Skip to main content

Non-traditional 2D Grids in Combinatorial Imaging – Advances and Challenges

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13348))

Abstract

On the one hand, the digital image processing and many other digital applications are mostly based on the square grid. On the other hand, there are two other regular grids, the hexagonal and the triangular grids. Moreover, there are eight semi-regular grids based on more than one type of tiles. These non-traditional grids and their dual grids have various advantages over the square grid, e.g., on some of them no topological paradoxes occur. Most of them have more symmetries, i.e., more directions of symmetry axes and also a smaller angle rotation may transform most of these grids into themselves. However, since most of these grids are not point lattices, we need to face some challenges to work with them; they may define various digital geometries. We show how a good coordinate system can be characterized, what type of digital distances are studied, tomography and distance transform. Other grid transformations, including translations and rotations with some of their interesting properties are mentioned. Mathematical morphology and cell complexes are also shown. The advantages and challenges are overviewed by various examples on the triangular grid, as a characteristic example for a non-traditional grid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdalla, M., Nagy, B.: Dilation and erosion on the triangular tessellation: an independent approach. IEEE Access 6, 23108–23119 (2018). https://doi.org/10.1109/ACCESS.2018.2827566

    Article  Google Scholar 

  2. Abdalla, M., Nagy, B.: Mathematical morphology on the triangular grid: the strict approach. SIAM J. Imaging Sci. 13, 1367–1385 (2020). https://doi.org/10.1137/19M128017X

    Article  MathSciNet  MATH  Google Scholar 

  3. Abuhmaidan, K., Aldwairi, M., Nagy, B.: Vector arithmetic in the triangular grid. Entropy 23(3), paper 373 (2021). https://doi.org/10.3390/e23030373

  4. Abuhmaidan, K., Nagy, B.: Non-bijective translations on the triangular plane. In: 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI 2018, Kosice, Slovakia), pp. 183–188. IEEE (2018). https://doi.org/10.1109/SAMI.2018.8324836

  5. Abuhmaidan, K., Nagy, B.: Bijective, non-bijective and semi-bijective translations on the triangular plane. Mathematics 8(1), paper 29 (2020). https://doi.org/10.3390/math8010029

  6. Alzboon, L., Khassawneh, B., Nagy, B.: Counting the number of shortest chamfer paths in the square grid. Acta Polytechnica Hungarica 17(4), 67–87 (2020). https://doi.org/10.12700/APH.17.4.2020.4.4

    Article  Google Scholar 

  7. Andres, E.: Discrete circles, and discrete rotations. Ph.D. thesis, Universite Louis Pasteur, France (1992)

    Google Scholar 

  8. Andres, E., Largeteau-Skapin, G., Zrour, R.: Shear based bijective digital rotation in triangular grids. HAL report, hal-01900149 (2018/2022)

    Google Scholar 

  9. Andres, E., Largeteau-Skapin, G., Zrour, R.: Shear based bijective digital rotation in hexagonal grids. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 217–228. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_15

  10. Avkan, A., Nagy, B., Saadetoğlu, M.: Digitized rotations of closest neighborhood on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Tavares, J.M.R.S. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 53–67. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05288-1_5

  11. Avkan, A., Nagy, B., Saadetoğlu, M.: On the angles of change of the neighborhood motion maps on the triangular grid. In: 11th International Symposium on Image and Signal Processing and Analysis (ISPA 2019), pp. 76–81. IEEE (2019). https://doi.org/10.1109/ISPA.2019.8868526

  12. Avkan, A., Nagy, B., Saadetoğlu, M.: Digitized rotations of 12 neighbors on the triangular grid. Ann. Math. Artif. Intell. 88(8), 833–857 (2020). https://doi.org/10.1007/s10472-019-09688-w

    Article  MathSciNet  MATH  Google Scholar 

  13. Avkan, A., Nagy, B., Saadetoğlu, M.: A comparison of digitized rotations of neighborhood motion maps of closest neighbors on 2D regular grids. Signal Image Video Process. 16(2), 505–513 (2022). https://doi.org/10.1007/s11760-021-01993-4

    Article  Google Scholar 

  14. Avkan, A., Nagy, B., Saadetoglu, M.: A comparison of 2D regular grids based on digital continuity of rotations. In: ISAIM 2022 (abstract)

    Google Scholar 

  15. Borgefors, G.: Chamfering: a fast method for obtaining approximations of the Euclidean distance in \(N\) dimensions. In: 3rd Scandinavian Conference on Image Analysis, Copenhagen, Denmark, pp. 250–255 (1983)

    Google Scholar 

  16. Borgefors, G.: Distance transformations in digital images. Comput. Vis. Graph. Image Process. 34(3), 344–371 (1986)

    Article  Google Scholar 

  17. Borgefors, G.: A semiregular image grid. J. Vis. Commun. Image Represent. 1(2), 127–136 (1990)

    Article  Google Scholar 

  18. Breuils, S., Kenmochi, Y., Sugimoto, A.: Visiting bijective digitized reflections and rotations using geometric algebra. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 242–254. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_17

  19. Brimkov, W.E., Barneva, R.P.: Analytical honeycomb geometry for raster and volume graphics. Comput. J. 48(2), 180–199 (2005)

    Article  Google Scholar 

  20. Butt, M.A., Maragos, P.: Optimum design of chamfer distance transforms. IEEE Trans. Image Process. 7(10), 1477–1484 (1998)

    Article  Google Scholar 

  21. Comic, L.: A combinatorial coordinate system for the vertices in the octagonal \(C_{4}C_{8}(S)\) grid. In: 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021), pp. 235–240. IEEE (2021)

    Google Scholar 

  22. Conway, J.H., Burgiel, H., Goodman-Strauss, C.: The Symmetries of Things. AK Peters (2008)

    Google Scholar 

  23. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der mathematischen Wissenschaften, vol. 290. Springer, New York (1993). https://doi.org/10.1007/978-1-4757-6568-7

    Book  MATH  Google Scholar 

  24. Das, P.P.: Counting minimal paths in digital geometry. Pattern Recognit. Lett. 12, 595–603 (1991). https://doi.org/10.1016/0167-8655(91)90013-C

    Article  Google Scholar 

  25. Das, P.P.: Best simple octagonal distances in digital geometry. J. Approx. Theory 68, 155–174 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Generalised distances in digital geometry. Inf. Sci. 42, 51–67 (1987)

    Article  MATH  Google Scholar 

  27. Das, P.P., Chakrabarti, P.P., Chatterji, B.N.: Distance functions in digital geometry. Inf. Sci. 42, 113–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Das, P.P., Chatterji, B.N.: Octagonal distances for digital pictures. Inf. Sci. 50, 123–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Das, P.P., Mukherjee, J., Chatterji, B.N.: The t-cost distance in digital geometry. Inf. Sci. 59(1–2), 1–20 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal and triangular arrays. Commun. ACM 15(3), 827–837 (1972)

    Article  MathSciNet  Google Scholar 

  31. Dutt, M., Biswas, A., Nagy, B.: Number of shortest paths in triangular grid for 1- and 2-neighborhoods. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.) IWCIA 2015. LNCS, vol. 9448, pp. 115–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26145-4_9

  32. Farkas, J., Baják, Sz., Nagy, B.: Notes on approximating the Euclidean circle in square grids. Pure Math. Appl. PU.M.A. 17, 309–322 (2006)

    Google Scholar 

  33. Gale, D.: A theorem on flows in networks. Pac. J. Math. 7(2), 1073–1082 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  34. Grünbaum, B., Shephard, G.C.: Tilings by regular polygons. Math. Mag. 50(5), 227–247 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hales, T.: The honeycomb conjecture. Discret. Comput. Geom. 25, 1–22 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hartman, N.P., Tanimoto, S.L.: A hexagonal pyramid data structure for image processing. IEEE Trans. Syst. Man Cybern. 14(2), 247–256 (1984)

    Article  Google Scholar 

  37. Her, I.: A symmetrical coordinate frame on the hexagonal grid for computer graphics and vision. ASME J. Mech. Des. 115(3), 447–449 (1993)

