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Abstract. Dynamic Stochastic General Equilibrium (DSGE) and Vector Autoregressive (VAR) 
models allow for probabilistic estimations to formulate macroeconomic policies and monitor 
them. One of the objectives of creating these models is to explain and understand financial fluc-
tuations through a consistent theoretical framework. In the tourism sector, stock price and sys-
temic risk are key financial variables in the international transmission of business cycles. Ad-
vances in Bayesian theory are providing an increasing range of tools that researchers can employ 
to estimate and evaluate DSGE and VAR models. One area of interest in previous literature has 
been to design a Bayesian robust filter, that performs well concerning an uncertainty class of 
possible models compatible with prior knowledge. In this study, we propose to apply the Bayes-
ian Kalman Filter with Prior Update (BKPU) in a tourism field to increase the robustness of 
DSGE and VAR models built for small samples and with irregular data. Our results indicate that 
BKPU improves the estimation of these models in two aspects. Firstly, the accuracy levels of the 
computing of the Markov Chain Monte Carlo model are increased, and secondly, the cost of the 
resources used is reduced due to the need for a shorter run time. Our model can play an essential 
role in the monetary policy process, as central bankers could use it to investigate the relative 
importance of different macroeconomic shocks and the effects of tourism stock prices and 
achieve a country´s international competitiveness and trade balance for this sector. 
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1 Introduction 

The relevance of Dynamic Stochastic General Equilibrium (DSGE) and Vector Auto-
regressive (VAR) models has recently become increasingly important for their applica-
tion in the analysis of business cycles and the detection of recessions [1]. These models 
are often estimated using the Kalman filter built into the Markov Chain Monte Carlo 
algorithm (in its Metropolis-Hastings version) to predict the posterior distributions of 
the parameters considered in the model. The evaluation of these models is being carried 
out by the result obtained in the standard deviation, the sample size, and its complexity. 
For these models, the literature shows the different fitting results once various Kalman 
filter algorithms have been applied. For instance, models built with the classical Kal-
man filter have offered a fit of 0.38-1.43 standard deviation with small samples and 
irregular data [2], however, their fits vary to 0.27-0.98 in large and regular samples [3]. 
On the other hand, models using non-classical Kalman filters have achieved even better 
results than those described above. With small samples and irregular data, the results 
of these models have been 0.29-0.41 [4], in contrast to 0.14-0.38 with large samples 
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and regular data [5]. Hence, it is noticed that the classical Kalman Filter presents an 
accuracy in the interval 0.82-0.43 after simulations with samples larger than 100 obser-
vations, not giving a deviation sufficiently low in a small sample (a deviation of 0.64 
when using a sample size of under 100 observations) [6]. Other investigations have also 
used DSGE models to analyse the link between monetary policy and stock price and 
exchange rate volatility using the VAR method for that connection [7]. In this way, [8] 
analyzed the connection between American tourism companies for the period 2018-
2020, including the scenario of the Covid-19 pandemic. The analysis of the risk of con-
tagion showed a significant increase during the Covid-19 pandemic. Small businesses 
become more systemically important in the pandemic, while the level of serious risk 
contagion harms the stock performance of American tourism companies. Since the tour-
ism sector, stock price, and systemic risk are financial variables that are crucial for the 
transmission of economic cycles across borders, and most of the existing research in 
tourism is based on the hedonic method or the traditional single regression econometric 
model, it is essential to analyse these macroeconomic variables in this sector with 
DSGE models. Recent research has applied the DSGE models in other different areas 
of the tourism field [8,9]. [9] incorporated the VAR model into a DSGE framework for 
the analysis of tourism development and sustainable economic growth. The results 
show that a 10% rise in tourism productivity can improve the value-added of the tour-
ism sector by more than 4.11% and boost about 0.5% of GDP growth. [8] suggested a 
DSGE model to understand the effect of an infectious disease outbreak on tourism, 
They concluded the suitability of DSGE model to address the impact of the health crisis 
in this scenario given that the duration and severity of the outbreak are uncertain.  

In summary, all this research has applied DSGE models, which have an infinite-order 
VAR representation. Hence, VARs have been widely used in the forecasting literature 
evaluating DSGE models. However, due to many parameters and short time series, 
classical estimates of the coefficients of the unconstrained VAR are often imprecise 
and forecasts are of low quality due to large estimation errors. A common method to 
address this problem is to apply Bayesian techniques. For addressing these precision 
problems of the current DSGE and VAR models, this paper builds on the Bayesian 
Kalman Filter with Prior Updating (BKPU), having already established its methodo-
logical supremacy in other domains for accurate sampling with only a few observations 
and with non-regular distributions of data [10]. Compared to the classical Kalman Filter 
used, our results show, in terms of accuracy, a more robust estimation, especially in 
out-of-sample estimations, a better performance with small and irregular samples. 
Therefore, the misspecification of previous literature is reduced, as our results also 
show a better estimation of posterior distributions [11]. These results can be very valu-
able when applied in DSGE and VAR models, as well as in other macroeconomic mod-
els that guide policymakers and other related interest groups in performing estimations. 
To fill the gap in the existing literature, our investigation evaluates the tourism stock 
prices volatility and systemic risk applying a BKPU DSGE model for Spain, increasing 
the robustness of DSGE and VAR models built for small samples and with irregular 
data.  
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2 Methods 

2.1. Bayesian Kalman Filter with Prior Update 

This algorithm framework involves similar recursive equations to those of the 
classical Kalman filter with the posterior effective noise statistics in place of the ordi-
nary noise statistics. Posterior effective noise statistics represent the posterior distribu-
tion of the noise second-order statistics, namely, the covariance matrix, where the pos-
terior distribution is obtained by incorporating observations into the prior distribution 
of unknown noise parameters. Now assume that the covariance matrices of the process 
and observation noise are not known and parameterized as   𝐸ൣ𝑢௞

ఏభሺ𝑢௟
ఏభሻ்൧ ൌ 𝑄ఏభ𝛿௞௟  

and  𝐸ൣ𝑣௞
ఏమሺ𝑣௟

ఏమሻ்൧ ൌ 𝑅ఏమ𝛿௞௟, 𝜃 ൌ ሾ𝜃ଵ, 𝜃ଶሿ being the set of unknown parameters gov-
erned by the prior distribution π(θ). The state-space model belongs to an uncertainty 
class Θ (θ ∈ Θ) of possible state-space models. If 𝜃ଵ and 𝜃ଶ are statistically independent, 
then the state-space model can be parameterized as 𝑥௞ାଵ

ఏభ ൌ Φ୩𝑥௞
ఏభ ൅ Γ୩u୩

ఏభ (3) and  

𝑦௞
ఏ ൌ Η୩𝑥௞

ఏభ ൅ 𝑣௞
ఏమ.  The intrinsically the Bayesian robust Kalman filter that provides 

optimal performance on average concerning a prior distribution has been developed 
using the notions of Bayesian orthogonality principle and Bayesian innovation process 
in [10], and its structure is completely similar to that of the classical Kalman filtering 
with the noise covariances and the Kalman gain matrix replaced by the expected noise 
covariances and the effective Kalman gain matrix, respectively. Being  𝜓ூ஻ோሺ𝑦; 𝑘ሻ ൌ
𝑎𝑟𝑔 min

ట∈ஏ
Εఏ ሾ𝐶ఏሺ𝑥௞, 𝜓ሺ𝑦; 𝑘ሻሻሿ    where the expectation is taken relative to the prior dis-

tribution π(θ) governing Θ, 𝐶ఏ(.) characterizes the filter cost relative to θ, and 𝜓ூ஻ோ is 
called an intrinsically Bayesian robust filter [10]. Considering the state-space model in 
𝑦௞

ఏand 𝜓ூ஻ோሺ𝑦; 𝑘ሻ, let Υ௞ିଵ ൌ ሼ𝑦଴, … , 𝑦௞ିଵሽ and X௞ ൌ ሼ𝑥଴, … , 𝑥௞ሽ be the sequences of 
observations and states up to times k−1 and k, respectively, with 𝑓ሺ𝜃, Υ௞ିଵ,Χ୩ሻ being 
the joint probability distribution of the uncertainty class Θ and observations and states. 
In the context of optimal Bayesian filtering theory, we seek a linear filter of the form 

𝑥ො௞
ఏ ൌ ∑ 𝐺௞,௟

஀ 𝑦௟
ఏ

௟ஸ௞ିଵ 𝐺௞,௟
஀ ൌ arg min

ீೖ,೗ ∈ ಸ
Εఏ ቂΕ ቂ൫x୩

஘భ െ ∑ G୩,୪y୪
஘

୪ஸ୩ିଵ ൯
୘

ൈ ൫x୩
஘భ െ

∑ G୩,୪y୪
஘

୪ஸ୩ିଵ ൯ቃ |Υ୩ିଵቃ  , where G is the vector space of all n × m matrix-valued func-

tions, 𝐺௞,௟ ∈ ீ is a mapping G୩,୪: N×N→𝑅௡ ௫ ௠ such that ∑ ∑ ฮ𝐺௞,௟ฮ₂ஶ
௟ୀଵ

ஶ
௞ୀଵ ൏ ∞, ‖•‖₂ 

being the 𝐿ଶ norm and 𝑥ො௞
ఏ is called the optimal Bayesian least-squares estimate of 𝑥௞

ఏ. 
The following theorem, definition, and lemma are essential for the derivation of the 
OBKF framework and are restatements of their counterparts in [10] concerning the pos-
terior distribution.  The linear estimate 𝑥ො௞

ఏ obtained in the last equation of the prior 
paragraph, is an optimal Bayesian least-squares estimate of 𝑥௞

ఏ, if and only if 

Ε஘ൣΕൣሺx୩
஘భ െ xො୩

஘ሻ ሺy୪
஘ሻ୘൧|Y୩ିଵ൧ ൌ Ο୬ ൈ୫     ∀ l ൑ k െ 1. 

 Consider this state-space model and let 𝑥ො௞
ఏ be a linear estimate of 𝑥௞

ఏ that satisfies 
this space, then the random process  𝑧̃௞

ఏ ൌ 𝑦௞
ఏ െ Η୩𝑥ො௞

ఏ  is a zero-mean process, called 
the Bayesian innovation process, and ∀ l, l′ ൑ k െ 1, we have Ε஘ൣΕൣ𝑧̃௟

ఏሺz෤୪’
஘ሻ୘൧|Y୩ିଵ൧ ൌ

Ε஘ൣH୪P୪
୶,஘H୪

୘ ൅ R஘మ |Y୩ିଵ൧δ୪୪’ where P୪
୶,஘ ൌ  Εൣሺx୪

஘భ െ xො୪
஘ሻ ሺx୪

஘భ െ xො୪
஘ሻ୘൧ is the estima-

tion error covariance matrix of the OBKF at time l relative to θ. Let 𝑥ු௞
ఏ ൌ ∑ 𝐺௞,௟௟ஸ௞ିଵ 𝑧̃௟

ఏ 
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be an estimate of 𝑥௞
ఏ obtained using the information in 𝑧̃௟

ఏ ൌ 𝑦௟
ఏ െ 𝐻௞𝑥ු௟

ఏ, such that,  

Ε஘ൣΕൣሺx୩
஘భ െ xු୩

஘ሻ ሺz෤୪
஘ሻ୘൧|Y୩ିଵ൧ ൌ Ο୬ ൈ୫   . Then Ε஘ൣΕൣሺx୩

஘భ െ xු୩
஘ሻ ሺy୪

஘ሻ୘൧|Y୩ିଵ൧ ൌ
Ο୬ ൈ୫. Using the Bayesian orthogonality principle and the Bayesian innovation pro-
cess, the recursive equations constituting the OBKF can be found similar to those for 
the Kalman filter in [10]. According to this, we can write 𝑥ො௞

ఏ that satisfies the previous 
equations as: 𝑥ො௞

ఏ ൌ ∑ 𝐺௞,௟
஀ 𝑧̃௟

ఏ
௟ஸ௞ିଵ .  

Using 𝑥ො௞
ఏ ൌ ∑ Ε஘ൣΕൣx୩

஘భ ሺz෤୪
஘ሻ୘൧|Y୩ିଵ൧Ε஘

ିଵൣ Η୪Ρ୪
୶,஘Η୪

୘ ൅ R஘మ|Y୩ିଵ൧௟ஸ௞ିଵ 𝑧̃௟
ఏ, an up-

date equation for 𝑥ො௞
ఏ can be found as 𝑥ො௞ାଵ

ఏ ൌ Φ௞𝑥ො௞
ఏ ൅ Φ௞Κ௞

஀∗𝑧̃௞
ఏ , where            Κ௞

஀∗ ൌ
Ε஘ൣP୩

୶,஘|Y୩ିଵ൧Η୩
୘Ε஘

ିଵൣΗ୩P୩
୶,஘Η୩

୘ ൅ R஘మ|Y୩ିଵ൧ is the posterior effective Kalman gain ma-
trix. Note that we use Κ௞

஀∗ and Κ௞
஀ to distinguish between the effective Kalman gain 

matrix obtained relative to the posterior distribution in this paper and the one obtained 
relative to the prior distribution in [10]. Letting 𝑥௞

௘,ఏ ൌ 𝑥ො௞
ఏభ െ 𝑥ො௞

ఏ be the Bayesian least-

squares estimation error at time k, the update equation for 𝑥௞
௘,ఏ is 𝑥௞ାଵ

௘,ఏ ൌ

Φ௞൫Ι െ Κ௞
஀∗Η୩൯𝑥௞

௘,ఏ ൅ Γ௞𝑢௞
ఏభ െ Φ௞Κ௞

஀∗𝑣௞
ఏమ. Letting P୩ାଵ

୶,஘ ൌ Ε ቂ𝑥௞ାଵ
௘,ఏ ൫𝑥௞ାଵ

௘,ఏ ൯
்

ቃ and after 

some mathematical manipulations, ΕఏൣP୩ାଵ
୶,஘ |Y୩൧ ൌ Φ௞൫Ι െ Κ௞

஀∗Η୩൯ΕఏൣP୩
୶,஘|Y୩൧Φ௞

் ൅
Γ௞Εఏൣ𝑄ఏభ|Y୩൧Γ௞

். 
To implement an OBKF, we need to compute the conditional expectations 

Εఏൣ𝑄ఏభ|Y୩൧ and ΕఏൣR஘మ|Y୩൧ concerning the posterior distribution π(θ |Y୩) ∝ 
𝑓ሺ𝑦௞|𝜃ሻ𝜋ሺ𝜃ሻ, where 𝑓ሺ𝑦௞|𝜃ሻ is the likelihood function of θ given the sequence of ob-
servations 𝑦௞. As there is no closed-form solution for 𝜋ሺ𝜃|Y୩ሻ for many prior distribu-
tions, we employ a Markov Chain Monte Carlo (MCMC) method to generate samples 
from the posterior distribution 𝜋ሺ𝜃|Y୩ሻ and then approximate Εఏൣ𝑄ఏభ|Y୩൧

 
and 

ΕఏൣR஘మ|Y୩൧ as sample means of the generated MCMC samples. First, we need to com-
pute the likelihood function 𝑓ሺ𝑦௞|𝜃ሻ. Assume that node 𝛼௜ has received message 
𝜇ఉ೔→ఈ೔

ൌ ሺ𝑆௜, 𝑀௜, ℰ௜ሻ. Now we aim to compute the outgoing message 𝜇ఉ೔శభ→ఈ೔శభ
 from 

node 𝛽௜ାଵ to node 𝛼௜ାଵ . Computing 𝜇ఉ೔శభ→ఈ೔శభ
 corresponds to the computation of the 

following integral: ׬௫೔
 𝒩൫𝑥௜ାଵ; Φ௜𝑥௜, 𝑄෨௜

ఏభ൯𝒩൫𝑦௜, 𝐻௜𝑥௜, 𝑅ఏమ൯ ൈ 𝑆௜𝒩ሺ𝑥௜; 𝑀௜, ℰ௜ሻ 𝑑𝑥௜. 

The solution of the integral given in (20) is a scaled multivariate Gaussian function 
𝑆௜ାଵ𝒩ሺ𝑥௜ାଵ, 𝑀௜ାଵ, ℰ௜ାଵሻ, whose parameters 𝑆௜ାଵ, 𝑀௜ାଵ, and ℰ௜ାଵ are given by   ℰ௜ାଵ

ିଵ ൌ

ሺ𝑄෨௜
ఏభሻିଵ െ ሺ𝑄෨௜

ఏభሻିଵΦ௜Λ௜Φ௜
்ሺ𝑄෨௜

ఏభሻିଵ, 𝑀௜ାଵ ൌ ℰ௜ାଵ൫𝑄෨௜
ఏభ൯

ିଵ
Φ௜Λ௜ሺ𝐻௜

்൫𝑅ఏమ൯
ିଵ

𝑦௜ ൅

ℰ௜
ିଵ𝑀௜ሻ and 𝑆௜ାଵ ൌ 𝑆௜ඨ

|ஃ೔||ℰ೔శభ|

ቤொ෨೔
ഇభ|ℰ೔|ቤ

 𝒩൫𝑦௜; 𝑂௠ൈଵ, 𝑅ఏమ൯ ൈ

exp ൬
୑౟శభ

౐ ℰ೔శభ
షభ ெ೔శభାௐ೔

೅ஃ೔ௐ೔ି୑౟
౐ℰ೔

షభெ೔

ଶ
൰, where 𝑊௜ ൌ 𝐻௜

்൫𝑅ఏమ൯
ିଵ

𝑦௜ ൅ ℰ௜
ିଵ𝑀௜ and Λ௜ ൌ

ሺΦ௜
்ሺ𝑄෨௜

ఏభሻିଵΦ௜ ൅ 𝐻௜
்൫𝑅ఏమ൯

ିଵ
𝐻௜ ൅ ℰ௜

ିଵሻିଵ. 
 The update rules given should be iterated for 0 ≤ i ≤ k − 1 to finally obtain the 

message 𝜇ఉೖ→ఈೖ
ൌ ሺ𝑆௞, 𝑀௞, ℰ௞ሻ. Then the likelihood function is obtained as 𝑓ሺ𝑦௞|𝜃ሻ ൌ

௫ೖ׬
𝒩൫𝑦௞; 𝐻௞𝑥௞, 𝑅ఏమ൯𝑆௞ 𝒩ሺ𝑥௞, 𝑀௞, ℰ௞ሻ𝑑𝑥௞ ൌ ௫ೖ׬

ௌೖ

ටሺଶగሻ೘หோഇమหඥሺଶగሻ೙|ℰೖ|
 ൈ
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𝑒𝑥𝑝 ൬
ିଵ

ଶ
ሺ𝑦௞ െ 𝐻௞𝑥௞ሻ்൫𝑅ఏమ൯

ିଵ
ሺ𝑦௞ െ 𝐻௞𝑥௞ሻ ൅ ሺ𝑥௞ െ 𝑀௞ሻ்ℰ௞

ିଵሺ𝑥௞ െ 𝑀௞ሻ൰ 𝑑𝑥௞. To 

estimate the posterior effective noise statistics ΕఏൣQ஘భ|Y୩൧ and Εఏൣ𝑅ఏమ|Y୩൧, we employ 
the Metropolis-Hastings MCMC [4]. Let the last accepted MCMC sample in the se-
quence of samples be 𝜃ሺ௝ሻ generated at the j-th iteration. A candidate MCMC sample 
𝜃௖௔௡ௗ௜ௗ will be drawn according to a proposal distribution fሺθୡୟ୬ୢ୧ୢหθሺ୨ሻሻ. The candi-
date MCMC sample 𝜃௖௔௡ௗ௜ௗ will be either accepted or rejected according to an ac-

ceptance ratio r defined as 𝑟 ൌ 𝑚𝑖𝑛 ൜1,
௙ሺఏሺೕሻหఏ೎ೌ೙೏೔೏ሻ௙ሺ௬ೖหఏ೎ೌ೙೏೔೏ሻగሺఏ೎ೌ೙೏೔೏ሻ

௙ሺఏ೎ೌ೙೏೔೏หఏሺೕሻሻ௙ሺ௬ೖหఏሺೕሻሻగሺఏሺೕሻሻ
ൠ ൌ

𝑚𝑖𝑛 ൜1,
௙ሺ௬ೖหఏ೎ೌ೙೏೔೏ሻగሺఏ೎ೌ೙೏೔೏ሻ

௙ሺ௬ೖหఏሺೕሻሻగሺఏሺೕሻሻ
ൠ , where the second formula is used when the proposal 

distribution is symmetric, 𝑓ሺ𝜃௖௔௡ௗ௜ௗห𝜃ሺ௝ሻሻ ൌ 𝑓ሺ𝜃ሺ௝ሻห𝜃௖௔௡ௗ௜ௗሻ. The (j + 1)-th MCMC 

sample is: θሺ୨ାଵሻ ൌ ൜θୡୟ୬ୢ୧ୢwith probability r
θሺ୨ሻ otherwise

   . The positivity of the proposal distri-

bution (𝑓ሺ𝜃௖௔௡ௗ௜ௗห𝜃ሺ௝ሻሻ > 0 for any 𝜃ሺ௝ሻ) is a sufficient condition for having an ergodic 
Markov chain of MCMC samples whose steady-state distribution is the target distribu-
tion 𝜋ሺ𝜃|Y୩ሻ[12,13]. 

 

2.2. DSGE Model  

According to [13], a DSGE model can be used to examine tourism with the general 
balance of the economy (see Table 1).  

Table 1. Dynamic Stochastic General Equilibrium (DSGE) 
Functions   Variables 

The utility function of households 

U= E0 ෍ βt
൥ሺCt‐hCt‐1ሻ+

ut
1+v1

1+v1
+
(Lal,tςla,t)

1+v2

1+v2
൩

1‐σ

1‐σ

∞

t=0

 

E0: expected utility function hypothesis 
β: discounted rate 
h: typifies the habit persistence of consumption 
Ct: (using a CES function) is composed by: 
 CT, t: Tourism goods 
 CNT, t: Non‐tourism goods 
 CP, t: Public services 

ut: Unemployment rate 
Lal,t: Private land supply shock 
Ϛla,t : The exogenous variable that is estimated by an auto‐

regression process to represent the result of private land inputs 
on the economy 

σ, ν1, and ν2: the parameters of the constant elasticity of sub‐
stitution (CES) 

CM, t: is composed by: 
 CMT, t: Imports of tourism products 
 CMNT, t: Non‐tourism products 

The production functions of the tourism and non‐tourism activities 

  YT,t= ΩT,tKT,t
α1 NT,t

α2 LaT,t
1-α1-α2  

YNT,t=ΩNT,tKNT,t
α3 NNT,t

1-α3 

Yi,t (i = T, NT): The value‐added of the given sector 
Ωi, t (i = T, NT): The productivity function connected to 

the effects of physical capital and public sector 
Ki,t (i = T, NT): The physical capital and is calculated by 

the process: Ki, t+1 = Ii, t + (1−δ)Ki, t  (i= T, NT) 
 Ii,t : The physical capital investment in every 

sector 
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 δ: The depreciation rate 
Ni, t: Human capital enhancement: 
Ni, t = Htni, t  (i = T, NT, P) 
 ni,t: points out the labor force for the sectors 
 Ht : The spill‐over effects of capital and the 

accumulation of human capitalLaT, t: The pri‐
vate land rentals to the tourism sector 

The productivity function connected to the effects of physical capital and public sector 

Ωi,t= 

AtAi,t(ζP,tYP,t)
φP,iKi,t

φi ቆ
KP,  t

KT,t+KNT,t
ቇ
φc,i

       i=(T, NT) 

At: The auto‐regression processes of the total produc‐
tivity shocks 

Ai,t: The auto‐regression processes of the sector that 
point out sector and total productivity shocks 

ζP, t: The exogenous shock to the spill‐over effects of 
public sector 

YP,t the effect of public sector 
Ki,t: The effect of physical capital 

൬
KP,  t

KT,t+KNT,t
൰
φc,i

 : The spillover effect of Kp,t 

φP,i : The effect of the public sector 
φc,i :The effect of the private sector 
(i = T, NT): The parameters 

 
The spill‐over effects of capital and the accumulation of human capital 

Ht= 

EXT, t
αT ൫YT, t‐EXT, t൯

bT
ζH, t

Ht
πT +

EXNT, t
αNT ൫YNT, t‐EXNT, t൯

bNT

Ht
πNT

δHHt‐1 

EXT,t: The exports of tourism 
ζH,t: The shock to human capital accumulation 
EXNT,t: The non‐tourism products 

Ei,t
ai  and ൫Yi,t‐EXi,t൯

bi
 : The effect of the tourism product 

on human capital 
ai, bi and πi: The parameters 
δH: The depreciation rate of human capital 
Ht
πi: The externality of experience 

Systemic Risk (Risk Contagion) 
 

𝑋௝,௧=𝑔 ቀ𝛽௃|ோೕ
் 𝑅௝,௧ቁ ൅∈௝,௧ 

 
 

𝐶𝑜𝑉𝑎𝑅ఫ|ோ෨ണ,೟,ഓ
෣ ்ாோ்

≡ 𝑔ො ሺ𝛽መ௝|ோ෨ೕ

் 𝑅෨௝,௧ሻ 

 
 

𝐷෡௝|ோ෨ೕ
≡

𝜕𝑔ො ቀ𝛽መ௝|ோೕ
் 𝑅௝,௧ቁ

𝜕𝑅௝,௧
ቮ 𝑅௝,௧ୀ𝑅෨௝,௧

ൌ 𝑔ො´ ቀ𝛽መ௝|ோ෨ೕ

் 𝑅෨௝,௧ቁ 𝛽መ௝|ோ෨ೕ
 

 

𝑅௝,௧ ≡ ൛𝑋ି௝,௧, 𝑀௧ିଵ, 𝐵௝,௧ିଵൟ 
𝑋ି௝,௧ ≡ ൛𝑋ଵ,௧, 𝑋ଶ,௧, … , 𝑋௞,௧ൟ  is  the  set  of  (k‐1)  inde‐

pendent  variables  such  as  the  log‐returns  of  tourism 
stocks, except tourism stock j, and k number o tourism 
stocks which is 95 in our case. 

𝛽௝|ோೕ
≡ ቄ𝛽௝|ି௝, 𝛽௝|ெ, 𝛽௝|஻ೕ

ቅ
்
 

 

𝐶𝑜𝑉𝑎𝑅ఫ|ோ෨ണ,೟,ഓ
෣ ்ாோ்

 𝑖𝑠 𝑡ℎ𝑒 𝑇𝐸𝑁𝐸𝑇 𝑟𝑖𝑠𝑘 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 
other tourism stocks on tourism stock j and integrates 
the non‐linearity displayed in the shape of a  link func‐
tion (g.). 

The exports 

                 EXi,t= ቀ
Pi,t

RERt
ቁ
θEXi

YROW,t
ωi    (i=T, NT) 

 
 

Pୌ,୲ ൌ Pୌ,୲തതതത+ηP୒,୲ 
 

𝑃்,௧ ൌ ቈ𝑎ு𝑃ு,௧

ఘ
ఘିଵ ൅ 𝑎ி𝑃ி,௧

ఘ
ఘିଵ቉

ఘ
ఘିଵ

 

ቀ
୔౟,౪

ୖ୉ୖ౪
ቁ : The real exchange rate in USD 

RERt: The exchange rate 
YROW,t: The world income level 
 
 

Pୌ,୲: Consumer price if the Home traded goods 
Pୌ,୲തതതത: Price of Home traded goods at producer level 



7 

𝑃 ௧ ൌ ൥𝑎்𝑃்,௧

థ
థିଵ ൅ 𝑎ே𝑃ே,௧

థ
థିଵ൩

థ
థିଵ

 

 

𝐴𝐶ு,௧
௣ ሺℎሻ ൌ

𝑘ு
௣

2
ቆ

𝑝̅௧ሺℎሻ
𝑝̅௧ିଵሺ௛ሻ

െ 𝜋ቇ
ଶ

 𝐷ு,௧ 

𝐴𝐶ு,௧
௣∗ ሺℎሻ ൌ

𝑘ு
∗௣

2
ቆ

𝑝̅௧
∗ሺℎሻ

𝑝̅௧ିଵ
∗ ሺℎሻ

െ 𝜋ቇ
ଶ

 𝐷ு,௧ 

𝐴𝐶௧
௣ሺ𝑛ሻ ൌ

𝑘ே
௣

2
൬

𝑝௧ሺ𝑛ሻ
𝑝௧ିଵሺ𝑛ሻ

െ 𝜋൰
ଶ

 𝐷ே,௧ 

 

ηP୒,୲: Value of the nontraded goods that are neces‐
sary to distribute to consumers 

 
 

𝐴𝐶ு,௧
௣ ሺℎሻ and 𝐴𝐶ு,௧

௣∗ ሺℎሻ: The price adjustment costs 

faced by firms in the traded goods according to the des‐
tination market. 

 

𝐴𝐶௧
௣ሺ𝑛ሻ: The price adjustment costs faced by firms 

in the non‐traded goods. 
 

The Government and the Equilibrium 

𝐺௧ ൌ ൬
𝑔௧

1 ൅ 𝑔௧
൰ 𝑌௧ ൌ 𝑇௧ 

 
 

𝐸௧൛ℱ௧,௧ାଵ∏௧ାଵΩ௧ାଵൟ ൌ 𝑄௧ 

 
 

ሺ∑௧ െ 1ሻሺ𝐶௧ െ ℎ𝐶௧ିଵሻ
ൌ 𝜉𝑄௧ ൅ ሺ1
െ 𝜉ሻ𝐸௧൛ℱ௧,௧ାଵ∏௧ାଵ∑௧ାଵሺ𝐶௧ାଵℎ𝐶௧ሻൟ 

 

𝑄௧ ൌ 𝐸௧൛ℱ௧,௧ାଵ∏௧ାଵሾ𝑄௧ାଵ ൅ 𝐷௧ାଵሿൟ 

G୲: Government purchases.  We  assume  a  public 
sector that consumes a fraction 𝑇௧ of the output of each 
good, being 𝑔௧ୀି ୪୭୥ሺଵି ೟் ሻ 

𝑌௧: 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 
 
The present discounted real value of future financial 

wealth equals  the current  level of  the  real  stock‐price 
index  

 
State equation for aggregate consumption 
 
Standard pricing equation  is micro‐founded on  the 

consumer´s optimal behavior. 

Against this backdrop, we develop a DSGE-VAR model (see Table 2). First, 
we have determined a vector of endogenous variables to express the model VAR. Then, 
we have defined the vector of VAR variables, where is it established the trade-weighted 
nominal exchange rate in the United States. Therefore, growth in the trade-weighted 
nominal exchange rate causes the U.S. dollar to depreciate. Nevertheless, the DSGE-
VAR estimation requires a hierarchical prior, for this reason, we have carried out the 
DSGE parameter vector. First, we use the DSGE model to generate artificial data ac-
cording to the prior distributions of the DSGE-VAR estimation. Second, these data are 
subsequently taken as priors for the Bayesian VAR estimation [13]. Finally, is neces-
sary to stipulate a posterior distribution: p (Φ,∑u,θ|Yሻ=p(Φ,∑u

|θ, Yሻp(θ|Y) for correctly 
estimating the model 

Table 2: DSGE-VAR Model 

Functions  Variables 

The model VAR 

yt
v=c+B1yt‐1

v +…+Bpyt‐p
v +ut  

 yt
v : represent an nH × 1 vector cor‐

responding  to  endogenous  variables 
for t = 1…, T 

c: Group of terms 
p: The VAR lag length 
[B1, . . ., Bp]: Parameter matrices 
ut:  The  vector  of  forecast  errors 

defined  by  the  multivariate  normal 
distribution N (0; ∑u) 

Vector of VAR variables 
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yt
v'=100×[Δlog(YT, t),Δlog൫YNT,t൯,ΔlogሺCtሻ,ΔlogሺGDPtሻ,4ΔlogሺPtሻ,R

Δlog(𝑇𝑆𝑃t), Δlog(𝑉𝑎𝑅෣௜,௧,ఛ)] 

YT,t: The production in the tourism 
sector 

YNT,t:  The production in the non‐
tourism sector 

Ct: Per capita real consumption 
GDPt: Per capita real GDP 
Pt: Applies the GDP deflator 
Rt: The federal funds rate adjusted 

at the annual rate 
EXt:  The  trade‐weighted  nominal 

exchange rate in Spain 
TSPt: The  tourism  stock  prices  in‐

dex for Spanish companies 

VaR෢ ୧,୲,த: Estimation of the systemic 
interdependence among Spanish tour‐
ism stocks 

The DSGE‐VAR estimation 

Yv=XvΦ+ut 

Yt
v be a T×nH matrix with each row 

consisting of 𝒚𝒕
𝒗ᇱ 

Xv  be  a  T×k matrix  with  the  t‐th 

row  containing  in  xt
v'≡ ቂ1,yt‐1

v' ,…,yt‐p
v'  ቃ 

where k ≡ 1 + p× nH. 
ϕ:  The  maximum‐likelihood  esti‐

mator is calculated according to DSGE 
parameters vector 

DSGE parameters vector 

𝛷෩ሺ𝜃ሻ ൌ ൫𝜆𝑇Г௑ೡ௑ೡሺ𝜃ሻ ൅ 𝑋௩ᇲ
𝑋௩൯

ିଵ
൫𝜆𝑇Г௑ೡ௑ೡሺ𝜃ሻ ൅ 𝑋௩ᇲ

𝑌௩൯ 

θ:  Vector  consisting  of  the  DSGE 
parameters 

EDh:  The  expectation  operator 
conditional  on  the  DSGE  parameter 
vector θ 

 
3. Empirical Results 

The sample period in the valuation of the model has been from 1992Q1 to 
2021Q3, during which data from the Spanish economy have been used. These data have 
been extracted from the Federal Reserve Economic Data (FRED) of the Federal Re-
serve Bank of St. Louis, Eurostat, and SABI (Iberian Balance Sheet Analysis System 
of Bureau Van Dijk). Once the posterior distribution has been estimated, it is also useful 
to perform an estimation of the so-called Marginal Data Density (MDD) for DSGE 

models ( ) ( / ) ( )p Y p Y p d    . In this study, the posterior moments are 

estimated with the three models proposed (DSGE, VAR, and DSGE-VAR). We employ 
the Metropolis algorithm to simulate the posterior distribution to evaluate the accuracy 
of the models, running these algorithms 10,000 times and calculating the means and 
standard deviations of the posterior moment estimates in all runs. Tables 4 report the 
results of the estimates obtained by the different models with the prior distribution pre-
viously inserted and the posterior distribution from the estimation. To guarantee greater 
robustness in the estimates, three stages of the configuration of the DSGE model de-
scribed above have been carried out. Table 4 shows the MDD estimates after the esti-
mation of the models developed. These results demonstrate the greater stability offered 
by the DSGE-VAR model compared to the rest, especially in light of the deviations 
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obtained for three settings. The results of the new Kalman filter with Prior Update im-
prove the results of the Classical Kalman Filter, just as it improves the precision results 
shown in previous works [1,5,6], even if it is small and irregular samples like the one 
used in the present study. 

Table 4. Log MDD Estimates (Base Model)  

    Classical Kalman Filter 
Bayesian Kalman Filter with Prior 

Update 

N Model  
MEAN (Log 

MDD)  
STD (Log 

MDD) 
MEAN (Log 

MDD) 
STD (Log 

MDD) 
Prior Distribution 

10
0 

DSGE -1728.812 0.81 -1357.738 0.49 
VAR -1754.258 0.87 -1384.483 0.55 
DSGE

-VAR 
-1711.593 0.76 -1274.524 0.41 

Posterior Distribution 

50
0 

DSGE -1625.851 0.74 -1236.104 0.39 
VAR -1664.593 0.82 -1286.342 0.44 
DSGE

-VAR 
-1572.294 0.71 -1238.592 0.32 

Note: N is the sample size; STD is the standard deviation 

Table 5 provides the mean and standard deviation of the prior distributions of each 
parameter for Spain. The mean of the posterior distributions and the range of the 90% 
interval estimated by the Bayesian approach are presented. The estimation results of 
some of the structural parameters, such as β, δ, α3, α4, and h, work as the prior means 
according to the structure of the optimal equations used in some previous works [13]. 
The parameter α1 increases from 0.41 to 0.58 but α2 decreases from 0.50 to 0.11. By 
comparison with the non-tourism and public services sectors, the output of the tourism 
sector continues to be more labor-dependent, which is consistent with the realities of 
the tourism sector. On the other side, the coefficients of leisure (ν1), private land (ν2), 
and intertemporal substitution (σ) are estimated as 2.06, 1.97, and 1.98, which after 
dividing the unity by these results shows us the following elasticities 0.485, 0.508 and 
0.505 respectively. In the three cases, the elasticities are less than 1, which is in line 
with previous works [13]. The substitute elasticity between tourism and non-tourism 
goods (θ1) is 0.42.  

Table 5. Estimations results for Spain (Main components) 

    Prior Distribution 

Pos-
terior 
Distri-
bution 

     
90% 

Interval 

        Low High 

Physical Capital Depreciation Rate δ 
Beta 

(0.03,0.00) 
0.03 0.01 0.04 

Output Elasticity of Physical Capital 
in the Tourism Sector 

α1 
Beta 

(0.41,0.10) 
0.58 0.56 0.63 

Output Elasticity of Human Capital in 
the Tourism Sector 

α2 
Beta 

(0.50,0.10) 
0.11 0.07 0.16 

Habit Persistent h 
Beta 

(0.81,0.01) 
0.79 0.73 0.84 
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Elasticity of Leisure ν1 
Gamma 

(2.00,0.10) 
2.06 2.03 2.11 

Elasticity of Private Land ν2 
Gamma 

(2.00,0.10) 
1.97 1.96 2.01 

Elasticity of Intertemporal Substitu-
tion 

σ 
Gamma 

(2.00,0.10) 
1.98 1.97 2.00 

Substitute Elasticity between Tour-
ism, Non-tourism Goods and Public Ser-
vices 

θ1 
Gamma 

(0.42,0.10) 
0.42 0.36 0.47 

Substitute Elasticity between FDI and 
Domestic Investment 

θ2 
Gamma 

(1.45,0.10) 
1.34 1.28 1.40 

Substitute Elasticity between Tour-
ism and Non-tourism Imports 

θ3 
Gamma 

(0.40,0.10) 
0.43 0.39 0.44 

Price Elasticity of Tourism Exports 
(Absolute) 

θEX,T 
Gamma 

(0.40,0.10) 
0.45 0.42 0.47 

Price Elasticity of Non-tourism Ex-
ports (Absolute) 

θE, 
Gamma 

(0.20,0.10) 
0.28 0.24 0.33 

Income Elasticity of Tourism Exports ωT 
Gamma 

(0.75,0.10) 
1.08 1.05 1.15 

Income Elasticity of Non-tourism Ex-
ports 

ωNT 
Gamma 

(0.30,0.10) 
0.07 0.02 0.09 

Autoregressive Coefficient of Return 
Rate 

θtr 
Beta 

(0.80,0.10) 
0.84 0.80 0.90 

Elasticity of Price in the Taylor Rule θp 
Gamma 

(1.70,0.10) 
1.83 1.81 1.85 

Elasticity of GDP in the Taylor Rule θy 
Gamma 

(0.15,0.05) 
0.17 0.16 0.24 

Elasticity of Tourism Exports in Hu-
man Capital Accumulation 

aT 
Gamma 

(0.25,0.10) 
0.51 0.47 0.56 

Elasticity of Non-exports of the Tour-
ism Sector in Human Capital Accumula-
tion 

bT 
Gamma 

(0.05,0.01) 
0.06 0.01 0.11 

Scale Effect of Human Capital Accu-
mulated by the Tourism Sector 

πT 
Gamma 

(0.30,0.10) 
0.24 0.23 0.26 

Elasticity of Non-tourism Exports in 
Human Capital Accumulation 

a T 
Gamma 

(0.30,0.10) 
0.47 0.46 0.51 

Elasticity of Non-exports in the Non-
tourism sector of Human Capital Accu-
mulation 

B T 
Gamma 

(0.05,0.01) 
0.05 0.01 0.07 

Scale Effect of Human Capital Accu-
mulated by the Non-tourism Sector 

Π T 
Gamma 

(0.30,0.10) 
0.42 0.41 0.45 

Depreciation Rate of Human Capital δH 
Gamma 

(0.05,0.01) 
0.08 0.02 0.12 

Spill-over Effect of Public Service on 
Tourism Productivity 

φP, 
Gamma 

(0.10,0.01) 
0.14 0.09 0.17 

Spill-over Effect of Tourism Physical 
Capital on its Productivity 

φT 
Gamma 

(0.05,0.01) 
0.03 0.01 0.04 

Congestion Effect of Physical Capital 
on Tourism Productivity 

φC, 
Gamma 

(0.06,0.01) 
0.05 0.01 0.09 

Spill-over Effect of Public Service on 
Non-tourism Productivity 

φP, 
Gamma 

(0.10,0.01) 
0.14 0.10 0.17 

Spill-over Effect of Non-tourism 
Physical Capital on its Productivity 

φ T 
Gamma 

(0.05,0.01) 
0.08 0.03 0.12 

Finally, to carry out a forecast evaluation, the three versions of the model 
(DSGE, VAR, DSGE-VAR) are estimated with the final configuration of the model 
used by [3] with out-of-sample data, with a horizon of one year. For this, the root-mean-
square error (RMSE) is estimated to analyze the deviation obtained outside the sample 
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by the BKPU filter. Table 6 shows the RMSE results obtained from the posterior dis-
tributions by the different models estimated by the Classical Kalman Filter and Bayes-
ian Kalman Filter with Prior Update, respectively. These results also show greater pre-
cision of the new proposed Kalman filter with out-of-sample data, and also improve the 
precision shown in previous works that performed a forecast evaluation with out-of-
sample data [4]. These simulations with out-of-sample data obtain robust and stable 
precision results, which would rule out possible parameter misspecification estimated 
by the new Kalman filter used (BKPU), a concern shown by previous works [3]. It also 
shows an improvement in precision results compared to other filters used by recent 
works such as the central difference Kalman filter [1,3] and Quadratic Kalman filter 
[6]. Finally, the average run time of the Classical Kalman Filter for this estimate with 
data outside the sample is 0.23 minutes, while the same estimate is made by the BKPU 
method in a time of 0.11 minutes. 

Table 6. Prior and Posterior Distributions 
  Classical Kalman Filter 
  2018Q1 2018Q2 2018Q3 2018Q4 
DSGE 0.78 0.82 0.84 0.88 
VAR 0.85 0.88 0.92 0.96 
DSGE

-VAR 0.74 0.75 0.78 0.82 
  Bayesian Kalman Filter with Prior Update 
  2018Q1 2018Q2 2018Q3 2018Q4 
DSGE 0.43 0.44 0.47 0.48 
VAR 0.52 0.52 0.53 0.55 
DSGE

-VAR 0.38 0.41 0.41 0.43 
 

 
4. Conclusions 

This research provides an additional simulation procedure for the estimation 
of DSGE and VAR models. It is demonstrated that, when properly adjusted to DSGE 
and VAR models, the BKPU technique is more robust than other commonly used algo-
rithms, such as the Classical Kalman Filter. After a comparison of simulations with 
these two Kalman filters carried out successfully on three scenarios of a medium-scale 
Keynesian DSGE model, our results reveal high robustness of the BKPU algorithm for 
small samples with irregular data and possible cases of statistical misspecification, 
which has been a matter of concern shown by the literature in the DSGE and VAR 
model estimation. The results obtained in our research are valid both for the RMSE 
results as a criterion for out-of-sample data and for the marginal data density as a crite-
rion to measure the fit of the in-sample models. Given the high accuracy shown by this 
new algorithm, this study also implies an improvement in the optimization of the cal-
culation of macroeconomic forecasts, since it is not necessary to use any available re-
sources or to carry out an extensive specification of the DSGE models. In addition, our 
research provides an important contribution to the literature on the tourism sector 
through a DSGE model, both in the estimation of the prior and posterior distribution. 
In this model, we analyse the effect of stock price volatility, systemic risk, and tourism 
productivity in the tourism economy. The estimation results reveal that a 10% increase 



12 

in tourism productivity can improve the value-added of the tourism sector by 1.15% 
and increase GDP growth by about 0.74%. Given that Spain is an important tourism 
country, any increase in tourism development will increase GDP by a considerable pro-
portion. Likewise, whereas an increase in tourism productivity leads to a rise in tourism 
prices, an increase in tourism consumption, and, in theory, a drop in tourism investment, 
the positive effect on other sectors produces different consequences. Furthermore, the 
estimation results also reveal that a 10% increase in systemic risk decreases the value-
added of the tourism sector by 1.04%, in turn declining GDP growth by approximately 
1.06%. Considering that one of the main sources of income in Spain is derived from 
the tourism sector, it is very important to consider the systemic risk, which is caused by 
the failure in payments by one or more members of the market system. This can lead to 
a generalized market collapse, particularly affecting companies in the tourism industry. 
Lastly, we observe a slight increase in non-tourist exports, but a small fall in consump-
tion of these non-tourist products and a more persistent decline in investment in our 
Tourism productivity model.  

Furthermore, the accuracy results show how the extended DSGE-VAR model 
is better than the previous DSGE model in the analysed country, both in the estimation 
of the prior and posterior distribution. These results show the higher stability provided 
by the DSGE-VAR model compared to the others, especially in comparison to the de-
viations obtained for three settings. The results of the new Kalman filter with prior 
updates improve the results of the classical Kalman filter, as well as improve the accu-
racy results shown in previous works, even when dealing with small and irregular sam-
ples like the one used in the present study. It would be an interesting idea as future 
research to compare this new Kalman application to another economic and finance in 
order to check the superiority shown in DSGE models. 

In summary, this study offers a significant opportunity to contribute to the field 
of macroeconomic analysis, since the results obtained have important implications for 
public institutions and other interest groups. A policymaker is usually only really inter-
ested in a restricted number of available resources when making a macroeconomic fore-
cast, based only on the variables of interest, an issue that our model has introduced by 
improving the optimization of macroeconomic forecast calculations. In addition, the 
BKPU technique can be extended to a wide variety of problems for which the Classical 
Kalman Filter has been previously applied. For instance, the study of the transmission 
of monetary policy shocks across economic areas and the tourism sector, the construc-
tion of measures of core inflation, and the natural rate of unemployment in country 
settings. Therefore, our study has relevant implications for monetary policy since the 
exchange rate, tourism stock prices and tourism productivity have a significant impact 
on the business cycle.  
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