Skip to main content

Efficient MRI Reconstruction with Reinforcement Learning for Automatic Acquisition Stopping

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers (STACOM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13593))

  • 888 Accesses

Abstract

Magnetic resonance imaging (MRI) is accelerated through subsampling of the associated Fourier domain in current clinical practice. The decisions on subsampling strategies and acceleration factors are provided heuristically before the acquisition. In this paper, we propose a reinforcement learning strategy for automatically deciding a subsampling strategy and acceleration factor for cardiac image acquisition. We build an environment that has a set of actions, including which k-space line to select next and when to stop the acquisition. We propose to use a reward term that penalizes extra line acquisitions and favours improved image quality. Experiments on cardiac MRI with different weightings of the reward function have shown that our method can achieve better image quality results without increasing the acquisition time and can automatically stop the k-space sampling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahadir, C.D., Dalca, A.V., Sabuncu, M.R.: Learning-based optimization of the under-sampling pattern in MRI. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 780–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_61

    Chapter  Google Scholar 

  2. Bakker, T., Hoof, H., Welling, M.: Experimental design for MRI by greedy policy search. Adv. Neural. Inf. Process. Syst. 33, 18954–18966 (2020)

    Google Scholar 

  3. Bahadir, C., Wang, A., Dalca, A., Sabuncu, M.: Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans. Comput. Imaging 6, 1139–1152 (2020)

    Article  Google Scholar 

  4. Chen, C., et al.: OCMR (v1. 0)-Open-access multi-coil k-space dataset for cardiovascular magnetic resonance imaging. ArXiv Preprint ArXiv:2008.03410 (2020)

  5. Ghodrati, V., et al.: MR image reconstruction using deep learning: evaluation of network structure and loss functions. Quant. Imaging Med. Surg. 9, 1516 (2019)

    Article  Google Scholar 

  6. Gözcü, B., et al.: Learning-based compressive MRI. IEEE Trans. Med. Imaging 37, 1394–1406 (2018)

    Article  Google Scholar 

  7. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055–3071 (2018)

    Article  Google Scholar 

  8. Haldar, J., Kim, D.: OEDIPUS: an experiment design framework for sparsity-constrained MRI. IEEE Trans. Med. Imaging 38, 1545–1558 (2019)

    Article  Google Scholar 

  9. Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019)

    Google Scholar 

  10. Hyun, C., Kim, H., Lee, S., Lee, S., Seo, J.: Deep learning for undersampled MRI reconstruction. Phys. Med. Biol. 63, 135007 (2018)

    Article  Google Scholar 

  11. Jin, K., Unser, M., Yi, K.: Self-supervised deep active accelerated MRI. ArXiv Preprint ArXiv:1901.04547 (2019)

  12. Pineda, L., Basu, S., Romero, A., Calandra, R., Drozdzal, M.: Active MR k-space sampling with reinforcement learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 23–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_3

    Chapter  Google Scholar 

  13. Qin, C., Schlemper, J., Caballero, J., Price, A., Hajnal, J., Rueckert, D.: Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 38, 280–290 (2018)

    Article  Google Scholar 

  14. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  15. Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.: Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 63, 116–126 (2010)

    Article  Google Scholar 

  16. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 514–517 (2016)

    Google Scholar 

  17. Yin, T., Wu, Z., Sun, H., Dalca, A., Yue, Y., Bouman, K.: End-to-end sequential sampling and reconstruction for MR imaging. ArXiv Preprint ArXiv:2105.06460 (2021)

  18. Zhang, P., Wang, F., Xu, W., Li, Yu.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in k-space. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 180–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_21

    Chapter  Google Scholar 

  19. Zhang, Z., Romero, A., Muckley, M., Vincent, P., Yang, L., Drozdzal, M.: Reducing uncertainty in undersampled MRI reconstruction with active acquisition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2049–2058 (2019)

    Google Scholar 

  20. Zijlstra, F., Viergever, M., Seevinck, P.: Evaluation of variable density and data-driven k-space undersampling for compressed sensing magnetic resonance imaging. Invest. Radiol. 51, 410–419 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This paper has been produced benefiting from the 2232 International Fellowship for Outstanding Researchers Program of TUBITAK (Project No: 118C353). However, the entire responsibility of the publication/paper belongs to the owner of the paper. The financial support received from TUBITAK does not mean that the content of the publication is approved in a scientific sense by TUBITAK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruru Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, R., Oksuz, I. (2022). Efficient MRI Reconstruction with Reinforcement Learning for Automatic Acquisition Stopping. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers. STACOM 2022. Lecture Notes in Computer Science, vol 13593. Springer, Cham. https://doi.org/10.1007/978-3-031-23443-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23443-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23442-2

  • Online ISBN: 978-3-031-23443-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics