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Abstract. Patient-specific cardiac computational models are essential
for the efficient realization of precision medicine and in-silico clinical tri-
als using digital twins. Cardiac digital twins can provide non-invasive
characterizations of cardiac functions for individual patients, and there-
fore are promising for the patient-specific diagnosis and therapy strati-
fication. However, current workflows for both the anatomical and func-
tional twinning phases, referring to the inference of model anatomy and
parameter from clinical data, are not sufficiently efficient, robust, and
accurate. In this work, we propose a deep learning based patient-specific
computational model, which can fuse both anatomical and electrophysi-
ological information for the inference of ventricular activation properties,
i.e., conduction velocities and root nodes. The activation properties can
provide a quantitative assessment of cardiac electrophysiological func-
tion for the guidance of interventional procedures. We employ the Eikonal
model to generate simulated electrocardiogram (ECG) with ground truth
properties to train the inference model, where specific patient informa-
tion has also been considered. For evaluation, we test the model on the
simulated data and obtain generally promising results with fast compu-
tational time.

Keywords: Deep Computational Models · Ventricular Activation Prop-
erties · ECG Simulation · Digital Twin

1 Introduction

Cardiovascular diseases are one of the most common diseases globally, re-
sulting in changes in cardiac anatomy, structure, and function [21]. Ventricular
activation properties offer a valuable quantitative description of electrical acti-
vation and propagation, which is essential for identifying arrhythmias, localizing
diseased tissue, and stratifying patients at risk [8,19]. For example, the location
of the Purkinje endocardial root nodes (RNs), i.e., earliest activation sites, can
provide important information for the selection of optimal implantation sites of
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pacing leads [27]. Conduction velocities (CVs) can describe the speed and di-
rection of electrical propagation through the heart, and its alterations play an
important role in the generation and maintenance of cardiac arrhythmias [20].

Electrocardiogram (ECG) can provide a substantial amount of information
about the heart rhythm and reveal abnormalities related to the conduction sys-
tem. For instance, the QRS morphology in 12-lead ECG can indicate the origin
of ventricular activation, which can be used to guide the clinicians to the po-
tential ablation targets in real time [26]. However, there exist large inter-subject
anatomical variations that may modify the ECG patterns for specific activa-
tion properties. Besides, ECG can not be used to locate and characterize dis-
eases, such as arrhythmias. The cardiac structural and functional information
from imaging data, such as ultrasound, computed tomography or cardiac mag-
netic resonance (CMR), could be complementary to the information provided
by ECG. Computational models combining ECG and imaging data can be used
to estimate ventricular activation properties for therapy guidance and variabil-
ity interpretation among different patients [22,25]. However, it is complicated to
accurately localize RNs, as there is limited knowledge about the actual topology
of Purkinje activation networks [16]. Moreover, the localization is often compu-
tationally expensive due to the complexity of structural and spatial variations of
such networks. The estimation of CVs is also fundamentally challenging owing
to the underlying mechanisms of complex, nonlinear, and heterogeneous my-
ocardial activation [17]. The simultaneous inference of CVs and RNs could be
more challenging considering the existence of continuous and discrete mixed-type
parameter space.

Nevertheless, there exist several CV and RN estimation techniques in the
literature [9]. For CV estimation, Bayly et al. [3] utilized inverse-gradient tech-
niques to predict CVs from epicardial mapping data for the understanding and
description of reentrant arrhythmias. Chinchapatnam et al. [11] employed an
adaptive algorithm for the estimation of local CVs from a noncontact map-
ping of the endocardial surface potential. Instead of predicting endocardial CV,
Good et al. [17] considered both epicardial and volumetric CVs and examined
triangulation-based, inverse-gradient-based, and streamline-based techniques for
comparison. Compared to CV estimation, the localization of RNs received lim-
ited attention so far with only a few works, some of which solely used ECG sig-
nals for the localization [18]. The simultaneous optimization of CVs and RNs has
been explored, but it is generally achieved via conventional iterative algorithms
[8,15,19,28]. Recently, deep learning based methods have achieved promising per-
formance for cardiac activation modeling [1,23]. For example, Bacoyannis et al.
[1] proposed a β-conditional variational autoencoder to predict activation maps
for various cardiac geometries with corresponding simulated body surface po-
tentials. Meister et al. [23] utilized a graph convolutional regression network to
predict the activation time maps from ECG and CMR images.

In this work, we have proposed a patient-specific deep computational model
(PS-DCM) for an efficient and simultaneous estimation of ventricular activation
properties, i.e., RNs and CVs. As the activation properties are unavailable in
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Fig. 1. The proposed patient-specific deep computational model (PS-DCM) for the
inference of ventricular activation properties. The conditional variational autoencoder
(c-VAE) aims to learn anatomical and electrical information that is used to assist the
conditional inference network (c-InfNet) in predicting the activation parameters.

healthy subjects, we create “virtual cohorts” by simulation via Eikonal models
for known ground truth values. We consider additional physiological information
as conditions to model the variations among specific sub-populations. Also, we
analyze the relationship between sampling latent space and the predictions, i.e.,
anatomy, signal, and activation parameters. To the best of our knowledge, this
is the first deep learning based computational model for ventricular activation
property estimation.

2 Methodology

Figure 1 provides an overview of the proposed PS-DCM, consisting of a
conditional variational autoencoder (c-VAE) and an inference model. Here, the
c-VAE includes one encoder and two separated decoders for the structural and
signal reconstructions, respectively, while the conditional inference network (c-
InfNet) aims to predict the ventricular activation properties based on the low-
dimensional features from c-VAE. In Sec. 2.1, the mesh generation from 2D
end-diastolic CMR images is introduced. The generation of simulated data as
the ground truth of the CVs and RNs is described in Sec. 2.2. Finally, Sec. 2.3
presents the details of the computational model for the prediction of two acti-
vation properties.

2.1 Geometrical Triangular Mesh Generation

To obtain patient-specific 3D anatomical information, we generate smooth
3D biventricular tetrahedral meshes from 2D multi-view CMR images via a
completely end-to-end automatic pipeline [2]. The pipeline starts by perform-
ing a deep learning based ventricle segmentation on the automatically selected
slices from long- and short-axis CMR images. Considering the potential mis-
alignments due to respiration and cardiac motions, we employ the intensity and



4 L. Li et al.

contour information as well as statistical shape model for in-plane and out-plane
misalignment corrections, respectively. Furthermore, we perform a surface mesh
reconstruction from cardiac contours, which also mitigates the remaining dis-
crepancies between sparse 3D contours. For the following simulation of electrical
activity in the heart, we further generate the 3D volumetric tetrahedral mesh
from the 3D biventricular surface mesh using mesh generators [13,29].

2.2 Simulated Data Generation via Eikonal Models

As the ventricular activation properties can not be measured for clinical data,
we built a synthetic dataset from real clinical data via Eikonal model based
simulation [8]. Specifically, the Eikonal model is simulated over the generated
3D tetrahedral meshes in Sec. 2.1 and can be defined as,√

(∇dT · ∇d) = 1. (1)

Here, ∇d = v∇t where ∇t is the traveling time passing through a node and v are
the CVs of the fiber, sheet (transmural) and sheet-normal directions. For fast
optimization, we regard the tetrahedral mesh as a graph, where electric current
can enter directly from two connected nodes through the edges connecting them.
Consequently, one could use Dijkstra’s algorithm to predict Eikonal’s activation
time. Note that we consider the position of the RN as the starting point with
t = 0, while the other nodes of the biventricular network are the destinations for
which we need to compute t for final activation time maps (ATMs). Subsequently,
one could calculate ECG signals from the ATMs simulated from Eikonal models
via the pseudo-ECG equation with the electrode locations from torso geometry
and orientation. The pseudo-ECG equation is defined as follows,

Φe =

N∑
j=1

− (∇Vm)j ·
[
∇Sj
rj

]
, (2)

where j is the index of tetrahedral element, N is the number of tetrahedral
elements, ∇Vm is an estimated gradient, s is the normalized volume, and r is
distance calculated using the centroid of each element. Here, we estimate the
gradients by assigning V im = 1 if the node i is activated, otherwise V im = 0, to
generate a scaled amplitude ECG signal. The pseudo-ECG method can efficiently
generate normalized ECG signals without significant loss of morphological infor-
mation compared to the bidomain simulation [24]. As a result, with the Eikonal
models one could generate virtual subjects by setting different CVs and RNs.

2.3 Patient Specific Deep Computational Model

Figure 2 presents the network architecture details of the proposed PS-DCM.
The c-VAE aims to reconstruct the anatomical and electrophysiological informa-
tion, respectively. The outputs of DecoderPC are coarse and dense point clouds
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Fig. 2. The network architecture of the proposed PS-DCM, where the output of each
module is labeled using bold text. Here, n is the number of nodes of input point cloud
(PC) which is a 4D vector (three point coordinates and a class label); ncoarse and ndense

are the numbers of nodes in the coarse and dense output PCs, respectively; s is the
number of simulated ECGs for each mesh (n is set as the same value as the size of
ECG signal for the convenience of input PC and ECG concatenation); c is the number
of conditions that has been reshaped to match the size of input PC for concatenation.

(PCs) to simultaneously learn global shape and local structures of ventricles [4].
The PC reconstruction loss function is defined as follows,

Lrec
PC =

K∑
i=1

(
LEMD
i,coarse + αLEMD

i,dense

)
, (3)

where K is the number of classes, α is the weight term between the two PCs,
and LEMD is the earth mover’s distance (EMD) [31] between the ground truth
GH and predicted heart geometries ĜH ,

LEMD(GH , ĜH) = arg min
ξ:GH→ĜH

∑
p∈GH

‖p− ξ(p)‖2, (4)

where p is the node of point cloud and ξ : GH → ĜH is a one-to-one corre-
spondence. DecoderECG predicts the reconstructed ECG signals by minimizing
the mean absolute error (MAE) between the ground truth and predicted ECG
(denoted as EĈG),

Lrec
ECG = LMAE(ECG,EĈG). (5)

Therefore, the loss function for training the c-VAE could be calculated as,

Lc-VAE = λPCLrec
PC + λECGLrec

ECG + λKLLKL, (6)

where λPC, λECG and λKL are balancing parameters, and LKL is the Kullback-
Leibler (KL) divergence loss to mitigate the distance between the prior and
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posterior distributions of the latent space. Here, the posterior distribution is
assumed as a standard normal distribution.

As for the inference model, we predict the CVs and RNs based on the con-
ditions and low-dimensional features learned from the c-VAE. We also employ
MAE and velocity-normalized (vnMAE) loss for the training of the inference
model,

Linf = LMAE
RN + λCVLvnMAE

CV , (7)

where λCV is a balancing parameter. Hence, the total loss of the framework is
defined by combining all the losses mentioned above,

Ltotal = Lc-VAE + λinfLinf, (8)

where λinf is a balancing parameter.

3 Experiment and Result

3.1 Materials

Data Acquisition and Pre-Processing We collect 100 subjects with cine
CMR images and ECGs from the UK Biobank study [6]. Besides, we employ
biological information, i.e., age, sex, and body mass index (BMI), as the condi-
tions of cVAE, as they may affect the ECG morphology [14,30]. For anatomical
reconstruction, we resample all PCs into the PC with the same number of nodes,
i.e., n = 2048, and the numbers of nodes in the coarse and dense output PCs are
set as 1024 and 4096. For simulation, CVs are randomly selected within phys-
iological ranges, i.e., fiber-directed, sheet-directed, sheet normal-directed, and
endocardial-directed CVs are within the ranges [50, 88], [32, 49], [29, 45], and
[120, 179] cm/s, respectively. Moreover, we constrain the fiber-directed speed
to be larger than the sheet-directed one, which in turn is larger than the sheet
normal-directed speed [7]. In contrast, RNs are set to seven fixed homologous lo-
cations (3 in the right ventricle and 4 in the left ventricle) for realistic application
[10]. Note that we did not consider ventricle-specific protocols for RN placement
to ensure more flexible extension in the future. For each mesh, we generate 10
virtual subjects with different ECGs but the same ventricle anatomy for the
training of the PS-DCM. We randomly split the data into three sets, i.e., 60
subjects for training, 10 subjects for validation and the remaining 30 subjects
for the test.

Gold Standard and Evaluation We employ specific ventricular activation
properties to simulate data, and then real resampled PCs, simulated ECGs and
corresponding properties are regarded as ground truth of this model. We calcu-
late the EMD from coarse and fine PCs with corresponding ground truth PCs,
as the accuracy of PC reconstruction. As there exist length variations among dif-
ferent leads of the simulated ECG signals, we performed a zero-pad to unify the
length of ECG. Therefore, in the evaluation of ECG reconstruction in this study,
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Table 1. Summary of the quantitative results of ventricular activation properties. LV:
left ventricle; RV: right ventricle; C: conditions.

Method
Root Node Error (cm) Conduction Velocity Error (%)
LV RV Fiber Sheet Sheet-Normal Endocardial

PS-DCM w/o C 3.83± 1.10 3.90± 1.07 18.3± 4.47 22.2± 6.19 22.3± 7.27 12.1± 1.91
PS-DCM w/o PC 4.13± 1.07 3.75± 1.06 24.3± 6.26 29.7± 14.7 38.8± 20.6 14.8± 4.79
PS-DCM 2.63±0.909 2.56±0.882 13.9± 2.70 9.53± 3.13 15.1± 2.86 11.7± 2.23

we only consider the non-zero signals when employing L1 loss as the discrepancy
metric for the ECG data. As for the inference model evaluation, we employ the
average distance of root nodes and a velocity-normalized error metric.

Implementation The framework was implemented in PyTorch, running on
a computer with 3.50 GHz Intel(R) Xeon(R) E-2146G CPU and an NVIDIA
GeForce RTX 3060. We use the Adam optimizer to update the network parame-
ters (weight decay = 1e-3). The initial learning rate is set to 1e-4 and multiplied
by 0.7 every 30000 iterations. The balancing parameters in Sec. 2.3 are set as fol-
lows: α = 0.1, λPC = 0.1, λECG = 0.1, λKL = 0.02, λCV = 0.2, and λinf = 0.01.
The training of the model took about 2 hours (1000 epochs in total), while the
inference of the networks required about 9 s to process one test image.

3.2 Result

Inference Accuracy of Ventricular Activation Properties Table 1 presents
the quantitative results of different methods for RN and CV inference. One can
see that the proposed PS-DCM method obtains the best inference results com-
pared to the other two schemes without condition or PC reconstruction con-
straints, respectively. It reveals the importance of anatomy and physical infor-
mation for the patient-specific activation property prediction. Even though we
consider this information in our proposed framework, it is too challenging to pre-
dict the positions of RNs, as shown in Fig. 3. One can see that the predicted RNs
are generally located inside the middle (or even outside) of the ventricles instead
of locally matching with the ground truth RNs. It indicates that the anatomical
constrains are desired for the deep learning based RN inference in the future. In
contrast, the prediction of CVs is more promising with comparable results as the
conventional method [8], and there exist some accuracy variations for different
directions of CVs. Specifically, the sheet and endocardial-directed CVs are bet-
ter identified than the CVs in fiber and sheet-normal directions by the proposed
model. For healthy subjects, the sheet and endocardial-directed CVs have been
regarded as the dominant factors in the activation sequence patterns, while the
impact from fiber and sheet-normal CVs is negligible [12]. Consequently, there
exist performance differences in CV inference from ECG data under healthy si-
nus rhythm conditions. The fiber-directed CV may play a more important role
in pathological conditions, which, however, is out of the scope of this study.
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Case 2 (1.20, 1.65)Case 1 (1.84, 2.32) Case 3  (1.68, 1.11) Case 4  (2.69, 2.76)

Fig. 3. Visualization of ground truth (yellow spheres) and predicted root nodes (cyan-
blue spheres) by the proposed method from three randomly selected cases. Here, we
put the RN prediction errors on the LV and RV in brackets.

Reconstruction Quality of Point Cloud and ECG The average PC recon-
struction errors of the proposed method are 4.34± 2.23 cm and 4.07± 2.08 cm
for coarse and fine PCs, respectively. Figure 4 presents the ECG visualization
results from eight leads. Note that in this study we only consider the eight in-
dependent leads instead of complete 12-lead ECG, as the remaining leads are
linear combinations of the other leads [8]. One can see that compared to the
ground truth, the reconstructed ECGs are generally matched with input ECGs
in several leads even though not quite smooth. There exists reconstruction accu-
racy variance among different leads, namely the prediction of leads V1, V2, and
V3 had larger misalignment compared to other leads. We argue that simultane-
ous feature encoding of PCs and ECGs may be too challenging, resulting poor
reconstruction results. In the future, one may could consider employ separated
encoders to extract features from PCs and ECGs [5].

Correlation Study To evaluate the robustness of the proposed inference scheme
to the reconstruction error, we analyze the relationship between the reconstruc-
tion and inference errors by the proposed method. We plot these two values for
each test data as two-dimension scatter points along with the fitted linear regres-
sion, as presented in Fig. 5. The R2 values are estimated as 0.731, 0.000, 0.008,
and 0.003 for PC-RN, PC-CV, ECG-RN, and ECG-CV correlations, respectively,
indicating low linear correlations between inference and reconstruction accuracy
except for PC-RN. It implies that the CV inference by the proposed method
does not rely on accurate PC/ECG reconstruction results. In contrast, the RN
inference may require accurate anatomy information from PC reconstruction
but without the high demand for electrophysiological information. This is rea-
sonable, as RNs belong to ventricle positions that are locally distributed on the
endocardium while CVs are more general properties.

4 Conclusion

In this work, we have presented an end-to-end deep learning based compu-
tational model for simultaneous inference of RNs and CVs combining the ECG
and CMR images. The proposed algorithm has been applied to 100 simulated
ECGs with the corresponding anatomies obtained from the UK biobank dataset.



PS-DCM for the Inference of Ventricular Activation Properties 9

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

Lead I

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

Lead II

0 10 20 30 40 50

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Lead V1

0 10 20 30 40 50

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Lead V2

0 10 20 30 40 50

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lead V3

0 10 20 30 40 50

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Lead V4

0 10 20 30 40 50

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lead V5

0 10 20 30 40 50

0.0

0.5

1.0

1.5

2.0

2.5

Lead V6
pred
true

0 10 20 30 40 50 60 70
1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

2.0

1.5

1.0

0.5

0.0

0.5

1.0

0 10 20 30 40 50 60 70

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 10 20 30 40 50 60 70

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

0 10 20 30 40 50 60 70

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 4. Illustration of reconstructed ECGs (labeled in pink) with corresponding simu-
lated ground truth ECGs (labeled in cyan-blue).
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Fig. 5. Scatter plots along with the fitted linear regression lines, depicting the corre-
lations between inference and reconstruction errors.

The results have demonstrated the potential of an efficient activation property
inference based on the physical information and low-dimensional features from
the c-VAE. Note that this is only a quite primary study with several limitations,
such as assuming a known set of RNs and anisotropic CVs on specific directions
(fiber, sheet, sheet-normal, and endocardial directions). Moreover, currently we
only consider cardiac anatomical information and ignore the torso geometry,
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which provides important information during the propagation of electrical con-
duction. In the future, we will extend this work by including a more realistic
representation of the cardiac conduction system. Consequently, the developed
models and techniques will enable further research in non-invasive personaliza-
tion of the ventricular activation sequences for real patients.
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