Skip to main content

Reconstructing the Surface Mesh Representation for Single Neuron

  • Conference paper
  • First Online:
Book cover Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1110 Accesses

Abstract

In this paper, we present a pipeline to reconstruct the membrane surface of single neuron. Based on the abstract skeleton described by points with diameter information, a surface mesh representation is generated to approximate the neuronal membrane. The neuron has multi-branches (called neurites) connected together. Using a pushing-forward way, the algorithm computes a series of non-parallel contour lines along the extension direction of each neurite. These contours are self-adaptive to the neurite’s cross-sectional shape size and then be connected sequentially to form the surface. The soma is a unique part for the nerve cell but is usually detached to the neurites when reconstructed previously. The algorithm creates a suitable point set and obtains its surface mesh by triangulation, which can be combined with the surface of different neurite branches exactly to get the whole mesh model. Compared with the measurements, experiments show that our method is conducive to reconstruct high quality and density surface for single neuron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience: Exploring the Brain, 4th edn. Wolters Kluwer (2015). https://doi.org/10.1007/BF02234670

  2. Merjering, E.: Neuron tracing in perspective. J. Cytimetry Part A 77(7), 693–704 (2010). https://doi.org/10.1002/cyto.a.20895

    Article  Google Scholar 

  3. Donohue, D.E., Ascoli, G.A.: Automated reconstruction of neuronal morphology: an overview. J. Brain Res. Rev. 67, 94–102 (2010). https://doi.org/10.1016/j.brainresrev.2010.11.003

    Article  Google Scholar 

  4. Peng, H.C., Bria, A., Zhou, Z., Iannello, G., Long, F.H.: Extensible visualization and analysis for multidimensional images using Vaa3D. J. Nat. Protoc. 9(1), 193–208 (2014). https://doi.org/10.1038/nprot.2014.011

    Article  Google Scholar 

  5. Glesson, P., Steuber, V., Sliver, R.A.: neuroConstruct: a tool for modeling networks of neurons in 3D space. J. Neuron 54(2), 219–235 (2007). https://doi.org/10.1016/j.neuron.2007.03.025

    Article  Google Scholar 

  6. Livny, Y., Yan, F.L., Olson, M., Zhang, H., Chen, B.Q., EI-Sana J.: Automatic reconstruction of tree skeletal structures from point clouds. J. ACM Trans. Graph. 29(6), 1–8 (2010). https://doi.org/10.1145/1882261.1866177

  7. Zhu, X.Q., Guo, X.K., Jin, X.G.: Efficient polygonization of tree trunks modeled by convolution surfaces. J. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-013-4790-0

    Article  Google Scholar 

  8. Xie, K., Yan, F.L., Sharf, A., Oliver, D., Huang, H., Chen, B.Q.: Tree modeling with real tree-parts examples. J. IEEE Trans. Vis. Comput. Graph. 22(12), 2608–2618 (2016). https://doi.org/10.1109/TVCG.2015.2513409

    Article  Google Scholar 

  9. Luboz, V., et al.: A segmentation and reconstruction technique for 3D vascular structures. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 43–50. Springer, Heidelberg (2005). https://doi.org/10.1007/11566465_6

    Chapter  Google Scholar 

  10. Wu, X.L., Luoz, V., Krissian, K., Cotin, S., Dawson, S.: Segmentation and reconstruction of vascular structures for 3D real-time simulation. J. Med. Image. Anal. 15(1), 22-34 (2015). https://doi.org/10.1016/j.media.2010.06.006

  11. Yu, S., Wu, S.B., Zhang, Z.C., Chen, Y.L., Xie, Y.Q.: Explicit vascular reconstruction based on adjacent vector projection. J. Bioeng. Bugs 7, 365–371 (2016). https://doi.org/10.1080/21655979.2016.1226667

    Article  Google Scholar 

  12. De-Araújo, B.R., Lopes, D.S., Jepp, P., Jorge, J.A., Wyvill, B.: An survey on implicit surface polygonization. J. ACM Comput. Surv. 47(4), 1–39 (2015). https://doi.org/10.1145/2732197

    Article  Google Scholar 

  13. Wyvill, B., Wyvill, G.: Field functions for implicit surfaces. J. Vis. Comput. 5(1), 75–82 (1989). https://doi.org/10.1007/BF01901483

    Article  MATH  Google Scholar 

  14. Newman, T.S., Yi, H.: A survey of the marching cubes algorithm. J. Comput. Graph. 30(5), 854–879 (2006). https://doi.org/10.1016/j.cag.2006.07.021

    Article  Google Scholar 

  15. Yin, K.X., Huang, H., Zhang, H., Gong, M.L., Cohen-Or, D., Chen, B.Q.: Morfit: interactive surface reconstruction from incomplete point clouds with curve-driven topology and geometry control. J. ACM Trans. Graph. 33(6) (2014). https://doi.org/10.1145/2661229.2661241

  16. Lasserre, S., Hernando, J., Hill, S., Sch\(\ddot{u}\)mann, F., de Miguel Anasagati, P., Jaoudé, G.A., Markram, H.: A neuron membrane mesh representation for visualization of electrophysiological simulations. J. IEEE Trans. Vis. Comput. Graph. 18(2), 214–227(2011). https://doi.org/10.1109/TVCG.2011.55

  17. Carcia-Cantero, J.J., Brito, J.P., Mata, S., Pastor, L.: NeuroTessMesh: a tool for the generation and visualization of neuron meshes and adaptive on-the-fly refinement. J. Front. Neuroinform. 11 (2017). https://doi.org/10.3389/fninf.2017.00038

  18. Brito., J.P., Mata, S., Bayona, S., Pastor, L., DeFelipe, J., Benavides-Piccione, R.: Neuronize: a tool for building realistic neuronal cell morphologies. J. Front. Neuroanat. 7(15) (2013). https://doi.org/10.3389/fnana.2013.00015

  19. Abdellah, M., Favreau, C., Hernando, J., Lapere, S., Sch\(\ddot{u}\)rmann, F.: Generating high fidelity surface meshes of neocortical neuronss using Skin Modifiers. In: Tam, G.K.L., Roberts, J.C. (eds.) Computer Graphics & Visual Computing(CGVC) 2019 (2019). https://doi.org/10.2312/cgvc.20191257

  20. Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27(35), 9247–9251 (2007). https://doi.org/10.1523/jneurosci.2055-07.2007

  21. Eyiyurekli, M., Breen, D.E.: Localized editing of Catmull-rom splines. J. Comput. Aided Des. Appl. 6(3), 307–316 (2009). https://doi.org/10.3722/cadaps.2009.307-316

  22. Liang, K.K.: Efficient conversion from rotating matrix to rotation axis and angle by extending Rodrigues’ formula. J. Comput. Sci. (2018). https://doi.org/10.48550/arXiv.1810.02999

    Article  Google Scholar 

  23. He, J.G.: The correspondence and branching problem in medical contour reconstruction. In: 2008 IEEE International Conference on Systems, Man and Cybernetics, pp. 1591–1595. IEEE (2008). https://doi.org/10.1109/ICSMC.2008.4811514

  24. Ekoule, A.B., Peyrin, F.C., Odet, C.L.: A triangulation algorithm from arbitrary shaped multiple planar contours. J. ACM Trans. Graph. 10(2), 182–199 (1991). https://doi.org/10.1145/108360.108363

    Article  MATH  Google Scholar 

  25. Cignoni, P, Callieri, M, Corsini, M, Dellepiane, M, Ganovelli, F, Ranzuglia, G.: MeshLab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference, vol. 2008, pp. 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivar Ekeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekeland, I., Temam, R. (2022). Reconstructing the Surface Mesh Representation for Single Neuron. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics