Skip to main content

An Optimized Material Point Method for Soil-Water Coupled Simulation

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13443))

Included in the following conference series:

  • 1115 Accesses

Abstract

The interactions between soil and water are ubiquitous in reality, and the infiltration or flush by water often leads to soil’s deformation and failure, which are very common in film scenes. In recent years, the material point method (MPM) has been applied to animate different materials with convincing effects, but soils, as a kind of widely spread natural material too, are relatively less considered yet. In this paper, we propose an optimized MLS-MPM to model soil-water mechanics. In our method, soil stress is updated with the increments of strain and vorticity, and a Drucker-Prager model with tension cut-off is employed to model the linear isotropic poroelasticity of soils. The plasticity model is implemented with a return mapping algorithm, being \(O(n^3)\) faster than the traditional way. The soil-water coupling scheme is achieved by momenta exchange between them following Darcy’s law. The method shows a great boost by reducing the number of matrix multiplication operations when computing stress and updating deformation gradient. The efficacy of our method is validated by a set of test scenes and benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandara, S., Soga, K.: Coupling of soil deformation and pore fluid flow using material point method. Comput. Geotech. 63, 199–214 (2015). https://doi.org/10.1016/j.compgeo.2014.09.009

    Article  Google Scholar 

  2. Daviet, G., Bertails-Descoubes, F.: A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. 35(4), 1–13 (2016). https://doi.org/10.1145/2897824.2925877

    Article  MATH  Google Scholar 

  3. Ding, M., Han, X., Wang, S., Gast, T.F., Teran, J.M.: A thermomechanical material point method for baking and cooking. ACM Trans. Graph. 38(6), 1–14 (2019). https://doi.org/10.1145/3355089.3356537

    Article  Google Scholar 

  4. Fang, Y., Li, M., Gao, M., Jiang, C.: Silly rubber: an implicit material point method for simulating non-equilibrated viscoelastic and elastoplastic solids. ACM Trans. Graph. 38(4), 1–13 (2019). https://doi.org/10.1145/3306346.3322968

    Article  Google Scholar 

  5. Fang, Y., et al.: IQ-MPM: an interface quadrature material point method for non-sticky strongly two-way coupled nonlinear solids and fluids. ACM Trans. Graph. 39(4), 51:1–51:16 (2020). https://doi.org/10.1145/3386569.3392438

  6. Feng, K., Huang, D., Wang, G.: Two-layer material point method for modeling soil–water interaction in unsaturated soils and rainfall-induced slope failure. Acta Geotech. 16(8), 2529–2551 (2021). https://doi.org/10.1007/s11440-021-01222-9

    Article  Google Scholar 

  7. Fern, E., Rohe, A., Soga, K., Alonso, E.: The Material Point Method for Geotechnical Engineering: A Practical Guide (2019). https://doi.org/10.1201/9780429028090

  8. Fu, C., Guo, Q., Gast, T., Jiang, C., Teran, J.: A polynomial particle-in-cell method. ACM Trans. Graph. 36(6), 1–12 (2017). https://doi.org/10.1145/3130800.3130878

    Article  Google Scholar 

  9. Gao, M., et al.: Animating fluid sediment mixture in particle-laden flows. ACM Trans. Graph. 37(4), 1–11 (2018). https://doi.org/10.1145/3197517.3201309

    Article  Google Scholar 

  10. Gao, M., Tampubolon, A.P., Jiang, C., Sifakis, E.: An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Trans. Graph. 36(6), 1–12 (2017). https://doi.org/10.1145/3130800.3130879

    Article  Google Scholar 

  11. Guerriero, V., Mazzoli, S.: Theory of effective stress in soil and rock and implications for fracturing processes: a review. Geosciences 11(3), 119 (2021). https://doi.org/10.3390/geosciences11030119

    Article  Google Scholar 

  12. Hu, Y., et al.: A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. 37(4), 1–14 (2018). https://doi.org/10.1145/3197517.3201293

    Article  Google Scholar 

  13. Huang, P., Li, S., Guo, H., Hao, Z.: Large deformation failure analysis of the soil slope based on the material point method. Comput. Geosci. 19(4), 951–963 (2015). https://doi.org/10.1007/s10596-015-9512-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, C., Gast, T., Teran, J.: Anisotropic elastoplasticity for cloth, knit and hair frictional contact. ACM Trans. Graph. 36(4), 1–14 (2017). https://doi.org/10.1145/3072959.3073623

    Article  Google Scholar 

  15. Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. 34(4), 1–10 (2015). https://doi.org/10.1145/2766996

    Article  MATH  Google Scholar 

  16. Lenaerts, T., Adams, B., Dutré, P.: Porous flow in particle-based fluid simulations. ACM Trans. Graph. 27(3), 1–8 (2008). https://doi.org/10.1145/1360612.1360648

    Article  Google Scholar 

  17. Mieremet, M., Stolle, D., Ceccato, F., Vuik, C.: Numerical stability for modelling of dynamic two-phase interaction. Int. J. Numer. Anal. Meth. Geomech. 40(9), 1284–1294 (2016). https://doi.org/10.1002/nag.2483

    Article  Google Scholar 

  18. Nagasawa, K., Suzuki, T., Seto, R., Okada, M., Yue, Y.: Mixing sauces: a viscosity blending model for shear thinning fluids. ACM Trans. Graph. 38(4), 95 (2019). https://doi.org/10.1145/3306346.3322947

    Article  Google Scholar 

  19. Ram, D., et al.: A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2015, pp. 157–163. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2786784.2786798

  20. Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 248–273 (2016). https://doi.org/10.1680/jgeot.15.lm.005

    Article  Google Scholar 

  21. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 1–10 (2013). https://doi.org/10.1145/2461912.2461948

    Article  MATH  Google Scholar 

  22. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-change and varied materials. ACM Trans. Graph. 33(4), 1–11 (2014). https://doi.org/10.1145/2601097.2601176

    Article  MATH  Google Scholar 

  23. Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1), 179–196 (1994). https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Y., Ni, X., Zhu, B., Wang, B., Chen, B.: A material point method for nonlinearly magnetized materials. ACM Trans. Graph. 40(6), 1–13 (2021). https://doi.org/10.1145/3478513.3480541

    Article  Google Scholar 

  25. Tampubolon, A.P., et al.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. 36(4), 1–11 (2017). https://doi.org/10.1145/3072959.3073651

    Article  Google Scholar 

  26. Tang, L., Sang, H., Luo, Z., Sun, Y.: Advances in research on the mechanical behavior of the tensile strength of soils. Adv. Earth Sci. 30(3), 297 (2015). https://doi.org/10.11867/j.issn.1001-8166.2015.03.0297

  27. Wang, X., et al.: Hierarchical optimization time integration for CFL-rate MPM stepping. ACM Trans. Graph. 39(3), 1–16 (2020). https://doi.org/10.1145/3386760

    Article  Google Scholar 

  28. Yue, Y., Smith, B., Batty, C., Zheng, C., Grinspun, E.: Continuum foam: a material point method for shear-dependent flows. ACM Trans. Graph. 34(5), 1–20 (2015). https://doi.org/10.1145/2751541

    Article  Google Scholar 

  29. Zhu, J., et al.: Compensating the vorticity loss during advection with an adaptive vorticity confinement force. Comput. Animat. Virtual Worlds 32(1), e1973 (2021). https://doi.org/10.1002/cav.1973

    Article  Google Scholar 

Download references

Acknowledgment

This work was partially supported by the National Natural Science Foundation of China (Grant No. 62162068, 61540062), the Yunnan Ten Thousand Talents Program and Yunling Scholars Special Project (Grant No. YNWR-YLXZ-2018-022), the Yunnan Provincial Science and Technology Department-Yunnan University “Double First Class” Construction Joint Fund Project (Grant No. 2019FY003012), and the Graduate Research and Innovation Fund Project of Yunnan University (Grant No. 2021Y277).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiong, Z., Zhang, H., Li, H., Xu, D. (2022). An Optimized Material Point Method for Soil-Water Coupled Simulation. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2022. Lecture Notes in Computer Science, vol 13443. Springer, Cham. https://doi.org/10.1007/978-3-031-23473-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23473-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23472-9

  • Online ISBN: 978-3-031-23473-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics