truth segmen-
tation A and its corresponding prediction B, the DSC is given by DSC = E‘l{mgll .

Clinical measures of cardiac function were also calculated for each of the
experiments. The end-diastolic volume (EDV) and end-systolic volume (ESV)

were first calculated and used to find the ejection fraction (EF) given by EF =
EDV—ESV
EDV

4 Results

The overall median DSC scores for the protected group test sets in each of the
three experiments are provided in Table |2} We also show a visual representation
of the three experimental results in Fig. [2| and performance broken down by
region in Fig. [3] Intersectional analysis of the DSC for each of the experiments
can be found in Table |3| and analysis of clinical measures can be found in Fig.

4.1 Experiment 1: Male vs. Female

The results from Experiment 1 investigating the effect of the imbalance of sex
can be seen in Fig. The performance was reasonably consistent across the five
different levels of imbalance. There were no significant differences in overall me-
dian DSC for the male and female test sets. However, the intersectional analysis
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in Table [3] shows that there were significant differences in performance between
black and white females, and black and white males, with the black partici-
pants achieving significantly higher DSC scores. The clinical measures reported
in Fig. [ also show no statistically significant differences, with the exception that
RVESYV shows a consistent under-estimation for female subjects.

Experiment 1 Experiment 2 Experiment 3
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Fig. 2: Overall median DSC for the three experiments. Statistical significance was
found using a Mann-Whitney U test and is denoted by **** (p < 0.0001), ***
(0.001 < p < 0.0001), ** (0.01 < p < 0.001), * (0.01 < p < 0.05), ns (0.05 < p).

4.2 Experiment 2: White vs. Black

Table [2| shows that the highest overall median DSC was achieved when the
dataset was comprised of 75% black subjects and 25% white subjects. The results
from Table [2| and Fig. show that as the proportion of the protected group
increases (e.g. 0% black subjects to 100% black subjects), the DSC for this group
also increases.

Accuracy parity (i.e. approximately equal accuracy between groups) was
achieved when the proportion of white subjects was 75% and the proportion
of black subjects was 25%. By increasing the proportion of black subjects from
0% to 25% to achieve accuracy parity, the median DSC for the minority race
increased significantly (from 0.924 to 0.956, p<0.0001) and increased slightly
from 0.953 to 0.954 for the white subjects. This resulted in a median DSC which
was significantly higher overall (0.950 compared to 0.940, p<0.0001). Further
increasing the proportion of black subjects to 50% increased the DSC for the
black subjects to 0.964.

Interestingly, the results for the clinical measures (Fig. show no clear
bias. The errors observed, shown by the lengths of the whiskers in the box
plots, are consistent across training sets. However, there does appear to be an
overestimation of LVESV for both white and black subjects when black subjects
are underrepresented in the training set, and an underestimation when white
subjects are underrepresented.
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Fig. 3: Comparison of DSC for the left ventricular blood pool (LVBP) (a-
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ventricular myocardium (LVM) (d-f), and right ventricular blood pool (RVBP)
(g-1) for the three experiments. Statistical significance was found using a Mann-
Whitney U test and is denoted by **** (p < 0.0001), *** (0.001 < p < 0.0001),
**(0.01 < p <0.001), * (0.01 < p <0.05), ns (0.05 < p).
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4.3 Experiment 3: White vs. Asian

Table [2] shows that the highest overall median DSC for Experiment 3 was
achieved when the dataset was comprised of 75% Asian subjects and 25% white
subjects. Fig.[2dshows a similar trend to the results from Experiment 2. However,
in this experiment, with a training dataset that is 100% Asian, larger differences
can be observed between the white and Asian subjects than were observed for
the white and black subjects. For both race experiments, the largest differences
in DSC scores between the groups were found in the LVM (Fig. 3¢/ and Fig. .

Accuracy parity was also achieved here with a split of 75% white subjects
and 25% Asian patients. Increasing the proportion of Asian subjects from 0%
to 25% increased the DSC for Asian subjects from 0.912 to 0.955 (p<0.0001)
and the overall DSC from 0.930 to 0.949 (p<0.0001) but did not increase the
DSC for the white subjects. Further increasing the proportion of Asian subjects
to 50% significantly increased the DSC for the Asian subjects to 0.972 (0.01<
p<0.001) and the overall DSC to 0.954.

The results for the clinical measures (Fig. |4) for this experiment show similar
findings to those for Experiment 2.

Table 3: Intersectional analysis of median DSC scores broken down by the pro-
tected attributes used in the experiments. The train percentages signify the
proportions of each protected group used in training, i.e. female/male for Ex-
periment 1, black/white for Experiment 2 and Asian/white for Experiment 3.
Statistical significance was found using a Mann-Whitney U test and is denoted
by *** (0.001 < p < 0.0001), ** (0.01 < p < 0.001), * (0.01 < p < 0.05).
Experiment 1 Experiment 2 Experiment 3

Train Female Male Black White Asian White
Percentage|White Black ‘White Black |Male Female‘Male Female| Male Female‘Male Female

0%/100% | 0.950 0.963 ** | 0.948 0.963 **(0.922 0.925 |0.948 0.954 |0.919 0.909 [0.945 0.944
25%/75% [ 0.952 0.962 * | 0.955 0.969 *|0.951 0.959 [0.956 0.952 [0.952 0.960 |0.944 0.944
50%/50% | 0.951 0.968 ***| 0.957 0.962 |0.961 0.967 [0.945 0.953 [0.970 0.973 |0.945 0.944
75%/25% | 0.952 0.970 **|0.951 0.965 *|0.964 0.971 [0.952 0.949 [0.970 0.975 (0.934 0.937
100%/0% | 0.954 0.969 ** | 0.950 0.971 **|0.971 0.969 [0.936 0.913 [0.965 0.975 |0.901 0.923

5 Discussion

To the best of our knowledge, this work has presented the first systematic study
of how imbalances in training datasets affect Al-based CMR segmentation per-
formance. Our results show that a significant bias towards the majority group
can be seen when the datasets are racially imbalanced. We did not find any sig-

nificant sex bias.
As discussed in Section EL the median DSC for both the black and Asian
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Fig.4: Relative difference in LV and RV end-systolic volume (ESV) and ejec-
tion fraction (EF) for the three experiments. The differences were calculated by
subtracting ground truth values from predicted values e.g. LVESVyiference =
LVESVpredicted — LV ESVground truth- Statistical significance was found us-
ing a Mann-Whitney U test and is denoted by ** (0.01 < p < 0.001),
(0.01 < p < 0.05), ns (0.05 < p).
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subjects increased significantly when their representation in the dataset was in-
creased from 0% to 25%. It could be argued that a model trained with this
dataset is more fair than a model trained with 100% white subjects as the DSC
for the minority subjects increased while the DSC for the white subjects re-
mained approximately the same. Increasing the proportion of the minority races
to 50% further increased the overall DSC scores, suggesting that a more diverse
training set will produce a model with a better segmentation performance. In
clinical applications, cardiac segmentations are used to obtain important mea-
sures of cardiac function such as left- and right-ventricular ES volume and ED
volume (see Fig. , which are used for diagnosis, prognosis and treatment plan-
ning for patients [8]. Given that the prevalence of cardiovascular diseases is
known to be higher in minority races, producing models which are fairer overall
is essential to improve patient management and reduce healthcare inequalities.

However, we note that if the tasks of segmenting CMR, images of different
races had equal difficulty, we would expect the dataset with a 50%/50% split to
have equal DSC scores for both races. In Experiment 2, with a balanced dataset,
the black subjects achieved a DSC score which was higher than that for white
subjects. The same pattern can be seen for Experiment 3 considering Asian
subjects. This suggests that there may be more ‘within-group’ variation in the
anatomies of the white subjects than in the black or Asian subjects, making seg-
menting white subjects’ hearts an inherently harder problem for the AI model
to solve. Applying bias mitigation techniques such as those introduced in [11]
may produce a model which does not generalise well to anatomical differences
between protected groups which may carry important diagnostic information.
Given that a subject’s self-identified race is (likely) available at inference time,
using a model specific to the subject’s protected group may prove to be more
fair than using a single model for all subjects.

Analysis of the clinical measures (Fig. ) revealed some interesting and per-
haps surprising findings. There was no clear trend in relative differences in clini-
cal measures, even when there was such a trend in DSC in Experiments 2 and 3.
Furthermore, the lowest relative differences for a protected group did not always
occur when that group was in the majority in the training set. For example,
consider Fig. [4h] which shows that the lowest relative difference in LVEF for
white subjects does not occur when the training set is 100% white, but rather
the lowest errors for both black and white subjects occur when the training set
is balanced. These findings require further investigation, but add further weight
to our argument that considering training set (im)balance is crucial for training
fair and robust Al-based segmentation models.

Nevertheless, in terms of spatial overlap measures, our results have shown
clear racial biases in segmentation performance. However, it is possible that
race is not the underlying factor that explains the differences in performance
observed, and the differences could instead be caused by a confounding factor.
In our previous work [10] we investigated a range of potential confounders and
discovered none that could explain the bias. We remain open-minded about the
existence of such confounders, and future work will investigate the effect of im-
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balances of other protected attributes such as socioeconomic status and age. We
also emphasise that racial bias in CMR segmentation is a cause for concern re-
gardless of its underlying explanation.

Overall, including more minorities increased overall DSC scores and scores
for individual minority groups. Therefore, we advocate for the inclusion of more
minorities in public medical datasets and the transparent reporting of perfor-
mance of AT models separately for all protected groups. Although varying the
proportion of females in the dataset did not result in significant differences in
segmentation performance, it is essential that females have equal representation
in publicly available medical datasets as previous work discussed in Section
has found that Al-based diagnosis methods frequently underperform for females.
This work has highlighted the need for the fair representation of minority groups
in medical imaging datasets. To the best of our knowledge, this work is the first
to systematically investigate the effect of dataset imbalances on segmentation
accuracy.
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