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Abstract. In this publication, the model by Ramsey, Pierce, and Bow-
man for finding the hierarchical order of the various sectors of an econ-
omy, conceiving each of them as users or suppliers for other sectors of
the economy, is investigated. Computational results for a benchmark in-
stance are provided.
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1 Introduction

In 1969, Ramsey, Pierce, and Bowman considered the problem to find a hier-
archical order of the various sectors of an economy, conceiving each of them
as users or suppliers of goods and services for other sectors, including itself
[1]. For this purpose, an exchange matrix J between the various sectors is con-
sidered with J(i,7) > 0 being the value of all products of sector ¢ which are
used for manufacturing products of a specified normalized value in sector j.
Examples of these sectors are banks and insurance companies, the automobile
industry, the chemical industry, publishing companies, agriculture and fishing,
transport, restaurants, but also non-profit organizations like churches, and the
entertainment industry. The exchange matrix is generally asymmetric for data
from real-world economies.

The problem the Ramsey-Pierce-Bowman (RPB) model treats is to find a
hierarchical order o of N economic sectors in the way that o(1) is the sector
buying products of the largest value from other sectors, whereas o(N) is the
sector providing the largest-valued supply of products to other sectors. Thus,
o(1) is called the largest user, o(N) the largest supplier. To solve this problem,
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a cost function or Hamiltonian to be minimized is defined in [1]:

N-1 N
Hio)= 3 7 Joi), o) = 3. J(o(i),0(3)). (1)

i=1 j=i+1 i<j
This Hamiltonian exhibits some very interesting properties [1]:

— If J is a symmetric matrix, then H; = const, as for each permutation o,
either (i) < o(j) or o(i) > o(j) for @ # j. Thus, either J(o(i),o(j)) or
J(0(j),0(i)) is part of the upper triangular matrix and adds to the total
costs H j(o) of the configuration o. If now J(o(i),0(5)) = J(o(j),0(i)) for a
pair (i, ), it does not make any difference which of these two values is added
to HJ(O').

— Furthermore, the Hamiltonian # ; is additive with respect to the underlying
exchange matrix J: let J = K + L, then

Hi (o) =H,y(0)

=2 J(a(1),0(5))

= ; (K(a(i),0(4)) + L(a (i), 0(5))) )
= ;K(U(i)aa(]’)) + ;L(U(Z')J(j))
=Hg(o)+Hi(o).

Combining these two properties, the aim of the optimization process can be
described more precisely: let

K (i,j) = min{J (4, ), J (j, i)} (3)

and

L(i,j) = J(i,4) — K(i, 7). (4)
As K is symmetric, H = const is a flow amount independent of the hierarchical
order of the economic sectors in the exchange matrix and thus plays no role in
the optimization process. Please note that the original optimization problem
to minimize H; is thus equivalent to the minimization of Hy, in which only
the differences between the flows within each pair (i, j) of economic sectors are
considered.

The RPB model is of great interest as it is related to both infinite-dimensional
spin glass models, like the Sherrington-Kirkpatrick (SK) model [2], and to the
Traveling Salesman Problem (TSP) [3, 4]. The Hamiltonian of the SK model and
related models is given by

Hy(o) == J(i5)S:S; (5)

1<j
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with the configuration o being comprised of N spins S;, usually taking the
values £1. Here J is a symmetric matrix with J(4,j) = J(j,4) describing the
interaction between the spins S; and S;. The optimization problem consists of
finding optimum spin values leading to a minimum energy value. The traveling
salesman has the task to find that permutation o, for which the Hamiltonian

N—-1
Hy(o) = J(o(N),o(1)) + Z J(o(i),o(i + 1)) (6)

becomes minimal. Here J(i,7) denotes the distance between two nodes i and
j, usually measured in units of either length or time. Thus, the RPB model is
right in the middle between the spin glass models and the TSP: like in the SK
model, all entries of the upper triangular part of the exchange matrix are added
to the cost function value, but one tries to find the optimum permutation for
minimizing the energy like for the TSP.

For the TSP, Kobe and Klotz introduced a frustration measure m [5] which
they called misfit parameter and which is defined as

Hy(oo) — HY
5

m =

(7)

with o being the optimum configuration and ’Hf}i being the cost function of an
idealized unfrustrated system in which each node i can be connected to its two
nearest neighbors nq(¢) and ns (i), i.e.,

a1 a N : :
H =§ZJ(n1(z),z)+J(z,n2(z)). (8)

The larger the misfit, the larger the deviation from this idealized trivial problem
and thus the larger the frustration. A similar measure can be defined for the
RPB problem as
Hy(o0) — Hi
m=—————, 9
o )
with oy being the optimum hierarchy and H g being the constant energy value
of the symmetrized trivial problem.

2 Other Ways of Defining a Hierarchical Order

The question arises why such a complex optimization problem has to be pro-
posed for finding the hierarchical order of the various sectors of an economy
and whether this problem definition could not be replaced by a much simpler
approach, which introduces classification figures for all sectors, sorts these num-
bers according to their sizes, and leads to a result identical to the order one
gets after an exact optimization of the RPB problem. There are various ways of
how to define such classification figures, which shall be illustrated with a small,
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randomly created toy example. For this small instance, let N = 4 be the number

of sectors and
6725

8871
1782
4613

be the exchange matrix. When defining the classification figure of sector i as

N
¢ = Z J(i, §), (10)

J#i

we get the values ¢; = 14, ¢o = 16, ¢c3 = 10, and ¢4 = 11. As J(i,j) is the value
of the products sold from sector ¢ to sector j, ¢; is the sum of the values of the
products sold by sector 4 to all other sectors, such that this observable considers
the problem of finding a hierarchical order from a supplier’s point of view. When
ordering the values of ¢; according to their sizes, we get the hierarchical order
o. = (3412), as 0.(IN) has to be the largest supplier. Alternatively, we can define
a classification figure as

N
&=y J(i) (11)
o
and thus consider this problem from a user’s point of view. Here we get the
values ¢; = 13, ¢o = 20, ¢g3 = 10, and ¢4 = 8. We achieve the hierarchical
order oz = (2134), as 0z(1) has to be the largest user. The two observables ¢
and ¢ consider different aspects of this problem and thus lead to different results.
There is of course a way of combining these aspects by considering the differences
between the entries just as in the last section and defining

N
& =ci—& =Y (Ji,5) = J(j, ). (12)

j=1

Here we get the values ¢; = 1, ¢ = —4, é3 = 0, ¢4 = 3 and thus the order
oz = (2314). When solving the RPB optimization problem for this toy instance,
we get the unique optimum configuration orpp = (2431) with a ground state
energy value of 22. The other configurations exhibit cost function values in the
range [23;29].

Summarizing, we find that these different approaches lead to different hi-
erarchical orders and that none of these simple approaches is able to produce
a result which is optimum for the optimization problem proposed by Ramsey,
Pierce, and Bowman. Although these simple approaches consider different as-
pects of a hierarchical ordering and might also have their justifications in some
economic theories, we want to stick with the complex problem Ramsey, Pierce,
and Bowman had to solve in their context, which intends to find a hierarchical
ordering from the supplier’s and the user’s point of view simultaneously.
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3 Computational Results for a Benchmark Instance

0.1
=
g 0.01
0.001 ¢

1e-04
1

Fig. 1. The distribution function of the nondiagonal nonvanishing entries in the ex-
change matrix J of the benchmark instance is given as ~ 1.3 - 10* x J 2.

In their publication of 1969 [1], Ramsey, Pierce, and Bowman also provided
a benchmark instance comprised of a 37 x 37 matrix J based on the exchange
of goods and services within the United States of America of the year 1947.
Those entries in J that are marked as asterisks and thus classified as marginal
in [1] shall be set to zero. The nonvanishing nondiagonal entries of J are power
law distributed with an exponent of —2, as shown in Fig. 1. The mean value
of all nondiagonal entries is ~ 108.75, the maximum is 4804. The authors were
able to find an optimum solution for this benchmark instance consisting of 37
economic sectors with the ground state energy Hj(og) = 25306, consisting of
HK(U()) = 18650 and HL(UO) = 6656.

For this publication, this benchmark instance shall be treated with the Sim-
ulated Annealing (SA) algorithm [6] and its deterministic variant [7], which
is usually called Threshold Accepting (TA) [8]. When applying SA, the pro-
posed optimization problem is considered as a classical physical system, which
is gradually cooled down in an annealing process, thus being transferred from
a high-energetic unordered regime to a low-energetic ordered solution. In each
temperature step, several moves are applied to the system changing the config-
uration. When using SA, these moves are accepted according to the Metropolis
acceptance criterion [9] with the acceptance probability

1 if AH; <0

W(Ucurrent - UneW) = { exp(—AH.]/T) otherwise (13)

with the energy difference AH ; = H j(0new) — Hj(Ccurrent) between the current
configuration ocureny and the tentative new configuration oyey. T denotes the
temperature. For TA, the acceptance criterion

1 ifAH,; <T

14
0 otherwise (14)

W(Ucurrent — Unew) = {
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is used. Thus, every move is accepted which leads either to an improvement or
to a deterioration of a size which must not be larger than the threshold value T
In case of rejection, one sets opew = Tcurrent -

%j >O%
0

Fig. 2. Graphic illustration of the moves used for changing the configuration of the
RPB model which is drawn like for a TSP with open end points: EXC (top left), L20
(top right), and L3O (bottom)

As the system size N = 37 of this benchmark instance is very small, it is
sufficient to work with small moves only which do not change a configuration
very much. Three small moves which are also commonly used for the TSP [10]
have been implemented for the RPB model and are graphically illustrated in Fig.
2, in the way as if they were applied to a TSP with open end points. The various
sectors of the economy are drawn as points on the plane. They are connected with
edges picturing the sequence of these sectors in the current configuration. The
Exchange move (EXC), which is shown in the top-left picture of Fig. 2, swaps
two economic sectors in the configuration o. The Lin-2-Opt move (L20) [11,12]
cuts two randomly selected edges in the sequence o, turns the partial sequence
between these two cuts around, thus changing its direction, and reconnects it
with the usually two other partial sequences. Please note that in contrast to
the TSP, for which mostly a closed tour is considered, the RPB model has
open boundary conditions, such that also the cases have to be considered that
there is no partial sequence before and after the partial sequence to be turned
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around and the whole sequence changes its direction after the application of
the L20, or that there is only one of them. The Lin-3-Opt move (L30) cuts
three randomly selected edges in the sequence, thus usually creating four partial
sequences, exchanges the positions of the second and the third partial sequence,
and reconnects the partial sequences. Again, there are special cases of the L3O,
in which there are overall only two partial sequences to be exchanged or three
partial sequences, two of which change their positions. Each of these three move
routines is called with probability %
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Fig. 3. Computational results for the application of SA (left) and TA (right) to the
benchmark instance of the RPB problem: mean energy (H;) (top), specific heat C
(middle), and acceptance rates A; for ¢ € { L20, L30, EXC } (bottom)
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Analogously to the SK model and the TSP [10], one finds that it is best
to cool this benchmark instance of the RPB problem in an exponential way; a
cooling factor of 0.9 is used. The initial temperature is determined automatically
in a short random walk at the beginning, the final temperature is set to 5 x 1073,
At the beginning of each temperature step, 10,000 Monte Carlo sweeps (MCS)
are performed before the first measurement is taken. 5,000 measurements are
taken, between which 10 MCS are performed. The results shown in Fig. 3 are
averaged over these measurements. The top row of Fig. 3 shows the sigmoidal
decrease of the mean energy (H ;) with decreasing temperature T' over three
orders of magnitude of the temperature. Thus, the system orders itself on a
logarithmic temperature scale. The decrease of the mean energy is steeper in
the case of TA than in the case of SA. Analogous results are found for the SK
model and for the TSP [10]. The middle row displays the specific heat C, which
is measured via the identity C' = Var(# ;) /T? found in thermal equilibrium. For
TA, the height of the peak is much smaller than for SA, the peak lies at slightly
higher values of T. For both cases, a small bulge can be seen at T ~ 1000,
such that the question arises whether there is a small clustering and ordering
effect. The bottom row shows the decrease of the acceptance rates of the various
moves with decreasing T'. The acceptance rate of EXC decreases slower than the
acceptance rates of the L20 and of the L30O. This finding, which is in contrast
to corresponding results for the TSP [10,13], can be easily explained. When
calculating the energy difference AH; for the decision whether to accept or
reject the move, the number of addends to be summed up is of the order of
the system size N for EXC, whereas it is O(N?) for L20 and L3O, such that
the possible values for the energy differences are much larger for L20 and L30.
(Contrarily, there are 4 addends to AH; when applying the L20 to symmetric
TSPs, 6 addends for the .30, and 8 addends for the EXC, independently of the
system size.) For high temperatures, the acceptance rate of the L3O is slightly
larger than the acceptance rate of the L20, then the curves for the acceptance
rates of the L20 and L3O cross and the decrease is steeper for the L3O than for
the L20. At low temperatures, the acceptance rate of the L20 approaches the
acceptance rate of the EXC.

Nearly all optimization runs end in a configuration with the global minimum
energy value 25306, but there are different configurations with this minimum
value. Therefore, this benchmark instance has a degenerate ground state. The
extent of such degeneracies can be studied with the parallel Searching for Back-
bones algorithm, which was initially developed for the TSP [14] and later on
also applied to extensions of the TSP [15,16] and to spin glass models [17]. The
degeneration of the ground state of the benchmark instance studied here is re-
stricted to the first five entries of the permutation vector o and thus lies at the
side of the largest users, whereas there is a strictly given optimum order for the
largest suppliers. The largest users are non-profit organizations, amusements,
scrap & miscellaneous industries, eating & drinking places, and ocean trans-
portation, whereas the largest suppliers are transport via railroad and trucks,
electric power plants, and banks and insurance companies. Please note that the
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results for the degeneracy and for the otherwise hierarchical order of the vari-
ous economic sectors apply to this benchmark instance only. Mostly, the ground
states of instances of the RPB problem will not be degenerate.

4 Conclusion and Outlook

In this paper, the properties of the widely unknown Ramsey-Pierce-Bowman
problem are investigated: they introduced a model for finding a hierarchical
order of the various sectors of an economy, in the viewpoint of users, which need
to buy a lot of products from other sectors for their own production, and of
suppliers, which earn money by providing their goods as preproducts to other
sectors. According to different economic theories, either the largest suppliers or
the largest users are the most important sectors of the economy. Therefore, it
is of great necessity to know them. It turns out that this problem is located
between the Traveling Salesman Problem, in which also an optimum sequence
has to be found, and infinite-dimensional spin glass models, which make also
use of the complete upper triangular part of the interaction matrix. After the
derivation of some interesting properties of this model and showing that it cannot
be trivially solved, the original benchmark instance is optimized using Simulated
Annealing and the related Threshold Accepting optimization technique. It is
found that the solution of this problem provided in [1] is indeed optimal, but that
the benchmark instance exhibits a degenerate ground state. The computational
results are similar to those obtained for the TSP and the SK model.

We will continue the investigation of this model, especially by comparing
these results for data of the year 1947 with results for more recent years in order
to see the change of the importance of the various sectors for the US economy.
We expect that e.g. the scrap industry has changed its role from a user to an
important supplier. The RPB model has also many other applications: in the
foreign trade, suppliers have a trade deficit, whereas the users have a trade sur-
plus. In political sciences, the movement of voters between the various parties is
studied, here the suppliers are those parties which lose votes to other parties. A
further application is the investigation of migration processes of peoples: users
are immigration countries, suppliers emigration countries. Furthermore, we want
to investigate the properties of the exchange matrices of these and related prob-
lems and see whether they also exhibit scale free properties like the exchange
matrix of the benchmark instance we investigated here. Finally, we also want to
study the problem of detecting the importance of an economic sector as user or
supplier also with other algorithms, e.g. with a flow analysis using the infomap
algorithm [19].
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