    Article  Google Scholar 

  38. Her, I.: Geometric transformations on the hexagonal grid. IEEE Trans. Image Proc. 4, 1213–1221 (1995)

    Article  Google Scholar 

  39. Kardos, P., Palágyi, K.: Topology preservation on the triangular grid. Ann. Math. Artif. Intell. 75(1), 53–68 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kardos, P., Palágyi, K.: On topology preservation of mixed operators in triangular, square, and hexagonal grids. Discret. Appl. Math. 216, 441–448 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaufman, A.: Voxels as a computational representation of geometry. Presented at the SIGGRAPH 1999/Course 29, Los Angeles Convention Center, Los Angeles, CA, USA, 8–13 August 1999, pp. 14–58 (1999)

    Google Scholar 

  42. Khalimsky, E.D., Kopperman, R., Meyer, P.R.: Computer graphics and connected topologies on finite ordered sets. Topol. Appl. 36 (1990)

    Google Scholar 

  43. Khassawneh, B., Nagy, B.: Polynomial and multinomial coefficients in terms of number of shortest paths. C. R. Acad. Bulgare Sci. 75(4), 495–503 (2022). https://doi.org/10.7546/CRABS.2022.04.03

    Article  MathSciNet  MATH  Google Scholar 

  44. Kiselman, C.O.: Elements of Digital Geometry, Mathematical Morphology, and Discrete Optimization. World Scientific, Singapore (2022)

    Google Scholar 

  45. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, Elsevier Science B.V. (2004)

    Google Scholar 

  46. Kovács, G., Nagy, B., Stomfai, G., Turgay, N.D., Vizvári, B.: On chamfer distances on the square and body-centered cubic grids: an operational research approach. Math. Probl. Eng. 2021, 9, Article ID 5582034 (2021). https://doi.org/10.1155/2021/5582034

  47. Kovács, G., Nagy, B., Turgay, N.D.: Distance on the Cairo pattern. Pattern Recogn. Lett. 145, 141–146 (2021). https://doi.org/10.1016/j.patrec.2021.02.002

    Article  Google Scholar 

  48. Kovács, G., Nagy, B., Vizvári, B.: On weighted distances on the Khalimsky grid. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 372–384. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_29

    Chapter  Google Scholar 

  49. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances and digital disks on the Khalimsky grid. J. Math. Imaging Vis. 59(1), 2–22 (2017). https://doi.org/10.1007/s10851-016-0701-5

    Article  MATH  Google Scholar 

  50. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the trihexagonal grid. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 82–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_8

    Chapter  Google Scholar 

  51. Kovács, G., Nagy, B., Vizvári, B.: Weighted distances on the truncated hexagonal grid. Pattern Recogn. Lett. 152, 26–33 (2021). https://doi.org/10.1016/j.patrec.2021.09.015

    Article  Google Scholar 

  52. Kovalevsky, V.: Algorithms in digital geometry based on cellular topology. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 366–393. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_27

    Chapter  Google Scholar 

  53. Kovalevsky, V.A.: Geometry of Locally Finite Spaces (Computer Agreeable Topology and Algorithms for Computer Imagery), editing house Dr. Bärbel Kovalevski, Berlin (2008)

    Google Scholar 

  54. Luczak, E., Rosenfeld, A.: Distance on a hexagonal grid. IEEE Trans. Comput. 5, 532–533 (1976)

    Article  MATH  Google Scholar 

  55. Lukić, T., Nagy, B.: Regularized binary tomography on the hexagonal grid. Physica Scripta 94, paper 025201, 9 p. (2019). https://doi.org/10.1088/1402-4896/aafbcb

  56. Matej, S., Herman, G.T., Vardi, A.: Binary tomography on the hexagonal grid using Gibbs priors. Int. J. Imaging Syst. Technol. 9, 126–131 (1998)

    Article  Google Scholar 

  57. Matej, S., Vardi, A., Herman, G.T., Vardi, E.: Binary tomography using Gibbs priors. In: Herman, G.T., Kuba, A. (eds.) Discrete Tomography: Foundations, Algorithms and Applications, chap. 8, pp. 191–212. Birkhäuser, Boston (1999)

    Google Scholar 

  58. Middleton, L., Sivaswamy, J.: Hexagonal Image Processing: A Practical Approach. Springer, London (2005)

    MATH  Google Scholar 

  59. Mir-Mohammad-Sadeghi, H., Nagy, B.: On the chamfer polygons on the triangular grid. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 53–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_5

    Chapter  Google Scholar 

  60. Moisi, E., Nagy, B.: Discrete tomography on the triangular grid: a memetic approach. In: 7th IEEE International Symposium on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, pp. 579–584. IEEE (2011)

    Google Scholar 

  61. Mukherjee, J.: Linear combination of weighted t-cost and chamfering weighted distances. Pattern Recogn. Lett. 40, 72–79 (2014)

    Article  Google Scholar 

  62. Mukhopadhyay, J.: Approximation of Euclidean Metric by Digital Distances. Springer, Heidelberg (2020)

    Book  MATH  Google Scholar 

  63. Nagy, B.: Finding shortest path with neighborhood sequences in triangular grids. In: Proceedings of ITI-ISPA 2001: 2nd IEEE R8-EURASIP International Symposium on Image and Signal Processing and Analysis, Pula, Croatia, pp. 55–60. IEEE (2001)

    Google Scholar 

  64. Nagy, B.: Metrics based on neighbourhood sequences in triangular grids. Pure Math. Appl. 13, 259–274 (2002)

    MathSciNet  MATH  Google Scholar 

  65. Nagy, B.: Shortest path in triangular grids with neighbourhood sequences. J. Comput. and Inf. Tech. 11, 111–122 (2003)

    Article  Google Scholar 

  66. Nagy, B.: Distance functions based on neighbourhood sequences. Publicationes Mathematicae Debrecen 63, 483–493 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  67. Nagy, B.: A family of triangular grids in digital geometry. In: 3rd International Symposium on Image and Signal Processing and Analysis (ISPA 2003), Rome, Italy, pp. 101–106. IEEE (2003)

    Google Scholar 

  68. Nagy, B.: A symmetric coordinate frame for hexagonal networks. In: Theoretical Computer Science - Information Society (ACM Conference), Ljubljana, Slovenia, pp. 193–196 (2004)

    Google Scholar 

  69. Nagy, B.: Generalized triangular grids in digital geometry. Acta Mathematica Academiae Paedagogicae Nyiregyháziensis 20, 63–78 (2004)

    MATH  Google Scholar 

  70. Nagy, B.: Characterization of digital circles in triangular grid. Pattern Recogn. Lett. 25(11), 1231–1242 (2004). https://doi.org/10.1016/j.patrec.2004.04.001

    Article  Google Scholar 

  71. Nagy, B.: Calculating distance with neighborhood sequences in the hexagonal grid. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 98–109. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30503-3_8

    Chapter  Google Scholar 

  72. Nagy, B.: Metric and non-metric distances on \(\mathbb{Z} ^n\) by generalized neighbourhood sequences. In: 4th International Symposium on Image and Signal Processing and Analysis (ISPA 2005), Zagreb, Croatia, pp. 215–220. IEEE (2005)

    Google Scholar 

  73. Nagy, B.: Transformations of the triangular grid. In: Third Hungarian Conference on Computer Graphics and Geometry (GRAFGEO), Budapest, Hungary, pp. 155–162 (2005)

    Google Scholar 

  74. Nagy, B.: Geometry of neighborhood sequences in hexagonal grid. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 53–64. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_5

    Chapter  Google Scholar 

  75. Nagy, B.: Distances with neighbourhood sequences in cubic and triangular grids. Pattern Recogn. Lett. 28, 99–109 (2007). https://doi.org/10.1016/j.patrec.2006.06.007

    Article  Google Scholar 

  76. Nagy, B.: Nonmetrical distances on the hexagonal grid using neighborhood sequences. Pattern Recogn. Image Anal. 17, 183–190 (2007)

    Article  Google Scholar 

  77. Nagy, B.: Optimal neighborhood sequences on the hexagonal grid. In: 5th International Symposium on Image and Signal Processing and Analysis, (ISPA 2007), Istanbul, Turkey, pp. 310–315. IEEE (2007)

    Google Scholar 

  78. Nagy, B.: Distance with generalized neighbourhood sequences in \(n\)D and \(\infty \)D. Discret. Appl. Math. 156(12), 2344–2351 (2008). https://doi.org/10.1016/j.dam.2007.10.017

    Article  MathSciNet  MATH  Google Scholar 

  79. Nagy, B.: Isometric transformations of the dual of the hexagonal lattice. In: Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, pp. 432–437. IEEE (2009)

    Google Scholar 

  80. Nagy, B.: Cellular topology on the triangular grid. In: Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol. 7655, pp. 143–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34732-0_11

    Chapter  Google Scholar 

  81. Nagy, B.: Weighted distances on a triangular grid. In: Barneva, R.P., Brimkov, V.E., Šlapal, J. (eds.) IWCIA 2014. LNCS, vol. 8466, pp. 37–50. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07148-0_5

    Chapter  Google Scholar 

  82. Nagy, B.: Cellular topology and topological coordinate systems on the hexagonal and on the triangular grids. Ann. Math. Artif. Intell. 75(1-2), 117–134 (2015). https://doi.org/10.1007/s10472-014-9404-z

  83. Nagy, B.: Application of neighborhood sequences in communication of hexagonal networks. Discret. Appl. Math. 216, 424–440 (2017). https://doi.org/10.1016/j.dam.2015.10.034

    Article  MathSciNet  MATH  Google Scholar 

  84. Nagy, B.: Binary morphology on the triangular grid. In: Workshop on Digital Topology and Mathematical Morphology on the Occasion of the Retirement of Gilles Bertand, ESIEE Paris (2019). (Preconference Workshop of DGCI 2019)

    Google Scholar 

  85. Nagy, B.: On the number of shortest paths by neighborhood sequences on the square grid. Miskolc Math. Notes 21, 285–301 (2020). https://doi.org/10.18514/MMN.2020.2790

    Article  MathSciNet  MATH  Google Scholar 

  86. Nagy, B.: Diagrams based on the hexagonal and triangular grids. Acta Polytechnica Hungarica 19(4), 27–42 (2022)

    Article  Google Scholar 

  87. Nagy, B., Abuhmaidan, K.: A continuous coordinate system for the plane by triangular symmetry. Symmetry 11(2), 17, Article no. 191 (2019). https://doi.org/10.3390/sym11020191

  88. Nagy, B., Akkeleş, A.: Trajectories and traces on non-traditional regular tessellations of the plane. In: Brimkov, V.E., Barneva, R.P. (eds.) IWCIA 2017. LNCS, vol. 10256, pp. 16–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59108-7_2

    Chapter  Google Scholar 

  89. Nagy, B., Khassawneh, B.: On the number of shortest weighted paths in a triangular grid. Mathematics 8(1), paper 118 (2020). https://doi.org/10.3390/math8010118

  90. Nagy, B., Lukić, T.: Dense projection tomography on the triangular tiling. Fund. Inform. 145, 125–141 (2016). https://doi.org/10.3233/FI-2016-1350

    Article  MathSciNet  MATH  Google Scholar 

  91. Nagy, B., Lukić, T.: Binary tomography on triangular grid involving hexagonal grid approach. In: Barneva, R.P., Brimkov, V.E., Tavares, J.M.R.S. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 68–81. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05288-1_6

    Chapter  Google Scholar 

  92. Nagy, B., Lukić, T.: Binary tomography on the isometric tessellation involving pixel shape orientation. IET Image Proc. 14(1), 25–30 (2020). https://doi.org/10.1049/iet-ipr.2019.0099

    Article  Google Scholar 

  93. Nagy, B., Moisi, E.V.: Binary tomography on the triangular grid with 3 alternative directions - a genetic approach. In: 22nd International Conference on Pattern Recognition (ICPR 2014), Stockholm, Sweden, pp. 1079–1084. IEEE Computer Society (2014). https://doi.org/10.1109/ICPR.2014.195

  94. Nagy, B., Moisi, E.V.: Memetic algorithms for reconstruction of binary images on triangular grids with 3 and 6 projections. Appl. Soft Comput. 52, 549–565 (2017). https://doi.org/10.1016/j.asoc.2016.10.014

    Article  Google Scholar 

  95. Nagy, B., Moisi, E.V., Cretu, V.I.: Discrete tomography on the triangular grid based on Ryser’s results. In: 8th International Symposium on Image and Signal Processing and Analysis (ISPA 2013), Trieste, Italy, pp. 794–799. IEEE (2013). https://doi.org/10.1109/ISPA.2013.6703846

  96. Nagy, B., Strand, R.: Approximating Euclidean circles by neighbourhood sequences in a hexagonal grid. Theoret. Comput. Sci. 412, 1364–1377 (2011). https://doi.org/10.1016/j.tcs.2010.10.028

    Article  MathSciNet  MATH  Google Scholar 

  97. Nagy, B., Strand, R., Normand, N.: A weight sequence distance function. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 292–301. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_25

    Chapter  Google Scholar 

  98. Nagy, B., Strand, R., Normand, N.: Distance functions based on multiple types of weighted steps combined with neighborhood sequences. J. Math. Imaging Vis. 60, 1209–1219 (2018). https://doi.org/10.1007/s10851-018-0805-1

  99. Nagy, B., Strand, R., Normand, N.: Distance transform based on weight sequences. In: Couprie, M., Cousty, J., Kenmochi, Y., Mustafa, N. (eds.) DGCI 2019. LNCS, vol. 11414, pp. 62–74. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14085-4_6

    Chapter  Google Scholar 

  100. Pluta, K., Romon, P., Kenmochi, Y., Passat, N.: Honeycomb geometry: rigid motions on the hexagonal grid. In: Kropatsch, W.G., Artner, N.M., Janusch, I. (eds.) DGCI 2017. LNCS, vol. 10502, pp. 33–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66272-5_4

    Chapter  MATH  Google Scholar 

  101. Pluta, K., Roussillon, T., Coeurjolly, D., Romon, P., Kenmochi, Y., Ostromoukhov, V.: Characterization of bijective digitized rotations on the hexagonal grid. J. Math. Imaging Vis. 60(5), 707–716 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  102. Radványi, A.G.: On the rectangular grid representation of general CNN networks. Int. J. Circuit Theory Appl. 30(2–3), 181–193 (2002)

    Article  MATH  Google Scholar 

  103. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recogn. 1, 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  104. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  105. Saadat, M.R., Nagy, B.: Cellular automata approach to mathematical morphology in the triangular grid. Acta Polytechnica Hungarica (J. Appl. Sci.) 15(6), 45–62 (2018)

    Google Scholar 

  106. Saadat, M., Nagy, B.: Digital geometry on the dual of some semi-regular tessellations. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 283–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-76657-3_20

    Chapter  MATH  Google Scholar 

  107. Stojmenovic, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8, 1036–1042 (1997)

    Article  Google Scholar 

  108. Strand, R., Nagy, B.: A weighted neighbourhood sequence distance function with three local steps. In: 7th International Symposium on Image and Signal Processing and Analysis (ISPA 2011), Dubrovnik, Croatia, pp. 564–568. IEEE (2011)

    Google Scholar 

  109. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing admissible rotation angles from rotated digital images. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 99–111. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78275-9_9

    Chapter  Google Scholar 

  110. Wiederhold, P., Morales, S.: Thinning on quadratic, triangular, and hexagonal cell complexes. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 13–25. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78275-9_2

    Chapter  Google Scholar 

  111. Yamashita, M., Honda, N.: Distance functions defined by variable neighborhood sequences. Pattern Recogn. 17, 509–513 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  112. Yamashita, M., Ibaraki, T.: Distances defined by neighborhood sequences. Pattern Recogn. 19, 237–246 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the work of many of his collaborators, including his PhD students and discussions with various members of the community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedek Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nagy, B. (2023). Non-traditional 2D Grids in Combinatorial Imaging – Advances and Challenges. In: Barneva, R.P., Brimkov, V.E., Nordo, G. (eds) Combinatorial Image Analysis. IWCIA 2022. Lecture Notes in Computer Science, vol 13348. Springer, Cham. https://doi.org/10.1007/978-3-031-23612-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23612-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23611-2

  • Online ISBN: 978-3-031-23612-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics