Skip to main content

Web 3.0: Developments and Directions of the Future Internet Architecture?

  • Conference paper
  • First Online:
Web Services – ICWS 2022 (ICWS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13736))

Included in the following conference series:

Abstract

As a promising emerging technology, Web3.0 has become the focus of more and more manufacturers and researchers. Web3.0 is an integration of network readability, writability, and authenticity. It is not only a new Internet architecture that integrates multiple rising technologies based on decentralization, but also an Internet infrastructure owned and trusted by each individual users. It reshapes the relationship between users and applications, by storing data on the network, rather than on specific servers owned by large service providers, which means that anyone can use this data without creating access credentials or obtaining permission from those monopolistic providers. This vision paper will first review the way the current network services work, then introduce some key technologies closely related to Web3.0, and finally point out the future research directions and potential opportunities, which are expected to give researchers a better understanding of Web3.0.

The work was supported in part by the Key Project of Beijing Natural Science Foundation under M21030, the National Natural Science Foundation of China(NSFC) under Grant 62172054, and the National Key R &D Program of China under Grant 2019YFB1802603.

P. Li, P. Cong, H. Zou, X. Wang and X. He—Authors contribute equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W3C: Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/did-core/. Accessed 15 Oct 2022

  2. W3C: Decentralized Identifiers (DIDs) v1.0. https://www.w3.org/TR/vc-data-model/. Accessed 15 Oct 2022

  3. Hyperledger Indy. https://www.hyperledger.org/use/hyperledger-indy/. Accessed 15 Oct 2022

  4. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp. 1–15 (2018)

    Google Scholar 

  5. Arlitt, M.F., Cherkasova, L., Dilley, J., Friedrich, R., Jin, T.: Evaluating content management techniques for web proxy caches. SIGMETRICS Perform. Eval. Rev. 27(4), 3–11 (2000). https://doi.org/10.1145/346000.346003

    Article  Google Scholar 

  6. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

    Chapter  Google Scholar 

  7. Brown, R.G.: The corda platform: an introduction. Retrieved 27, 2018 (2018)

    Google Scholar 

  8. Buchman, E.: Tendermint: byzantine fault tolerance in the age of blockchains. Ph.D. thesis, University of Guelph (2016)

    Google Scholar 

  9. Buterin, V., et al.: A next-generation smart contract and decentralized application platform. In: White paper, vol. 3, no. 37, p. 2-1 (2014)

    Google Scholar 

  10. Cachin, C., et al.: Blockchains and consensus protocols. The Wild (2017)

    Google Scholar 

  11. Chase, J.M.: Quorum White paper (2016). Accessed 17 Jan 2019

    Google Scholar 

  12. Cong, P., Zhang, Y., Liu, B., Wang, W., Xiong, Z., Xu, K.: A &b: AI and block-based TCAM entries replacement scheme for routers. IEEE J. Sel. Areas Commun. 40(9), 2643–2661 (2022)

    Article  Google Scholar 

  13. Cong, P., et al.: A deep reinforcement learning-based multi-optimality routing scheme for dynamic IoT networks. Comput. Netw. 192, 108057 (2021)

    Article  Google Scholar 

  14. Cong, P., et al.: Break the blackbox! Desensitize intra-domain information for inter-domain routing. In: 2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS), pp. 1–10. IEEE (2022)

    Google Scholar 

  15. Cong, P., Zhang, Y., Wang, W., Xu, K., Li, R., Li, F.: A deep reinforcement learning-based routing scheme with two modes for dynamic networks. In: ICC 2021-IEEE International Conference on Communications, pp. 1–6. IEEE (2021)

    Google Scholar 

  16. Correia, M.: From byzantine consensus to blockchain consensus. In: Essentials of Blockchain Technology, pp. 41–80. Chapman and Hall/CRC, Hoboken (2019)

    Google Scholar 

  17. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 269–282 (2009)

    Google Scholar 

  18. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards scaling blockchain systems via sharding. In: Proceedings of the 2019 international conference on management of data, pp. 123–140 (2019)

    Google Scholar 

  19. Dunphy, P., Petitcolas, F.A.: A first look at identity management schemes on the blockchain. IEEE Secur. Priv. 16(4), 20–29 (2018)

    Article  Google Scholar 

  20. Fan, Y., et al.: DLBN: Group storage mechanism based on double layer blockchain network. IEEE Internet Things J. (2022)

    Google Scholar 

  21. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-stake sidechains. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 139–156. IEEE (2019)

    Google Scholar 

  22. He, X., Zhang, Y., Wang, X.: A scalable nested blockchain framework with dynamic node selection approach for IoT. In: 2022 IEEE International Performance, Computing, and Communications Conference (IPCCC), pp. 108–113. IEEE (2022)

    Google Scholar 

  23. Hong, Z., Guo, S., Li, P., Chen, W.: Pyramid: a layered sharding blockchain system. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, pp. 1–10. IEEE (2021)

    Google Scholar 

  24. Huang, H., et al.: Brokerchain: a cross-shard blockchain protocol for account/balance-based state sharding. In: IEEE INFOCOM (2022)

    Google Scholar 

  25. Kakhki, A.M., Jero, S., Choffnes, D., Nita-Rotaru, C., Mislove, A.: Taking a long look at QUIC: an approach for rigorous evaluation of rapidly evolving transport protocols. In: Proceedings of the 2017 Internet Measurement Conference, pp. 290–303 (2017)

    Google Scholar 

  26. Khalili, R., Gast, N., Popovic, M., Le Boudec, J.Y.: MPTCP is not pareto-optimal: performance issues and a possible solution. IEEE/ACM Trans. Network. 21(5), 1651–1665 (2013)

    Article  Google Scholar 

  27. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 583–598. IEEE (2018)

    Google Scholar 

  28. Kwon, J., Buchman, E.: Cosmos Whitepaper. A Netw. Distrib. Ledgers (2019)

    Google Scholar 

  29. Langley, A., Riddoch, A., Wilk, A., et al.: The QUIC transport protocol: design and internet-scale deployment. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, pp. 183–196 (2017)

    Google Scholar 

  30. Li, P., et al.: Frend for edge servers: reduce server number! Keeping service quality! In: 2021 IEEE 23rd International Conference on High Performance Computing and Communications; 7th International Conference on Data Science and Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud and Big Data Systems and Application (HPCC/DSS/SmartCity/DependSys), Haikou, Hainan, China, 20–22, December 2021, pp. 107–114. IEEE (2021)

    Google Scholar 

  31. Li, P., Zhang, Y., Zhang, H., Wang, W., Xu, K., Zhang, Z.: CRATES: a cache replacement algorithm for low access frequency period in edge server. In: 17th International Conference on Mobility, Sensing and Networking, MSN 2021, Exeter, United Kingdom, 13–15 December 2021, pp. 128–135. IEEE (2021), https://doi.org/10.1109/MSN53354.2021.00033

  32. Liu, Z., et al.: Make web3. 0 connected. IEEE Trans. Depend. Secure Comput. (2021)

    Google Scholar 

  33. Maiyya, S., Zakhary, V., Amiri, M.J., Agrawal, D., El Abbadi, A.: Database and distributed computing foundations of blockchains. In: Proceedings of the 2019 International Conference on Management of Data, pp. 2036–2041 (2019)

    Google Scholar 

  34. Maram, D., et al.: Candid: can-do decentralized identity with legacy compatibility, sybil-resistance, and accountability. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 1348–1366. IEEE (2021)

    Google Scholar 

  35. McConaghy, T., et al.: Bigchaindb: a scalable blockchain database. White paper, BigChainDB (2016)

    Google Scholar 

  36. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  37. Narayanan, A., Verma, S., Ramadan, E., Babaie, P., Zhang, Z.L.: Deepcache: a deep learning based framework for content caching. In: Proceedings of the 2018 Workshop on Network Meets AI and ML, pp. 48–53. ACM (2018)

