Skip to main content

A Feature Point Extraction Method for Capsule Endoscope Localization

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Abstract

Wireless capsule endoscopy (WCE) has emerged as a popular non-invasive imaging tool for inspection of human Gastrointestinal (GI) tract. If a displacement technique based entirely on visual features is used for WCE positioning, a suitable visual feature extraction technique is important. In this paper, an improved ORB algorithm is proposed to extract feature points from capsule endoscopy images. Because of the complexity of the scene in the digestive tract and the insignificant image variation, the adaptive threshold is proposed to be calculated using the coefficient of variation in the feature point extraction stage, which improves the ability of the algorithm to extract feature points in homogeneous area features. Then, the feature points are further filtered using the quadtree method to eliminate over-concentration and overlapping feature points. In the feature point description phase, BEBLID is used to enhance the saliency of the feature description. Finally, the Hamming distance is used to match points and RANSAC is used to avoid mismatches. The experimental results show that the improved algorithm has better stability and adaptability to capsule endoscopic images, and effectively improves the matching accuracy on the basis of satisfying the real-time performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Charfi, S., El Ansari, M.: A locally based feature descriptor for abnormalities detection. Soft. Comput. 24(6), 4469–4481 (2019). https://doi.org/10.1007/s00500-019-04208-8

    Article  Google Scholar 

  2. Pahlavan, K., Bao, G., Ye, Y.: Rf localization for wireless video capsule endoscopy. Int. J. Wirel. Inf. Netw. 19(4), 326–340 (2012)

    Article  Google Scholar 

  3. Than, T.D., Alici, G., Zhou, H.: A review of localization systems for robotic endoscopic capsules. IEEE Trans. Biomed. Eng. 59(9), 2387–2399 (2012)

    Article  Google Scholar 

  4. Herp, J., Deding, U., Buijs, M.: Feature point tracking-based localization of colon capsule endoscope. Diagnostics. 11(2), 193 (2021)

    Article  Google Scholar 

  5. Bianchi, F.: Hybrid 6-DoF magnetic localization for robotic capsule endoscopes compatible with high-grade magnetic field navigation. IEEE Access. 10, 4414–4430 (2022)

    Article  Google Scholar 

  6. Liu, S., Kim, J., Hong, A.: Six-dimensional localization of a robotic capsule endoscope using magnetoquasistatic field. IEEE Access. 10, 22865–22874 (2022)

    Article  Google Scholar 

  7. Liu, S.: Three-dimensional localization of a robotic capsule endoscope using magnetoquasistatic field. IEEE Access. 8, 141159–141169 (2020)

    Article  Google Scholar 

  8. Mur-Artal, R., Montiel, J.M., Tardós, J.D.: ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  9. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D Cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  10. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 4104–4113. IEEE, Las Vegas (2016)

    Google Scholar 

  11. Lowe, G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  13. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010)

    Article  Google Scholar 

  14. Rublee, E., Rabaud, V., Konolige, K.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision, ICCV 2011, pp. 2564–2571. IEEE, Barcelona (2011)

    Google Scholar 

  15. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  16. Spyrou, E., Iakovidis, D.K., Niafas, S.: Comparative assessment of feature extraction methods for visual odometry in wireless capsule endoscopy. Comput. Biol. Med. 65, 297–307 (2015)

    Article  Google Scholar 

  17. Spyrou, E., Iakovidis, D.K.: Video-based measurements for wireless capsule endoscope tracking. Meas. Sci. Technol. 25(1), 5002–5038 (2014)

    Article  Google Scholar 

  18. Campos, C., Elvira, R., Rodríguez, J.J.G.: ORB-SLAM3: An accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Trans. Robot. 37(6), 1874–1890 (2021)

    Article  Google Scholar 

  19. Ma, C., Hu, X., Xiao, J.: Homogenized ORB algorithm using dynamic threshold and improved Quadtree. Math. Probl. Eng. 2021(1), 1–19 (2021)

    Google Scholar 

  20. Kesteven, G.L.: The coefficient of variation. Nature 158(4015), 520–521 (1946)

    Article  Google Scholar 

  21. Suarez, I., Sfeir, G., Buenaposada, J.M.: BEBLID: boosted efficient binary local image descriptor. Pattern Recognit Lett. 133, 366–372 (2020)

    Article  Google Scholar 

  22. Tran, Q.-H., Chin, T.-J., Carneiro, G., Brown, M.S., Suter, D.: In defence of RANSAC for outlier rejection in deformable registration. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 274–287. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_20

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant numbers 61872291, 62172190], and The Innovation & Entrepreneurship Plan of Jiangsu Province (JSSCRC2021532).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiaxing Ma or Yinghui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, J., Wang, Y., Qian, P., Lin, G. (2022). A Feature Point Extraction Method for Capsule Endoscope Localization. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics