Skip to main content

3D Mitral Valve Surface Reconstruction from 3D TEE via Graph Neural Networks

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Abstract

Mitral valve insufficiency is a condition in which the valve does not close properly, and blood leaks back into the atrium from the ventricle. Valve assessment for surgery planning is typically performed with 3D transesophageal echocardiography (TEE). The simulation of the resulting valve dynamics can support selecting the most promising surgery strategy. These simulations require an accurate reconstruction of the open valve as a 3D surface model. 3D mitral valve reconstruction from image data is challenging due to the fast-moving and thin valve leaflets, which might appear blurred and covered by very few voxels depending and spatio-temporal resolution. State-of-the-art voxel-based CNN segmentation methods need an additional processing step to reconstruct a 3D surface from this voxel-based representation which can introduce unwanted artifacts. We propose an end-to-end deep-learning-based method to reconstruct a 3D surface model of the mitral valve directly from 3D TEE images. The suggested method consists of a CNN-based voxel encoder and decoder inter-weaved with a graph neural network-based (GNN) multi-resolution mesh decoder. This GNN samples feature vectors from the CNN-decoder at different resolutions to deform a prototype mesh. The model was trained on 80 sparsely annotated 3D TEE images (1 mm\(^{3}\) voxel resolution) of the valve during end-diastole. Each time frame was annotated by two cardiovascular experts on nine planes rotated around the axis through the apex of the left ventricle and the center of the mitral valve. Our method’s average bidirectional point-to-point distance is 1.1 mm, outperforming the inter-observer point-to-point distance of 1.8 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douedi, S., Douedi, H.: Mitral regurgitation. In: StatPearls. StatPearls Publishing, Treasure Island (FL) (2022). https://www.ncbi.nlm.nih.gov/books/NBK553135/. Accessed 8 Nov 2021

  2. Apostolidou, E., Maslow, A.D., Poppas, A.: Primary mitral valve regurgitation: update and review. Glob. Cardiol. Sci. Pract. 2017(1), e201703 (2017). https://doi.org/10.21542/gcsp.2017.3

  3. Lancellotti, P., Moura, L., Pierard, L.A., et al.: European association of echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur. J. Echocardiogr. 11(4), 307–332 (2010). https://doi.org/10.1093/ejechocard/jeq031

    Article  Google Scholar 

  4. Allen, N., O’Sullivan, K., Jones, J.M.: The most influential papers in mitral valve surgery; a bibliometric analysis. J. Cardiothorac. Surg. 15, 175 (2020). https://doi.org/10.1186/s13019-020-01214-y

    Article  Google Scholar 

  5. Nishimura, R.A., Otto, C.M., Bonow, R.O., et al.: 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 135(25), e1159–e1195 (2017). https://doi.org/10.1161/CIR.0000000000000503

    Article  Google Scholar 

  6. de Groot-de Laat, L.E., McGhie, J., Ren, B., Frowijn, R., Oei, F.B., Geleijnse, M.L.: A modified echocardiographic classification of mitral valve regurgitation mechanism: the role of three-dimensional echocardiography. J. Cardiovasc. Imaging 27(3), 187–199 (2019). https://doi.org/10.4250/jcvi.2019.27.e29

    Article  Google Scholar 

  7. Sandra, L., et al.: A new diagnostic tool for effective regurgitant orifice quantification in mitral regurgitation. Echocardiography 35(11), 1812–1817 (2018). https://doi.org/10.1111/echo.14114

    Article  Google Scholar 

  8. Veronesi, F., Lie, G., Rabben, S.: 4D auto MVQ. GE Healthcare (2017)

    Google Scholar 

  9. Tomtec. 4D MV-Assessment (2018)

    Google Scholar 

  10. Ryan, L., et al.: Quantification and localization of mitral valve tenting in ischemic mitral regurgitation using real-time three-dimensional echocardiography. Eur. J. Cardiothorac. Surg. 31(5), 839–844 (2007). https://doi.org/10.1016/j.ejcts.2007.01.050

    Article  Google Scholar 

  11. Walczak, L., et al.: Using position-based dynamics for simulating mitral valve closure and repair procedures. Comput. Graph. Forum 41, 270–287 (2022). https://doi.org/10.1111/cgf.14434

    Article  Google Scholar 

  12. Walczak, L., et al.: Interactive editing of virtual chordae tendineae for the simulation of the mitral valve in a decision support system. Int. J. Comput. Assist. Radiol. Surg. 16(1), 125–132 (2020). https://doi.org/10.1007/s11548-020-02230-y

    Article  Google Scholar 

  13. Carnahan, P., Moore, J., Bainbridge, D., Eskandari, M., Chen, E.C.S., Peters, T.M.: DeepMitral: fully automatic 3D echocardiography segmentation for patient specific mitral valve modelling. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 459–468. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_44

    Chapter  Google Scholar 

  14. Costa, E., et al.: Mitral valve leaflets segmentation in echocardiography using convolutional neural networks. In: 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG), pp. 1–4 (2019). https://doi.org/10.1109/ENBENG.2019.8692573

  15. Kerfoot, E., Clough, J., Oksuz, I., Lee, J., King, A.P., Schnabel, J.A.: Left-ventricle quantification using residual U-net. In: Pop, M., et al. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 371–380. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_40

    Chapter  Google Scholar 

  16. Liu, S., et al.: 3D anisotropic hybrid network: transferring convolutional features from 2D images to 3D anisotropic volumes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 851–858. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_94

    Chapter  Google Scholar 

  17. Carnahan, P., et al.: Interactive-automatic segmentation and modelling of the mitral valve. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds.) FIMH 2019. LNCS, vol. 11504, pp. 397–404. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21949-9_43

    Chapter  Google Scholar 

  18. Jassar, A.S., Brinster, C.J., Vergnat, M., et al.: Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann. Thorac. Surg. 91(1), 165–171 (2011). https://doi.org/10.1016/j.athoracsur.2010.10.034

    Article  Google Scholar 

  19. Tautz, L., et al.: Extraction of open-state mitral valve geometry from CT volumes. Int. J. Comput. Assist. Radiol. Surg. 13(11), 1741–1754 (2018). https://doi.org/10.1007/s11548-018-1831-6

    Article  Google Scholar 

  20. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

  21. Wang N., Zhang Y., Li Z., Fu Y., Liu W., Jiang Y.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: European Conference on Computer Vision (2018)

    Google Scholar 

  22. Wen C., Zhang Y., Li Z., Fu Y.: Pixel2Mesh++: multi-view 3D mesh generation via deformation. In: International Conference on Computer Vision (2019)

    Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  24. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ivantsits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivantsits, M. et al. (2022). 3D Mitral Valve Surface Reconstruction from 3D TEE via Graph Neural Networks. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics