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Abstract. Cardiac magnetic resonance (CMR) sequences visualise the
cardiac function voxel-wise over time. Simultaneously, deep learning-
based deformable image registration is able to estimate discrete vector
fields which warp one time step of a CMR sequence to the following in
a self-supervised manner. However, despite the rich source of informa-
tion included in these 3D+t vector fields, a standardised interpretation
is challenging and the clinical applications remain limited so far. In this
work, we show how to efficiently use a deformable vector field to describe
the underlying dynamic process of a cardiac cycle in form of a derived
1D motion descriptor. Additionally, based on the expected cardiovascular
physiological properties of a contracting or relaxing ventricle, we define
a set of rules that enables the identification of five cardiovascular phases
including the end-systole (ES) and end-diastole (ED) without usage of
labels. We evaluate the plausibility of the motion descriptor on two chal-
lenging multi-disease, -center, -scanner short-axis CMR datasets. First,
by reporting quantitative measures such as the periodic frame difference
for the extracted phases. Second, by comparing qualitatively the gen-
eral pattern when we temporally resample and align the motion descrip-
tors of all instances across both datasets. The average periodic frame
difference for the ED, ES key phases of our approach is 0.80 ± 0.85,
0.69 ± 0.79 which is slightly better than the inter-observer variability
(1.07±0.86, 0.91±1.6) and the supervised baseline method (1.18±1.91,
1.21 ± 1.78). Code and labels will be made available on our GitHub
repository. https://github.com/Cardio-AI/cmr-phase-detection
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Fig. 1. Comparison of our self-supervised motion descriptor αt together with a elec-
trocardiogram (ECG) and left ventricular (LV) volume curve over time and the cor-
responding five labeled key phases ED, MS, ES, PF and MD (cf. Sec. 2.2). First:
slice-wise average of αt - color coded as blue: movement away from the focus point,
red: movement towards focus point. Second: volume-wise average as interpolated black
curve together with the defined set of rules for each key phase.

1 Introduction

Analysis of cardiac function is tremendously important for diagnosis and mon-
itoring of cardiac diseases. Therefore, modalities such as CMR are predomi-
nantly time-resolved for assessing global pump function and local contractility.
Identification of key phases in such sequences are beneficial to determine the un-
derlying myocardial mechanics with respect to contraction and relaxation. The
end-diastolic (ED) and end-systolic (ES) phases are used to compare standard-
ized clinical measures of the cardiac function, such as the left ventricular (LV)
ejection fraction and peak systolic strain. An exact identification of these phases
is crucial and has a major impact on the accuracy of strain measurements as
shown by Mada et al. [14]. In addition, Zolgharni et al. [20] recognised a median
disagreement of three frames between different observers in manually detect-
ing the ED/ES frames. A better phase detection is feasible by evaluating the
QRS-complex from electrocardiogram (ECG) signals. However, there is often no
ECG-signal permanently stored.

Several automatic ECG-free detection approaches have been already sug-
gested. Most of them used echo [4,5,6,7,8,9,17] or CMR image sequences [13,19].
Early semi-automatic works [4,6,9] required either manual definition of land-
marks, the ED frame or an initial contour.
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Gifani et al. [8] and Shalbaf et al. [17] solved the problem by using nonlin-
ear dimensionality reduction techniques such as locally linear embedding and
isomap. Evaluation was conducted on small echo cohorts of 8 and 32 patients.

Recently, fully automatic deep learning based methods for CMR [13,19], echo
[5,7] and fluoroscopy with contrast agent [3] evolved. All of these approaches are
supervised, e.g., they require target labels. Three out of five predicted the ED
and ES ’key frame’ directly [3,5,13], in contrast to Xue et al. [19] and Fiorito et
al. [7], who classified each frame of the sequence into either diastole or systole.
Another obvious approach is to use a LV segmentation approach [12] and infer
min/max volume from it as ES and ED.

Besides their very promising results, there are limitations. Similar in spirit
as a segmentation-based approach, the method of Dezaki and Kong et al. [5,13]
posed the task in a way to detect the maximum/minimum of a regressed LV
volume curve. However, this method is based on a synthetic volume curve which
is only at two points related to the underlying CMR. Furthermore, Kong et al.
[13] evaluated the approach on a homogeneous in-house database with CMR
sequences of unique lengths that starts with the ED phase and achieved an im-
pressive average frame difference (aFD) of 0.38/0.44 (ED,ES). However, their loss
definition assumes CMR sequences to start with the ED phase, which is not the
case in our multi-centric datasets. The methodological extension by Dezaki et al.
[5] was evaluated on a bigger cohort of echo sequences with varying length, col-
lected from one clinic. Their supervised approach achieved an aFD of 0.71/1.92
(ED/ES), with the mitral valve as strong indicator for the ES phase, visible in
their modality. Fiorito et al. [7] defined a binary classification task to detected
two phases on echo sequences and achieved an aFD of 1.52, 1.48 (ED/ES). All
fore-mentioned deep-learning approaches are supervised and need either labels
of the left ventricle (LV)-blood pool [5,13] or cardiac phase labels [7]. In addi-
tion, they rely on the LV-volume change over time for cardiac phase estimation,
which is in some aspects an assumption that does not always hold true: For
example, in the isovolumetric contraction and relaxation phases around ED and
ES the myocardium changes without affecting ventricular volumes. Therefore,
our hypothesis is that phase detection based on myocardial deformation might
be more accurate than using LV volume change as a marker.

In this work, we show how to efficiently reduce a 3D+t deformable vector
field into a 1D motion descriptor representing the general dynamic pattern of a
cardiac cycle in a self-supervised manner (cf. Fig.1). We evaluate the plausibility
of this motion descriptor and apply it to the task of cardiac phase detection. Here,
we define a rule-set based on the expected cardiovascular physiological properties
of a contracting/relaxing ventricle and extract the ED/ES phase at the turning
point of deformation. To verify the plausibility of the motion descriptor in the
intermediate frames, we further extend this rule-set to extract three additional
physiologically relevant time points (cf. Sec. 4) and compare them with clinical
labels from an experienced pediatric cardiologist on two heterogeneous cohorts.
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2 Methods

This work is based on the assumption that a sequential deformable volume-to-
volume registration field roughly represent the dynamics of the heart along a
cardiac cycle. However, such 3D+t vector fields might become large, they are
often spatially not aligned between patients and represent also deformation of the
surrounding area which makes an automatic interpretation in a patient cohort
challenging. Therefore, our rationale is to compress essential information into a
1D motion descriptor, which is decorrelated from the image grid.

2.1 Model definition

Let a 3D+t CMR sequence be defined as x where each cardiac volume xt is a 3D
image at time point t = {1, ..., T}. We defined a deformable registration task (cf.
Fig. 1a. in Suppl. Material) as φ, M̂ = fθ(M,F ) with M , F the moving and fixed
volume pair, θ the learnable parameters of f , φ the resulting discrete vector field
and M̂ the moved volume after φ was applied with a spatial transformer layer to
M . In our 4D case, for M = xt and F = xt+1 we obtain φt, x̂t+1 = fθ(xt, xt+1).
Additionally, due to the periodic behaviour, the last volume of the sequence xT
is warped to the first x1. Therefore, φT is defined as φT , x̂1 = fθ(xT , x1).

We define one 3D focus point Cn ∈ Z3 that we use for each volume xt (cf.
Fig. 1b. in Suppl Material), which can represent an anatomical landmark or a
point that is calculated without prior knowledge (cf. Sec. 3). For each vector
~v ∈ φt, we calculate the angle α = cos(~v, ~w), where the vector ~w points from
the corresponding x, y, z grid position to Cn. Therefore, ~v with α ∈ [−1, 0[ will
point towards the focus point Cn and with α ∈]0, 1] away from it. This enables
voxel-wise differentiation of a contractile deformation vector from a vector that
describes relaxation, which is the main rationale we followed for phase extraction.

Additionally, we calculate the 70th quantile on the temporally averaged eu-
clidean norm |~v| of φ and use it as threshold to filter non-cardiac motion infor-
mation and noise from the cardiac deformation (cf. row d. in Fig. 3).

Finally, for the extraction of the 1D curves over time (motion descriptor αt
and |~v|t) we average α and |~v| per 3D volume, apply a Gaussian filter (σ = 2) on
αt and min/max normalise both into a range of [−1, 1] and [0, 1], respectively.
The scaling of αt may introduce small shifts (<1 frames) to the zero-crossing time
points tED and tES but also removes diffuse zero crossings for weak pathological
relaxation phases.

2.2 Loss function and key frame extraction

The registration loss consists of an image similarity component Lsim and a reg-
ularizer Lsmooth and is defined by Eq. 1. It turned out that the structural sim-
ilarity index measure (SSIM) [18], which is based on a luminance, contrast and
structure measurement, performs better than the mean squared error as Lsim.
Here, we average the 2D SSIM per 3D volume, the equal weighted general 2D
form is given by Eq. 2 with µx, µy as the average and σ2

x, σ2
y as the variance of a
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N ×N region in x and y, which correspond to the two neighbouring time steps.
σxy is given by the co-variance of x and y and ε1, ε2 are two variables included
to avoid instability. For Lsmooth (cf. Eq. 3) of φ we used the same diffusion reg-
ularizer of the spatial gradients as introduced by Balakrishnan et al.[1], with Ω
representing each voxel in xt and set the regularization parameter λ = 0.001.

L(F,M, φ) = Lsim(F,M(φ)) + λLsmooth(φ). (1)

SSIM(x, y) =
(2µxµy + ε1)(2σxy + ε2)

(µ2
x + µ2

y + ε1)(σ2
x + σ2

y + ε2)
. (2)

Lsmooth(φ) =
∑
p∈Ω
||∇φ(p)||2. (3)

We define a set of rules that derives five cardiac key time points from the
compressed 1D signal αt, including the ED, mid-systole (MS; maximum contrac-
tion resulting in a peak ejection between ED and ES), ES, peak flow (PF; peak
early diastolic relaxation) and mid-diastole (MD; phase before atrial contraction
at the on-set of the p-wave). As shown in Fig. 1, the succession of these labels is
temporally correlated, however, we observed that the starting cardiac phase of
the CMR sequences varies between acquisitions (cf. Sec. 2.4). In order to handle
CMR sequences with varying starting phases we first detected the time-point
with maximum contraction (MS) and applied the other rules sequentially to the
cyclic sub-sequences. Please note that this rule-set (especially for the MD rule,
where we could also rely on the last peak as indicator for the atrial contraction) is
a work-in-progress-trade-off between accuracy and the generalisation capability
towards cut-off or pathological sequences. For this work we preferred simple rules
that are based on a physiological reasoning over complicated ones. Especially,
the intermittent diastolic pattern of αt differs between pathological patients and
sometimes leads to multiple diffuse relaxation peaks, which are difficult to assign
to the presumed peak flow or to the atrial contraction close to the MD phase.

MS = tm with α(tm) ≤ α(t) with t ∈ T
ES = min

t
α(t) = 0 with t ∈ [MS;PF ]

PF = min
t
α′(t) = 0 ∧ α′′(t) < 0 with t ∈ [ES;MS] (4)

ED = max
t
α(t) = 0 with t ∈ [PF ;MS]

MD = (PF + ED)/2

2.3 Deep Learning Framework

Our Deep Learning model consists of a 3D CNN-based deformable registration-
module followed by the direction-module. For the sequential volume-to-volume
deformable registration we use a slightly modified time distributed 3D U-Net as
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introduced by Ronneberger et al. [15] followed by a spatial transformer layer,
such as used by Balakrishnan et al. [1]. For further details we refer to our GitHub
repository. Our final model expects a 4D volume as input with b×40×16×64×64
as batchsize, time, spatial slices and x-/y dimension. Subsequently, the direction-
module calculates voxel-wise α, |~v| and per 4D volume the 1D curves αt and |~v|t
which are used in our rule-set. Please note: all parts are differentiable, learning
is end-to-end and could be used in a supervised approach.

2.4 Datasets

For evaluation we used two 4D cine-SSFPs CMR SAX datasets. The annotations
were made by an experienced paediatric cardiologist. Distributions and mean
occurrence of the phases are shown in Tab 1 and Fig.3a. in the Suppl. Material.

First, the publicly available Automatic Cardiac Diagnosis Challenge (ACDC)
dataset [2] (100 patients, 5 pathologies, 2 centers) was used. The mean±SD
number of frames is 26.98 ± 6.08, within a range of [12, 35]. Furthermore, not
all 4D sequences capture an entire cardiac cycle (cf. Fig. 2 in Suppl Material).
A detailed description of the dataset can be found in [2] and in Sec. 1 of our
Suppl. Material. We corrected and extended the original cardiac phase labels
(e.g.: the ED phase was uniformly labelled at frame 0 over the entire cohort,
which is a rough approximation). Now, 75 sequences start close to the MS and
25 close to the ED phase. Our labels will be released on our GitHub repository.
The inter-observer error between the original phase labels and our re-labelling
is 0.99± 1.23, with a maximal distance of 6 (ED) and 10 (ES), respectively.

Second, a multi-centric dataset (study identifier: NCT00266188) [10,12,16]
of 278 patients with Tetralogy of Fallot (TOF), which is a complex congenital
heart disease, was used. The mean number of frames is 21.92 ± 4.02, within a
range of [12, 36]. The sequence length of each cardiac cycle is 743±152ms, within
a range of [370, 1200]. 191 sequences start close to the MS and 84 close to the
ED phase. The other three phases occurred once at the sequence start.

3 Experiments

We extend the previously used [5,7,8,13,17] average Frame Difference (aFD =
|pi − p̂i|) to account for the periodicity of the cardiac cycle, and refer to it as

pFD(pi, p̂i) = min(|pi − p̂i|, T −max(pi, p̂i) + min(pi, p̂i)) (5)

with i ∈ [ED,MS,ES, PF,MD] and pi, p̂i the ith ground truth and predicted
label. This is important for permuted sequences when the annotated phase pi is
labelled at t = 1 but, p̂i predicts t = T and vice versa. The pFD would be 1; in
the original aFD formulation, the distance would be T .

Each experiment was carried out in a four-fold-cross validation manner. We
resampled x with linear interpolation to a spacing of 2.5 mm3 and repeated
xt along t until we reached the network’s input size of 40. Following that, we
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Fig. 2. Qualitative results for the motion descriptor αt on both datasets. Both plots
show the per-cohort average of αt (blue/left axis) and |~v|t (black/right axis) together
with the temporal aligned, resampled and averaged phase indices (x-axis), without any
post-processing. We overlaid the per-instance curves of αt but for the sake of clarity,
we omitted the instances curves for |~v|t. Please note: αt < 0 correspond to systolic and
αt > 0 to diastolic frames. The peaks in |~v|t are close to the mid-systolic (MS) and
peak flow (PF) phases. We aligned/resized the data to visualise the general properties
of αt and |~v|t, while the original data for training or inference remained unaligned.

focus crop with different focus points Cn in 3D (cf. next paragraph), clipped
outliers with a quantile of .999 and standardised per 4D. We did not apply any
image-based augmentation as we noticed no over-fitting in Lsim. We compare our
results with a supervised LV-volume-based approach on the same data and refer
to it as base. Four U-net based segmentation models were trained on the public
ACDC data (LV DICE: 0.91 ± 0.02). Next, we applied a connected component
filter and identified the ED/ES frames based on the min/max LV volume. Later
we applied one of them on the TOF dataset to provide a supervised baseline.

Quantitatively, we report the pFD (cf. Eq. 5) per dataset and cardiac key-
point in the original temporal resolution in Table 1. Additionally, we investigate
the sensitivity of different Cn on the pFD and compare the LV blood-pool center
of mass Clv, the mean septum landmark (center between the average anterior and
inferior right ventricular insertion points (RVIP) [11]) Csept, the CMR-volume
center Cvol and the center of mass for a quantile-threshold mean squared error
mask averaged along the temporal axis Cmse. Finally, we qualitatively evaluate
the general pattern of αt and |~v|t on both datasets (cf. Fig. 2) and visualise
different views for one random patient (cf. Fig. 3).

4 Results

Based on the per-instance and global average curves in Fig. 2, we provide a
qualitative and more clinical interpretation of our results. The general sys-
tolic/diastolic pattern of αt across all patients of both cohorts aligns with our
physiological expectations and show a negative course (mainly contractile direc-
tion of φ) during the systole followed by multiple positive local maxima during
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Fig. 3. Visualisation for one cardiac cycle of a random TOF patient. a) Mid-cavity
CMR slice, b) GT phase labels, c) Mid-cavity view of the direction α without percentile
masking (blue: towards focus point, red: away from), d) Mid-cavity view of |~v| (masked
by the 70th percentile of |~v|), e) Color coded slice-wise average of |~v| (base2apex) in
background. Volume-based average of |~v|t as curve with axis on the right, f) Mid-cavity
view of α (same color-coding, masked by the 70th percentile of |~v|), g) Color coded
slice-wise average of α (base2apex) in background. Volume-based average of αt as curve
with axis on the right, h) Predicted phase.

the diastole. Furthermore, we would expect a change from contractile to relax-
ile deformation (ES) or vice versa (ED) where αt has a zero pass. From our
observations and confirmed by the pFD in Tab. 1, this is usually true.

In general, αt shows a clear global minimum close to the MS-phase, that refers
to the time-point where most of the masked voxels (percentile-based threshold
of |~v|) represent the greatest contractile deformation direction. The relaxation
part is often more diffuse but with mostly two peaks in αt (the systolic negative
course is greater than the diastolic positive course if we omit the re-scaling).
The time point of minimal and maximal deformation should correspond to the
peaks and valleys as shown in Fig. 2 for the cohort-based average of |~v|t. On
both datasets we have a local maxima of |~v|t close to the MS during systole
and close to the PF or shortly after the MD phases during diastole. The global
minimum of |~v|t is often around the MD phase (cf. Fig. 2 and Fig. 3). From
a visual point of view, the threshold |~v|t mask is able to eliminate most of the
non-cardiac information (cf. row f. in Fig. 3).

As quantitative measure we present the pFD (cf. Eq. 5) for both cohorts and
for each phase in Table 1. In addition we report the error distribution per key
time point in Fig. 3b in our Suppl. Material. The cardiac contraction happens
usually in one coherent contractile deformation, which results in a clear negative
course of αt, that makes phase extraction straight-forward, which is visible in
lower pFD scores for the key-points (ED, MS, ES). This is in contrast to the
relaxation of the heart, which does not follow such an homogeneous pattern. In
fact, we observed multiple peaks that may result from basal to apical regions
relaxing at different rate (cf. Fig. 2). The pFD for the diastolic phases (PF
and MD) are slightly worse and represent the difficulties to assign these peaks
to either the ventricle contraction during the peak flow (PF) or to the atrial
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contraction shortly after the mid-diastolic (MD) phase. Both experiments that
are based on prior knowledge (Clv and Csept) provided similar results except
for the PF and MD phases, where both performed once better. Our experiment
Cvol, results, as expected, in the highest pFD and SD. Using the center of mass
of the temporally sequential mean squared error of xt and xt+1 as focus point C
(cf. Sec. 3) closed the gap of the unsupervised approaches with similar or slightly
better pFD while removing the need of prior knowledge or labels.

Table 1. Sensitivity of the resulting pFD for two cohorts with respect to different focus
points Cn (cf. Sec. 3) and comparison to supervised segmentation-based approach base.
1 = C based on anatomical GT knowledge,
2 = C based on more generic information (unsupervised).

Data Cn all ED MS ES PF MD

ACDC base - 1.13± 1.82 - 0.95± 1.29 - -
C1

lv 1.36± 1.37 1.13± 1.23 0.97± 0.95 1.05± 1.09 1.87± 1.98 1.77± 1.59
C1

sept 1.32± 1.21 1.09± 1.09 0.97± 0.83 0.96± 0.87 1.68± 1.63 1.91± 1.65
C2

vol 1.56± 1.86 1.37± 2.01 1.24± 1.40 1.19± 1.60 1.99± 2.14 2.01± 2.15
C2

mse 1.29± 1.25 1.08± 1.26 1.02± 0.94 0.97± 0.95 1.66± 1.56 1.73± 1.54

TOF base - 1.18± 1.91 - 1.21± 1.78 - -
C1

lv 0.99± 0.91 0.81± 0.93 1.07± 0.79 0.72± 0.79 0.90± 0.82 1.46± 1.22
C1

sept 0.95± 0.89 0.82± 0.88 0.87± 0.72 0.70± 0.76 0.78± 0.83 1.58± 1.26
C2

vol 1.02± 0.97 0.86± 1.04 1.06± 0.83 0.76± 0.80 0.88± 0.90 1.56± 1.28
C2

mse 0.97± 0.91 0.80± 0.85 0.94± 0.76 0.69± 0.79 0.85± 0.86 1.57± 1.27

5 Discussion and Conclusion

In this work we compute a motion descriptor based on the mean direction and
norm of a sequential deformable registration field φt in a self-supervised manner
according to different focus points Cn, to derive the cardiac dynamics over time.

Furthermore, according to the expected properties of a vector field that
mainly represents myocardial contraction and relaxation, we define a set of rules
and extend the state-of-the-art by extracting not only two but five cardiovas-
cular key-time frames on CMR sequences with any length and independent of
the starting phase. To the best of our knowledge this has not been done before.
We evaluate the reliability of the motion descriptor on two challenging multi-
center datasets and compare our method to a supervised baseline. Even though
the set of rules was defined empirically, we could quantitatively and qualita-
tively confirm that the self-supervised motion descriptor αt is able to express
the expected, underlying cardiovascular physiological motion properties. We will
release our extended ACDC phase labels to enable future comparison.

The pFD (ED,ES) of the completely self-supervised experiment (TOF, Cmse:
0.80±0.85, 0.69±0.79) is slightly better than the recognised inter-observer error
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(ACDC: 1.07±0.86, 0.91±1.6) and significantly (p < 0.001) better than the
supervised baseline (TOF, base: 1.18±1.91, 1.21±1.78).

Supervised methods may achieve promising/comparable results (cf. 1st row
ACDC in Table 1: 1.13±1.82,0.95±1.29), nevertheless their performance often
drops (ES: -0.26) when they are applied to unseen datasets, due to the inherent
domain shift (cf. 2nd row TOF in Table 1). This is were self-supervised methods
might unfold their strengths, since model re-training or adjustment does not rely
on annotations and can be easily done on domain shifted data.

This work assumes that CMR sequences capture an entire cardiac cycle. Cut-
off sequences may result in unphysiological peaks in |~v|t and hence slightly worse
results for phase detection (cf. ACDC dataset in Table 1). However, we show how
to benefit from these information to automatically detect cut-off sequences in
a self-supervised way for quality control purposes (cf. Suppl. Material Fig. 2).
These cut-off sequences refrained us from using the magnitude directly as key-
frame detector, e.g. identifying the peak ejection/peak flow phases based on the
largest overall vector magnitudes. In one experiment we weight α of each voxel
by the corresponding magnitude |~v|, unfortunately this descriptor performed
worse for cardiac phase detection. In future work, we will show the value of this
descriptor for inter-patient comparison and cardiovascular pathology description.
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6 Supplementary Material

6.1 Dataset properties

The ACDC dataset was collected at two sites and covers adults with nor-
mal cardiac anatomy and four cardiac pathologies: systolic heart failure with
infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy and abnor-
mal right ventricular volume. Each pathology is represented by 20 patients
with pre-defined ES and ED phase. The CMR volumes have an average res-
olution of 220.12± 34.04× 247.14± 39.44× 9.51± 2.40 and a spacing of 1.51±
0.19 × 1.51 ± 0.19 × 9.34 ± 1.67 mm3 (X/Y/Z). The resolutions and spacings
(same ordering) are within in the following ranges: [154, 428], [154, 512], [6, 18],
[0.70, 1.92],[0.70, 1.92],[5, 10]. Each 4D CMR volume has between 84 and 450 2D
slices with a mean of 253± 72.

The second cohort includes patients over 8 years with a complex congenital
heart defect called Tetralogy of Fallot (TOF). We used short-axis 4D cine series
from 278 patients. They have an average resolution of 244.49± 60.02× 252.37±
48.82× 14.08± 3.20 and a spacing of 1.37± 0.18× 1.37± 0.18× 8.03± 1.25 mm3

(X/Y/Z). The resolution and spacing (same ordering) are within the following
min, max ranges: [126, 512], [156, 512], [8, 28], [0.66, 2.08],[0.66, 2.08],[6, 16]. Each
4D CMR volume has between 112 and 700 2D slices with a mean of 313 ± 106
slices.

Table 2. First row: Mean±SD, second row: min and max occurrence of the ground
truth cardiac key frame indexes per ACDC and TOF dataset. Especially the cardiac
key frame ranges in the TOF dataset, which comes from 14 different sites, illustrates
the possible variability/permutations in clinical data.

Data ED MS ES PF MD

ACDC 20.42±12.26 4.24±1.42 9.91±2.67 15.08±3.36 22.92±15.14
[1 : 35] [3 : 12] [6 : 23] [9 : 30] [13 : 34]

TOF 15.54±10.09 4.91±1.72 9.39±2.11 13.22±12.41 18.44±3.34
[1 : 34] [2 : 18] [2 : 22] [3 : 25] [7 : 30]

6.2 Visual Examples



14 Koehler et al.

Fig. 4. a) The registration module outputs φ, which represents the deformation be-
tween neighbouring time steps xt and xt+1. Following, the direction module which cal-
culates the mean deformation angle/motion descriptor αt between each vector ~v ∈ φ
and ~w pointing to Cn. b) Example φt and the corresponding focus matrix with vectors
~w pointing to focus point Cn. Here, φt is masked by the left ventricle contours for
visualisation purposes.

Fig. 5. Motion descriptor (αt and |~v|t) derived from three patients, the green marker
highlights the cycle-end; information is repeated until 40 time steps are filled (input
format into network). A high peak reflects long deformation vectors in |~v|t towards the
following time step. In the highlighted case it is |~v|T , which is the deformation from
the last volume xT to x1. If |~v|t is an outlier with a high relative value compared to
the other time steps it is a strong indicator for a cut-off CMR sequence. a) No cut-off.
b) Moderate cut-off. c) Strong cut-off.

Fig. 6. a) The distribution of the GT label show a much easier problem if we align and
resize both datasets, which is not the case for clinical data (cf. Table 1). b) Average
periodic frame difference (pFD) for each phase of the self-supervised method (Cmse)
on the raw (no alignment/resizing) datasets.
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