    Google Scholar 

  38. Nishida, Y., Eardley, P.: MPTCP-multipath TCP. In: WG Meeting, vol. 5 (2011)

    Google Scholar 

  39. Peng, Y., Du, M., Li, F., Cheng, R., Song, D.: FalconDB: blockchain-based collaborative database. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp. 637–652 (2020)

    Google Scholar 

  40. Poon, J., Dryja, T.: The bitcoin lightning network: scalable off-chain instant payments (2016)

    Google Scholar 

  41. Qi, X., Zhang, Z., Jin, C., Zhou, A.: BFT-store: storage partition for permissioned blockchain via erasure coding. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 1926–1929. IEEE (2020)

    Google Scholar 

  42. Qin, K., Gervais, A.: An overview of blockchain scalability, interoperability and sustainability. Hochschule Luzern Imperial College London Liquidity Network (2018)

    Google Scholar 

  43. Sampigethaya, K., Poovendran, R.: A survey on mix networks and their secure applications. Proc. IEEE 94(12), 2142–2181 (2006)

    Article  Google Scholar 

  44. Sharma, A., Schuhknecht, F.M., Agrawal, D., Dittrich, J.: Blurring the lines between blockchains and database systems: the case of hyperledger fabric. In: Proceedings of the 2019 International Conference on Management of Data, pp. 105–122 (2019)

    Google Scholar 

  45. Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.K.R.: Sidechain technologies in blockchain networks: an examination and state-of-the-art review. J. Netw. Comput. Appl. 149, 102471 (2020)

    Article  Google Scholar 

  46. Suratkar, S., Shirole, M., Bhirud, S.: Cryptocurrency wallet: a review. In: 2020 4th International Conference on Computer, Communication and Signal Processing (ICCCSP), pp. 1–7 (2020)

    Google Scholar 

  47. Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2019), pp. 95–112 (2019)

    Google Scholar 

  48. Wiki, B.: Hash Time Locked Contracts (2016)

    Google Scholar 

  49. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. In: White paper, vol. 21, pp. 2327–4662 (2016)

    Google Scholar 

  50. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 931–948 (2018)

    Google Scholar 

  51. Zhang, X., Qi, Z., Min, G., Miao, W., Fan, Q., Ma, Z.: Cooperative edge caching based on temporal convolutional networks. IEEE Trans. Parallel Distrib. Syst. 33(9), 2093–2105 (2022). https://doi.org/10.1109/TPDS.2021.3135257

    Article  Google Scholar 

  52. Zhang, Y., Cong, P., Liu, B., Wang, W., Xu, K.: Air: An AI-based TCAM entry replacement scheme for routers. In: 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS), pp. 1–10. IEEE (2021)

    Google Scholar 

  53. Zhang, Y., et al.: Autosight: distributed edge caching in short video network. IEEE Netw. 34(3), 194–199 (2020). https://doi.org/10.1109/MNET.001.1900345

    Article  Google Scholar 

  54. Zhang, Y.: GraphInf: a GCN-based popularity prediction system for short video networks. In: Ku, W.-S., Kanemasa, Y., Serhani, M.A., Zhang, L.-J. (eds.) ICWS 2020. LNCS, vol. 12406, pp. 61–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59618-7_5

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Li, P., Cong, P., Zou, H., Wang, X., He, X. (2022). Web 3.0: Developments and Directions of the Future Internet Architecture?. In: Zhang, Y., Zhang, LJ. (eds) Web Services – ICWS 2022. ICWS 2022. Lecture Notes in Computer Science, vol 13736. Springer, Cham. https://doi.org/10.1007/978-3-031-23579-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23579-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23578-8

  • Online ISBN: 978-3-031-23579-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics