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Abstract

Community detection is an important topic in graph mining and is of great interest

in various fields and tremendous real-world applications. Finding and analyzing

community structure can help us understand the network components, their re-

lationship, and the functionality of the underlying complex networks. A large

number of networks representing real systems are directed. The existing commu-

nity detection methods for directed graphs suffer from one or more drawbacks

when applied to real-world datasets. For example, many common methods ig-

nore edge directions and apply methods that were developed for undirected ones.

Moreover, most of the methods are not easily scalable to very large graph datasets.

In this research, we have developed a new scalable Map-Reduce algorithm to

discover PageRank based hierarchical communities in directed graphs. One major

difference of our approach is that we seek to find a community centered around the

core node with an upper and a lower hierarchical structure along the core node’s

directional edges. Nodes within our generated hierarchical community display

similar importance ratings compared to the nodes outside the community. We have

demonstrated in this thesis that our algorithm can find hierarchical communities

by applying it on several real-world datasets with different sizes. We have also

evaluated the effect of the PageRank value of the core node and the PageRank
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threshold on the obtained communities in terms of the community coefficient and

community size. Our validation experiments have proven that the communities

generated from our method show strong connections among the nodes inside the

community. We believe that this method is particularly suitable for detecting

communities in the directed graphs with the structure of the flow hierarchy such

as citation networks, trust networks, and defeat networks.
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Chapter 1
Introduction

1.1 Background

A graph is a structure formed by a set of nodes (or vertices) and a set of edges (or

links) that are connections between pairs of nodes. It is an extremely useful tool

that has been used to represent a wide variety of systems in different domains.

Many complex systems, including social systems like friendship networks and col-

laboration networks, biological systems like protein-protein interaction, genetic

interaction and metabolic networks, technological systems like hyperlink struc-

tures on the World Wide Web, and physical systems, can be modeled by graphs

or networks. Note that through this thesis, the terms ’graph’ and ’network’ will

be used interchangeably.

The majority of real-world networks are not randomly organized; they have

been shown to display meaningful patterns or relations that reveal the underlying

structural properties of the systems. For example, a graph representing Facebook

friendship typically contains highly connected regions because the friends of an

individual are also very likely to be friends and thus are connected as well. This

kind of pattern or structure is often referred to as clustering or community. More

formally, a cluster or community in a network is defined as a group of connected

nodes sharing one or more common measurable properties. In the example of
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social media network presented above, a cluster is a group of tightly connected

individuals who interact more frequently with members within the group than

those outside the group; in a protein-protein interaction network, a cluster can

be a set of proteins that demonstrate greater similarities among proteins in the

same cluster than in different clusters [1]; in a web networks, a cluster can be a

collection of web pages that are highly topically related [2].

Community detection is a very important topic. Finding community structures

in networks can help us understand and visualize the structure of the networks,

network components, and their relationships in the systems, as it provides a sim-

plified representation of the complex interactions. Therefore, developing more

efficient and accurate clustering strategies will help researchers better analyze the

network and reveal interesting patterns in many domains.

1.2 Community Detection in Directed Graphs

A large number of real-world graph data are intrinsically directed and the direct-

edness of edges is an essential feature of the system. Here we list examples of

directed graphs in several applications:

• Trust network: With the growth of online communication and services, the

topic of trust has become increasingly important in the social media, net-

work security community, and e-commerce industry [3]. Trust information

plays an essential role in facilitating interactions, transactions and collab-

orations among the network members. It also helps users make decisions,

filter information and develop communities with respect to whom to trust

and why [4]. In a trust network of an online retail website, for example, a

node represents a person who can be either a customer or a vendor, and an

edge from u to v represents that the customer u trusts the vendor v.
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• Citation network: Since the analysis of citation network was initially started

by Garfield et al. in 1964 [5], it has become a useful tool in complement to

the traditional citation analysis. Finding the citation patterns of authors

can help researchers better understand the relationship between disciplines,

the collaboration of scientists and create more accurate scientific impact

measures. A typical citation network consists of documents that reference

each other. Each node represents a scientific paper and a directed edge from

u to v denotes that the paper u cites the paper v.

• Defeat network: As a type of interaction network that models the result of

games or competitions, defeat network can be used to analyze the players’

performance, cooperation level of the team and create new ranking methods.

Network analysis has been conducted on different professional sports like

basketball [6], football [7], baseball [8] and so on. For example, in a defeat

network among chess players giving the chess match outcomes, each node

is a chess player, and a directed edge from u to v represents in a match in

which the player u beat the player v.

It can be clearly seen that finding clusters in directed networks is significantly

important in many domains and it is meaningful to incorporate information on

the edge directionality during the clustering process. Various approaches have

been proposed to discover communities in graphs. The most commonly used

community detection/clustering algorithms include hierarchical clustering [9, 10],

minimum-cut method [11], spectral clustering [12] and so on. However, most of

these approaches on clustering or community detection of graphs have been focused

on undirected networks. Community detection in directed networks is considered

to be a more challenging task as compared to undirected networks [13] due to the

following challenges:
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(1) Several graph concepts that are developed for undirected graphs cannot

be adapted for directed graphs as edge directionality is considered as an in-

herent network characteristic. Figure 1.1 shows a simple example of directed

graphs. If one applies the traditional density-based clustering definition to

this graph, these 6 nodes form a cluster according to their similar edge densi-

ties. However, due to the existence of directed edges, this clustering method

cannot capture more sophisticated similarity that is not reflected by the

edge density. In this example, node 1 is connected to every node only in

one direction. If the task is to construct a community around node 4, node

1 should be considered outside the community since it does not have any

incoming links from the other 5 nodes. As we can see from this example,

edge directionality introduces an extra complication when dealing with the

problem of community discovery. Moreover, since the nature of relationships

captured by the directed edges is fundamentally different from that for undi-

rected graphs, a more precise definition of clustering needs to be defined in

various domains and contexts.

Figure 1.1: Community in directed graph

(2) Well-developed clustering methods for undirected networks cannot be

easily extended to directed graphs. Since a large number of methods for de-

tecting communities in undirected networks have been proposed, researchers
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have started to explore the possibility of employing the clustering methods

designed for undirected networks to find communities in directed networks.

In the undirected setting, the symmetric relationship can be represented by

symmetric matrices, such as the adjacency matrix and Laplacian matrix.

In the directed relationship, these matrices are asymmetric, which makes

it hard to generalize the clustering methods for directed graphs. For ex-

ample, one of the most popular community detection algorithms is spectral

clustering, in which a Laplacian matrix is used as the main tool. However,

the non-symmetric matrices of directed graphs do not have a spectral de-

composition, indicating that there does not necessarily exist an orthonormal

basis of eigenvectors [14]. This establishes an obstacle for generalizations to

directed graphs.

1.3 Motivation of This Work

Existing work related to clustering or community detection in directed graphs will

be reviewed in Chapter 2. As we will see in the next chapter, most of them possess

one or more of the following drawbacks:

(1) Most previous methods ignore edge directions and assume symmetric

interactions. Using the World Wide Web (WWW) network as an example,

even though hyperlinks are directed (i.e., a hyperlink from page A to page

B does not guarantee a hyperlink from B back to A), one may assume that

a hyperlink between two pages implies that they are content-related to the

same topic. However, in many other real-world systems, the relationships

between elements are not reciprocal. For example, suppose G is a directed

graph that represents the outcome of a tournament between players. A

directed edge (i, j) can be interpreted as a competition between player i and

player j such that i defeats j. If we eliminate directionality from edges, we
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automatically convert the edge’s direction into a mutual relation. In this

case, an additional edge (j, i) is introduced into the graph which does not

exist in the graph originally. On the other hand, an edge from player i to

player j may not necessarily represent the similarity between i and j when

comes to the question of clustering. Player i may also defeat many other

high-level players, while player j lose all the competitions in which player j

is involved. In such a case, payer i and player j cannot be clustered into a

group of players at a similar performance level.

(2) Another drawback of the existing methods is the poor scalability. Due

to the growing amount of real-world network data produced with the help

of new technologies, the scalability has been considered as an important

factor in designing and evaluating graph clustering algorithms. Many so-

cial networks can be huge, with millions of users and hundreds of millions

of connections. Most of the existing methods for finding the clusters in di-

rected graphs are sequential algorithms, which are not easily scalable to very

large graphs. In spectral clustering algorithms, for example, when the input

graph is very large, the eigenvalue and eigenvector computation can be very

time-consuming [15]. Thus there is a need for developing scalable graph

algorithms to discover communities in very large networks.

(3) None of the existing approaches construct the strongly connected com-

munity for each individual node in the graph. In some directed systems,

there exists the structure of flow hierarchy that can be defined as a layering

of the nodes in which the direction of the edges follows a global flow. For

example, in a defeat network, players can be grouped into different perfor-

mance levels based on the outcome of the games they involved. Edges point

from players at higher levels towards the players at lower levels, indicating

the former group of players showed higher performance in the game. The
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flow hierarchy is an importance characteristic in this type of graphs and

should also be considered in the community detection process.

1.4 Proposed Approach

In this thesis, we have developed a new scalable Map-Reduce algorithm for dis-

covering PageRank based hierarchical communities around core nodes in directed

graphs, especially for these graphs with the structure of flow hierarchy, such as

trust networks, citation networks and defeat networks. In our approach, the Map-

Reduce paradigm has been employed for designing the much more scalable clus-

tering method than the existing ones. The desired properties of clustering are to

obtain the hierarchical structure around a core node such that

(1) The core node is located in the center of the hierarchical community

where the nodes in upper levels can reach the core node, and nodes in lower

levels can be reached by the core node.

(2) Nodes within the community have similar importance compared to the

nodes outside the community.

For constructing hierarchical structures, we have extracted the upper-level and

lower-level hierarchical subgraphs along directional edges of core nodes and then

merged them into the final communities centered around the core nodes. To de-

termine the importance of a node in a graph, we have selected PageRank as the

ranking algorithm for two reasons. Firstly, it is a metric of global importance that

computes a score for each node in the graph by utilizing the probability propa-

gation of random surfers. Secondly, it is a computationally simple yet effective

way that takes into account the edge direction. Nodes with low importance will

correspondingly have low PageRank values.

Figure 1.2 shows an illustration of the community construction, where a nine-

level hierarchical community around a core node is built by merging the forward

7



Figure 1.2: Generation of a nine-level community around a core node (in yellow)
by combining a five-level forward subgraph with a five-level backward
subgraph

and backward five-level subgraphs. The initial forward and backward subgraphs

of a core node can be generated separately by growing the directed branches along

the core node. In order to build forward high-level subgraphs, we perform a end-

to-end concatenation of two short subgraphs iteratively. The backward subgraphs

are generated in a similar way except that all edge directions of the input graph

are reversed. As we repeatedly construct the forward and backward subgraphs,

we further prune the subgraphs based on the node importance. If the PageRank

value of a node is below a pre-specified threshold we discard the node from the

community. Finally, the truncated forward and backward subgraphs are merged

into one cluster around each core. As shown in Figure 1.2, the resulting community

is a hierarchical subgraph around a core node with upper layers pointing to it and

lower layers pointing from it.
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1.5 Overview of Chapters

The rest of this thesis is structured as follows. In Chapter 2, the related research

work on graph clustering and community detection in directed graphs along with

their advantages and limitations has been reviewed. In Chapter 3, we have de-

scribed our Map-Reduce based algorithm for discovering hierarchical community

structures in directed graphs. The approach as well as pseudo-code have been

explained with illustrative examples. In Chapter 4, experiments on real-world

datasets and the result analysis have been provided to evaluate our developed

approach. In the last chapters, we have concluded the thesis and discussed the

possible future work.
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Chapter 2
Related Work

2.1 Overview

In this chapter, we present various algorithms in discovering communities for. We

first briefly go through some traditional approaches for undirected graphs and then

discuss the common approaches for directed graphs. We also briefly discuss the

advantages and disadvantages of these existing algorithms as well as the difference

from our proposed approach for solving the problem.

2.2 Community Detection in Directed Graphs

2.2.1 Transforming Directed Graphs to Undirected Graphs

The simplest and commonest way to handle directed graphs is to ignore the edge

directionality and treat them as undirected ones. After this simple transformation,

a large number of clustering methods that have been proposed for undirected

graphs can be applied to extract the community structure. However, as we have

discussed in Section 1.2, most real-world networks have semantically meaningful

directions that need to be taken into account to appropriately understand the

system as a whole.
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Another way to handle directed graph clustering is to convert directed graphs

into undirected ones with the informative content of the direction being main-

tained, which is also known as graph symmetrization. Then the transformed

undirected graph can be clustered using any existing state-of-the-art clustering

methods without any modification. Lai et al. [16] proposed a transformation

method that maps graphs into Euclidean space, as shown in Figure 2.1. This

method uses PageRank induced random walk to obtain a new undirected represen-

tation of the original graph, which incorporates the information of edge directions

into the weights of edges of the undirected network. The basic idea of this method

is to define a directed version of the Laplacian matrix called directed PageRank

combinatorial Laplacian (LPRd)

LPRd = Π−W = Π− ΠP + P TΠ

2
, (2.2.1)

where P is the PageRank random walk transition matrix and Π is a diagonal

matrix of which diagonal is the probability of staying on each node in the station-

ary state. The symmetric matrix W can be considered as the adjacency matrix

of a new undirected network and the induced network can be mapped into the

Euclidean space. The authors also proved that information about edge directions

is incorporated into weights of the new graph.

Similarly, Satuluri et al. [17] also discussed the random walk based symmetriza-

tion, where the directed normalized cut of the original networks will be equal to

the normalized cut of the transformed undirected network [18]. In addition, the

authors also explored several other ways of symmetrizing a directed graph into

an undirected one, while information on edge directionality is incorporated into

the edge weight of the transformed graph. Bibliometric symmetrization combines

both the bibliographic coupling matrix (AAT ) and the co-citation strength matrix

11



Figure 2.1: Illustration of the transformation of all the nodes in a directed network
into the points in the Euclidean space, proposed by Lai et al. [16].

(ATA) (LPRd)

U = AAT + ATA, (2.2.2)

where AAT captures the common out-links between each pair of nodes and ATA

captures the common in-links between each pair of nodes. Therefore, bibliometric

symmetrization ensures that edges will present between similar nodes even edges

are absent in the original graph. Furthermore, considering the fact that in many

real-world networks there exist a few nodes with very high degree compared to the

majority of the nodes [19], the similarity score contributed by each node should

be normalized according to its in- and out-degree. Therefore, the authors further

proposed degree-discounted symmetrization (Ud)

Ud = B + C,

B = D−αoutAD
−β
in A

TD−αout and C = D−αin AD
−β
outA

TD−αin ,

where A is the adjacecy matrix, Din and Dout are the diagonal matrices of in-degree

and out-degree respectively, and α and β are the discounting parameters.
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2.2.2 Extending Clustering Methods to Directed Graphs

The methods discussed in the previous section can largely benefit from the existing

well-developed approaches for the undirected graph. However, one drawback of

these methods is that since edge directionality is considered as an inherent property

of the network, any transformation techniques may not be able to completely retain

the information on edge directinoality. To address this problem, many studies have

also tended to generalize or extend the clustering methods to directed graphs

without changing the structure of the original graph.

PageRank Based Methods

PageRank and random walks have been employed in many clustering algorithms

for undirected graphs [20–25]. Since they traditionally have been developed and

studied in directed web graphs, it is natural to study if they can be generalized to

detect clusters in a directed graph. Avrachenkov et al. [26] proposed a PageRank

based clustering (PRC) algorithm for hypertext document collections that are

represented by directed graphs. This method is consist of two steps. The first

step is to determine a list of core nodes the nodes in the graph according to a

node ranking measure such as PageRank. Then these selected nodes are assigned

to different clusters using Personalized PageRank vector. In contrast to global

clustering of the entire graph, Andersen et al. [14] proposed a local partitioning

method that finds a set nodes near a specified seed node by examining only a small

portion of the input directed graph, using personalized PageRank vectors. The

authors proved that by sorting the nodes of the graph according to the ratio of

the entries in the Personalized PageRank vector and the global PageRank vector,

this method is able to detect a small set of local cluster efficiently.
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Modularity Based Methods

Modularity is a objective metric that quantifies the quality of partitioning, in-

troduced by Newman and Girvan [27] in 2004. Modularity Q is defined as Q =

(fraction of edges within communities) - (expected fraction of edges in a random

graph), which is the fraction of edges that fall within the given communities mi-

nus the expected number of edges within the same groups for a random graph

with the same node degree distribution as the given graph [27]. Mathematically,

modularity Q is given by

Q =
1

2m

∑
i,j

[Aij −
kikj
2m

]δ(i, j), (2.2.3)

where A is the adjacency matrix, m = 1
2

∑
ij Aij is the total number of edges in

the graph, ki =
∑

j Aij is the link degree of node i, and δ(i, j) is 1 if node i and j

belong to the same community and 0 otherwise. Modularity optimization method

has become an well-established clustering approach to extract the community

structure in undirected graphs [27, 28]. Several studies proposed the extensions of

modularity optimization to directed cases. Leicht and Newman [29] adapted for

the notion of modularity for directed networks by considering the in-degree and

out-degree of the nodes, and the directed modularity is defined as

Q =
1

2m

∑
i,j

[Aij −
kini k

out
j

2m
]δ(i, j), (2.2.4)

where kini and koutj represent the in-degree and out-degree of node i and j.
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Chapter 3
Community Detection in Directed

Graphs

3.1 Introduction

In this chapter, we have proposed a Map-Reduce based method for detecting

communities in directed graphs. This method uses the PageRank algorithm to

rank nodes and extracts the hierarchical community for each node in the graph.

An intuitive way to define a community around a node is to find a set of nodes

that are reachable by the core node along directional edges and have a similar

importance as that of the core node. To extract the hierarchical structures, our

approach generates the forward and backward directed subgraphs for each node

iteratively. To compute the importance ranking of nodes in the graph, we have

employed the PageRank algorithm as a global criterion of importance to determine

whether a node belongs to the same cluster of the core node. In the following

sections, we have discussed our clustering method in detail.
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3.2 Data Representation and Preparation

Since directed graphs represent asymmetric relationships, there is a directional

flow in their edges. Therefore, the edge set of a directed graph is represented as

ordered pairs. For example, a sample directed graph can be represented in tabular

format as shown in Figure 3.1.

Figure 3.1: Directed graph and its tabular representation

Before constructing communities around core nodes, we need a computationally

simple and effective metric to rank nodes in directed graphs. PageRank algorithm,

as a global measure of importance, is used to identify the importance of nodes in

the connected graph. For example, the PageRank algorithm is commonly used in

trust networks and it computes a score for each user in the network that represents

the average opinion of the whole community about that user. The PageRank of a

node X from a directed graph is defined as

PR(X) =
1− d
N

+ d

k∑
i=1

PR(Xi)

C(Xi)
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, where N is the total number of nodes in the graph, Xi is a node that points to

X, d is the damping factor, and C(Xi) is the number of outgoing links of node Xi.

3.3 Our Approach

In our proposed clustering algorithm, the hierarchical community around a core

node is constructed in two stages. The first stage is to grow the upper-level and

lower-level directed subgraphs along the core node, and the second stage is to

combine them into a community centered at the core node. The construction of

directed subgraphs for both upper and lower levels can be achieved using our three-

phase Map-Reduce algorithm. The entire workflow of the first stage is shown in

Figure 3.2. Note that we reverse the edge direction in the input graph when con-

structing upper-level hierarchical subgraphs. This additional data pre-processing

step is required to construct the backward subgraph where all the nodes can reach

the core node directly or indirectly via one or more directed paths.

As shown in Figure 3.2, the first phase containing one Map-Reduce step is used

to enumerate the incoming and outgoing nodes of each node in the graph. Next,

another Map-Reduce step is used to generate three-level subgraphs from the lists

of incoming and outgoing nodes. In the last phase, subgraphs with higher levels

are constructed iteratively from the subgraphs with lower levels. For example,

building five-level subgraphs requires two Map-Reduce steps in this phase. Ideally,

one can easily construct longer subgraphs (e.g., nine-level, seventeen-level ... ) by

feeding the output from the third phase back to its own input iteratively.

In the following sections, we will use the example graph in Figure 3.1 as input

data to illustrate the three-phase Map-Reduce approach for constructing five-level

subgraphs. After obtaining the directed subgraph, the hierarchical community

around the core node can be generated by simply combining the forward and

backward subgraphs.
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Figure 3.2: Flowchart of the three-phase Map-Reduce algorithm: construction of
upper-level and lower-level directed subgraphs in directed graphs

3.3.1 Finding Incoming and Outgoing Nodes

In the first phase, a Map-Reduce job is required to find all outgoing and incoming

nodes for each node in the graph. The outgoing nodes of a node u can be easily

obtained by enumerating all the edges starting from node u. Similarly, the incom-

ing nodes of node u can be obtained by enumerating all the edges ending at node

u. The procedure performed by the Map-Reduce job is as follows:
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• Mapper #1: For each node pair (u, v), emit two key/value pairs - the

original node pair representing the out-link from u and the reversed node pair

representing the in-link to u, in the form of (u, v) and (v, #u), respectively.

• Reducer #1: For each key node, collect its incoming and outgoing nodes.

3.3.2 Building Three-Level Subgraphs

Figure 3.3: Mapper #2: generation of three-level branches from nodes 1, 2 and 3

From the list of outgoing and incoming nodes of a node, we can generate three-

level subgraphs rooted at each incoming node in a Map-Reduce job as follows:

• Mapper #2: For each key/value pair (key-node, (outgoing-nodes, incoming-

nodes)), generate new key/value pairs where key is a node from the incoming
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node list, and value is a two-hop path originating from the key node to

outgoing nodes.

• Reducer #2: For each key node, merge all the two-hop paths to construct

the three-level subgraphs.

Figure 3.4: Reducer #2: generation of the two-hop paths from nodes 1, 4, 5 and
6

Given incoming and outgoing nodes of a pivot node, we generate all the two-hop

paths starting from each incoming node. For example, Figure 3.3 highlights the

incoming and outgoing nodes of nodes 1, 2 and 3. Since node 1 has no incoming

nodes, the one-hop path starting from the core node 1 will be preserved. Node 2
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has one incoming node and node 3 has two incoming nodes, therefore one two-hop

path and two two-hop paths will be generated for nodes 2 and 3, respectively.

In the reducer, two-hop paths with the same root node are merged into a three-

level subgraph. Figure 3.4 shows the merging process for the root nodes 1, 4, 5,

and 6. To maintain the hierarchical structure of the community, if node u appears

in more than one level, e.g., levels i and j (i < j), node u at the deeper level j and

its descendants should be removed. For example, after merging the three paths

rooted at node 1, the inter-level edge (2→ 3) in the resulting three-level subgraph

will be removed.

3.3.3 Building Higher-level Subgraphs

By combining multiple three-level subgraphs through an end-to-end concatenation,

a five-level subgraph can be constructed. Similarly, a nine-level subgraph can be

created from multiple five-level subgraphs. Ideally, we can construct a subgraph

with (3×2n−2n + 1) levels through n iterations. To make this approach scalable,

every iteration is consist of the following one Map-Reduce step and an additional

Reduce step (using the construction of five-level communities as an example):

• Mapper #3: For each three-level subgraph, decompose it into smaller paths

by their leaf nodes.

• Reducer #3: Generate five-level branches via the end-to-end concatenation

of these three-level paths and prune them based on the PageRank threshold

value.

• Reducer #4: Merging all the five-level branches with the original three-level

subgraph to five-subgraphs.

In order to perform the end-to-end concatenation in key/value pair fashion, for

each leaf node in the three-level subgraph, a key/value pair with a leaf node as
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Figure 3.5: Mapper #3: decomposition of the three-level subgraph of node 1

Figure 3.6: Reducer #3: generation of five-level branches of node 1

key and a three-level path from the root node down to the leaf node as value

is generated. Figure 3.5 demonstrates the decomposition process of a three-level

subgraph of node 1 generated in the previous phase. Since this three-level subgraph

has three leaf nodes 6, 4 and 5, three root-to-leaf paths with the leaf node as key

are produced.

Next, these root-to-leaf paths are combined with the original three-level sub-

graph that shares the same key node in Reducer #3. As shown in Figure 3.6,

22



the three root-to-leaf paths of node 1 are merged with the three-level subgraphs of

nodes 6, 4 and 5, respectively, and eventually form three five-level branches rooted

at node 1. Before the final merging step, these branches are further refined based

on the PageRank value of the root node. In order to build a subgraph where all

nodes have comparable PageRank values to that of the root node, we can remove

these nodes that have PageRank values below a certain value by introducing a pre-

specified PageRank threshold k (between 0 to 1). For example, with a threshold

k = 0.8, we define that the PageRank value of any node in the subgraph should

be equal to or larger than 80% of that of the root node.

Figure 3.7: Reducer #4: generation of five-level subgraph of node 1 by combining
all the five-level branches with the three-level subgraph

In Reducer #4, all of these five-level branches as well as the original three-level

subgraph with the same key node are merged into a final five-level subgraph. An

additional branch pruning is required to remove the duplicate nodes and inter-level

edges in the merged subgraph. Figure 3.7 represents the final merging process of

node 1. It can be seen that nodes 4, 6, 7 and 8 appear on multiple levels in the
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merged subgraph. Using the same pruning approach as stated in the previous sec-

tion, these duplicate nodes at the deeper level and their descendants are removed

to retain the hierarchical structure.

3.4 Pseudo-Code

In this section, we will present the Map-Reduce pseudo-code for generating five-

level forward subgraphs in directed graphs. Table 3.1, represents the directed

graph in Figure 3.1, will be used as the input data of our algorithm. It includes

node pairs and the corresponding PageRank values as rows, where each node pair

(u, v) indicates that node u points to node v.

Source PR Source Target PR Target
1 0.0322 2 0.0459
1 0.0322 3 0.0654
2 0.0459 3 0.0654
2 0.0459 6 0.0906
3 0.0654 4 0.0914
3 0.0654 5 0.0737
4 0.0914 6 0.0906
4 0.0914 7 0.0711
5 0.0737 4 0.0914
5 0.0737 8 0.1543
6 0.0906 8 0.1543
8 0.1543 10 0.0978
8 0.1543 11 0.0978
9 0.0322 5 0.0737
9 0.0322 8 0.1543
11 0.0978 12 0.0738
11 0.0978 13 0.0738

Table 3.1: Input table for the directed graph in Figure 3.1

3.4.1 Finding Incoming and Outgoing Nodes

Finding incoming and outgoing nodes for each node in the graph can be done in

one Map-Reduce operation. In Mapper #1, the original node pair and the reversed
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node pair are generated for each row as shown in line #1 and #2 of the code. For

example, for the input node pair <1-0.0322, 2-0.0459>, two records (<1-0.0322,

2-0.0459> and <2-0.0459, #1-0.0322>) are written to the output. The key-value

pairs from Mapper #1 are transferred to Reducer #1 by integration, sorting and

further splitting among the Reducer servers. After collecting all the outgoing and

incoming nodes for each key node, the output of Reducer #1 is generated as shown

in Table 3.2. For instance, we can see that node 2 (PR=0.0459) has two outgoing

nodes - node 3 (PR=0.0654) and node 6 (PR=0.0906), and one incoming node -

node 1 (PR=0.0322).

Algorithm 1 Mapper #1

Input: Input table with PageRank values (node1-PR1, node2-PR2 )
Output: Key-Value pair

1: yield (node1-PR1, node2-PR2 )
2: yield (node2-PR2, #node1-PR1 )

Algorithm 2 Reducer #1

Input: Key-Value pair from Mapper1
Output: Key-Value pair: each node as key and its incoming and outgoing nodes
as value

1: Merge values for each key
2: Write Key-Value pair as output

3.4.2 Building Three-Level Subgraphs

The incoming and outgoing nodes of each key node are used in the second Map-

Reduce operation to construct three-level subgraphs. In Mapper #2, for each

node string inNode-inPR in the incoming node list of a key node keyNode, a two-

hop directed subgraph that is rooted at inNode, connected through keyNode and

pointed to the outgoing nodes of outNode is generated in line#3-15. To preserve

all the linkage information, a one-hop subgraph from the key node keyNode to its

outgoing nodes outNode is also produced in line#16-22. For example, since node

1 has a empty incoming node list, only a one-hop subgraph is generated:
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Key Value
1-0.0322 2-0.0459, 3-0.0654,
2-0.0459 3-0.0654, 6-0.0906, #1-0.0322
3-0.0654 4-0.0914, 5-0.0737, # 1-0.0322, #2-0.0459
4-0.0914 6-0.0906, 7-0.0711, #3-0.0654, #5-0.0737
5-0.0737 4-0.0914, 8-0.1543, #3-0.0654, #9-0.0322
6-0.0906 8-0.1543, #2-0.0459, #4-0.0914
7-0.0711 #4-0.0914
8-0.1543 10-0.0978, 11-0.0978, #5-0.0737, #6-0.0906, #9-0.0322
9-0.0322 5-0.0737, 8-0.1543
10-0.0978 #8-0.1543
11-0.0978 12-0.0738, 13-0.0738, #8-0.1543
12-0.0738 #11-0.0978
13-0.0738 #11-0.0978

Table 3.2: Output of Reducer #1: incoming and outgoing nodes of all the nodes
in the graph

key=(1-0.0322) and value=(2-0.0459, 3-0.0654 & ).

For node 2, a two-hop subgraph and a one-hop subgraph are generated:

key=(1-0.0322) and value=(2-0.0459 & 3-0.0654<1, 6-0,0906<1),

key=(2-0.0459) and value=(3-0.0654, 6-0.0906 &).

Here levels in the branch are separated by ”&” and the parent node of each node

in the third level is represented using ”<” symbol before the node name.

In Reducer #2, to form three-level subgraphs, all the two-hop and one-hop

directed branches generated from Mapper #2 are first merged level by level based

on the key node, as shown in line#3-13 of the code. Then the three-level subgraph

is pruned by removing the duplicate nodes among levels and inter-level links as

shown in line # 14-18. For example, if a node appears in both the second level

and third level, it will be deleted from the node list of the third level. In line #

19-22, the collected three-level list is reformatted by attaching the parent node

to each node in the list accordingly. The final output pair is generated in line

#23. The input key-value pair for node 1 in Reducer #2 is key=(1-0.0322) and

value=(2-0.0459, 3-0.0654), (2-0.0459 & 3-0.0654<2, 6-0.0906<2), (3-0.0654 & 4-

0.0914<3, 5-0.0737<3). After a level-by-level merging, the three subgraphs can
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Algorithm 3 Mapper #2: generate three-level branches

Input: Key-Value pair from Reducer1, (key = keyNode-keyNodePR, value =
nodeList)
Output: Key-Value pair: each node and its PageRank value as key and its three-
level branch as value

1: keyNode, keyNodePR ← keyNode-keyNodePR
2: outList, inList ← nodeList
3: if inList is not empty then
4: for inNode-inPR in inList do
5: newOutList = []
6: if outList is not empty then
7: for outNode-outPR in outList do
8: if outNode-outPR 6= inNode-inPR then
9: newOutList.append(outNode-outPR + ”<” + keyNode)
10: end if
11: end for
12: end if
13: yield (inNode-inPR, keyNode-keyNodePR +”&”+newOutList)
14: end for
15: end if
16: if outList is not empty then
17: newOutList = []
18: for outNode-outPR in outList do
19: newOutList.append(outNode-outPR)
20: end for
21: yield (keyNode-keyNodePR, newOutList +”&”)
22: end if
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be merged into value=(2-0.0459, 3-0.0654 & 3-0.0654<2, 6-0.0906<2, 4-0.0914<3,

5-0.0737<3). Node 3 (3-0.0654) appears in both second and third levels, so the

inter-level link from node 2 to node3 should be removed and the final three-

level subgraph for node 1 is key=(1-0.0322) and value=(2-0.0459, 3-0.0654 & 6-

0.0906<2, 4-0.0914<3, 5-0.0737<3). The output data of three-level subgraphs for

each node in our sample graph can be found in Table 3.3.

Algorithm 4 Reducer #2: merge three-level branches

Input: Key-Value pair from Mapper2, keyNode-keyNodePR, nodeLists
Output: Key-Value pair: each node as key and its three-level subgraph as value

1: secondLevel = []
2: thirdLevel = new dictionary {}
3: for nodeList in nodeLists do
4: secondlevelStr, thirdlevelStr← nodeList.split(”&”)
5: for node-PR in secondlevelStr do
6: secondLevel.append(node-PR)
7: end for
8: if thirdlevelStr is not empty then
9: for node-PR<parentNode in thirdlevelStr do
10: thirdLevel [node-PR].add(parentNode)
11: end for
12: end if
13: end for
14: for node-PR in thirdLevel.keys() do
15: if node-PR in secondLevel then
16: delete thirdLevel [outNode-outPR]
17: end if
18: end for
19: newThirdLevel = []
20: for node-PR, parentNodes in thirdLevel.items() do
21: newThirdLevel.append(node-PR + ”<” + parentNodes)
22: end for
23: yield (keyNode-keyNodePR, secondLevel +”&”+ newThirdLevel)

3.4.3 Building Five-Level Subgraphs

Constructing a five-level subgraph of a core node from multiple three-level sub-

graphs can be done in one complete Map-Reducer operation (Mapper #3 and

Reducer #3) and one single Reducer operation (Reducer #4). In order to han-
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Key Value
1-0.0322 2-0.0459, 3-0.0654 & 6-0.0906<2, 4-0.0914<3, 5-0.0737<3
2-0.0459 6-0.0906, 3-0.0654 & 8-0.1543<6, 4-0.0914<3, 5-0.0737<3
3-0.0654 5-0.0737, 4-0.0914 & 8-0.1543<5, 6-0.0906<4, 7-0.0711<4
4-0.0914 6-0.0906, 7-0.0711 & 8-0.1543<6
5-0.0737 4-0.0914, 8-0.1543 & 10-0.0978<8, 11-0.0978<8, 6-0.0906<4, 7-

0.0711<4
6-0.0906 8-0.1543 & 10-0.0978<8, 11-0.0978<8
8-0.1543 10-0.0978, 11-0.0978 & 12-0.0738<11, 13-0.0738<11
9-0.0322 5-0.0737, 8-0.1543 & 4-0.0914<5, 10-0.0978<8, 11-0.0978<8
11-0.0978 12-0.0738, 13-0.0738 &

Table 3.3: Output of Reducer #2: three-level subgraphs

dle the graph growth in a distributed way, we need to ensure that the three-level

subgraphs that will be merged have the same key in the reducer. In Mapper #3,

in line #1 we first emit the three-level subgraph in its original format to preserve

the structure information. Next, we only process these three-level subgraphs with

non-empty leaf/third levels (line #2). For each leaf node in the subgraph, we find

all its parent nodes in the second level as shown in line #5-9 and then emit the

output where the leaf node as key and the path from the root node to it as value

(line #10). For example, for node 1, the following output will be generated:

key=(1-0.0322) and value=(2-0.0459, 3-0.0654 & 6-0.0906<2, 4-0.0914<3, 5-

0.0737<3),

key=(6-0.0906) and value=(1-0.0322 > 2-0.0459),

key=(4-0.0914) and value=(1-0.0322 > 3-0.0654),

key=(5-0.0737) and value=(1-0.0322 > 3-0.0654).

The first record is the original output from Reducer #2 and the rest of them de-

scribe the path from node 1 to its three leaf nodes (nodes 4, 5 and 6), respectively.

For any node that does not have a third level such as node 11, since it cannot fur-

ther grow we simply emit its three-level subgraph. A complete output for Mapper

#3 is shown in Table 3.4.

The root-to-leaf paths, as well as the original three-level subgraphs, are merged

in Reducer #3 to grow five-level branches. First, the pruned three-level subgraph
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Algorithm 5 Mapper #3: reverse three-level subgraphs

Input: Key-Value pair from Reducer2: (key = keyNode-keyNodePR, value =
secondLevel & thirdLevel)
Output: Each node in the leaf level as key and the path from the key node to it
as value

1: yield (keyNode-keyNodePR, secondLevel & thirdLevel)
2: if thirdLevel is not empty then
3: pathToLeafNode = []
4: for leafNode, leafNodePR, parentNodes in thirdLevel do
5: for node, nodePR in secondLevel do
6: if node in parentNodes then
7: pathToLeafNode.append(node-nodePR)
8: end if
9: end for
10: yield (leafNode-leafNodePR, keyNode-keyNodePR > pathToLeafNode)
11: end for
12: end if

is preserved in line #1-9 of the code. In line #1, the PageRank limit is computed

using the PageRank threshold k and the PageRank score of the key node. For

each node in the three-level subgraph, if its PageRank score is less than the limit,

we remove this node and its descendants in the subgraph. Then for each reversed

three-level branches, a five-level branch is produced by combining with the original

three-level subgraph (line #10-11). For instance, the input data for node 6 in

Reducer #3 is key=6-0.0906, value=

8-0.1543 & 10-0.0978<8, 11-0.0978<8

1-0.0322 > 2-0.0459

3-0.0654 > 4-0.0914

5-0.0737 > 4-0.0914.

The first record is the three-level subgraph rooted at node 6, and the rest of three

records are three-level branches that are rooted at nodes 1, 3 and 5 and have

node 3 as the leaf node. Therefore, these five-level branches can be generated by

attaching the three-level subgraph of node 3 to them:

1-0.0322 & 2-0.0459 & 6-0.0906<2 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8

3-0.0654 & 4-0.0914 & 6-0.0906<4 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8
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Key Value
1-0.0322 2-0.0459, 3-0.0654 & 6-0.0906<2, 4-0.0914<3, 5-0.0737<3
6-0.0906 1-0.0322 > 2-0.0459
4-0.0914 1-0.0322 > 3-0.0654
5-0.0737 1-0.0322 > 3-0.0654
2-0.0459 6-0.0906, 3-0.0654 & 8-0.1543<6, 4-0.0914<3, 5-0.0737<3
8-0.1543 2-0.0459 > 6-0.0906
4-0.0914 2-0.0459 > 3-0.0654
5-0.0737 2-0.0459 > 3-0.0654
3-0.0654 5-0.0737, 4-0.0914 & 8-0.1543<5, 6-0.0906<4, 7-0.0711<4
8-0.1543 3-0.0654 > 5-0.0737
6-0.0906 3-0.0654 > 4-0.0914
7-0.0711 3-0.0654 > 4-0.0914
4-0.0914 6-0.0906, 7-0.0711 & 8-0.1543<6
8-0.1543 4-0.0914 > 6-0.0906
5-0.0737 4-0.0914, 8-0.1543 & 10-0.0978<8, 11-0.0978<8, 6-0.0906<4, 7-

0.0711<4
10-0.0978 5-0.0737 > 8-0.1543
11-0.0978 5-0.0737 > 8-0.1543
6-0.0906 5-0.0737 > 4-0.0914
7-0.0711 5-0.0737 > 4-0.0914
6-0.0906 8-0.1543 & 10-0.0978<8, 11-0.0978<8
10-0.0978 6-0.0906 > 8-0.1543
11-0.0978 6-0.0906 > 8-0.1543
8-0.1543 10-0.0978, 11-0.0978 & 12-0.0738<11, 13-0.0738<11
12-0.0738 8-0.1543 > 10-0.0978, 11-0.0978
13-0.0738 8-0.1543 > 10-0.0978, 11-0.0978
9-0.0322 5-0.0737, 8-0.1543 & 4-0.0914<5, 10-0.0978<8, 11-00978<8
4-0.0914 9-0.0322 > 5-0.0737
10-0.0978 9-0.0322 > 8-0.1543
11-00978 9-0.0322 > 8-0.1543
11-0.0978 12-0.0738, 13-0.0738 &

Table 3.4: Output of Mapper #3 for each key-value pair

5-0.0737 & 4-0.0914 & 6-0.0906<4 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8.

The output of Reducer 3 is shown in Table 3.5.

Meanwhile, the PageRank values of all the nodes in the branch are compared

with that of the root node (line #12-18). If the PageRank value of a node is samller

than that of the root node, the node and its descendants are removed from the

five-level branch. Suppose we choose a PageRank threshold k = 0.8, the five-level

branch rooted at node 8 (key=(8-0.1543) and value=(10-0.0978, 11-0.0978 & 12-
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0.0738<11, 13-0,0738<11)) will be discarded since the PageRank values of nodes

10 and 11 are much smaller than the PageRank threshold 0.1543× 0.8 = 0.1234,

which is computed from the PageRank value of the key node 8.

Algorithm 6 Rducer #3: generate five-level branches

Input: Key-Value pair from Mapper3, keyNode-keyNodePR as key and
its three-level subgraph (secondLevel & thirdLevel) and a set of reversed two-level
paths (rootNode-rootNodePR > nextLevel) as value;
PageRank threshold k
Output: Key-Value pair: each root node as key and its five-level branches as
value

1: PRthred1 = k × float(keyNodePR)
2: newThreeLevel = secondLevel + thirdLevel
3: for node-nodePR in newThreeLevel do
4: if nodePR < PRthred1 then
5: delete node-nodePR in newThreeLevel
6: delete descendantsOf(node-nodePR) in newThreeLevel
7: end if
8: end for
9: yield (keyNode-keyNodePR, newThreeLevel)
10: for rootNode-rootNodePR > nextLevel in all reversed two-level paths do
11: newFiveLevelBranch = nextLevel & keyNode-keyNodePR & secondLevel &

thirdLevel
12: PRthred2 = k× float(rootNodePR)
13: for node-nodePR in newFiveLevelBranch do
14: if nodePR < PRthred2 then
15: delete node-nodePR in newFiveLevelBranch
16: delete descendantsOf(node-nodePR) in newFiveLevelBranch
17: end if
18: end for
19: yield (rootNode-rootNodePR, newFiveLevelBranch )
20: end for

Finally, the five-level subgraphs that have the same root node are merged with

its three-level subgraph in Reducer #4 as shown in line #1-9 of the code. Du-

plicated nodes that show in deeper levels are removed as well as their edges (line

#5). The resulting five-level graphs for each node with a PageRank threshold

k = 0.8 are shown in Table 3.6.
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Key Value
1-0.0322 2-0.0459, 3-0.0654 & 6-0.0906<2, 4-0.0914<3, 5-0.0737<3
2-0.0459 6-0.0906, 3-0.0654 & 8-0.1543<6, 4-0.0914<3, 5-0.0737<3
3-0.0654 5-0.0737, 4-0.0914 & 8-0.1543<5, 6-0.0906<4, 7-0.0711<4
4-0.0914 6-0.0906 & 8-0.1543<6
2-0.0459 3-0.0654 & 4-0.0914<3 & 6-0.0906<4, 7-0.0711<4 & 8-0.1543<6
1-0.0322 3-0.0654 & 4-0.0914<3 & 6-0.0906<4, 7-0.0711<4 & 8-0.1543<6
9-0.0322 5-0.0737 & 4-0.0914<5 & 6-0.0906<4, 7-0.0711<4 & 8-0.1543<6
5-0.0737 4-0.0914, 8-0.1543 & 10-0.0978<8, 11-0.0978<8, 6-0.0906<4, 7-

0.0711<4
2-0.0459 3-0.0654 & 5-0.0737<3 & 4-0.0914<5, 8-0.1543<5 & 10-0.0978<8,

11-0.0978<8, 6-0.0906<4, 7-0.0711<4
1-0.0322 3-0.0654 & 5-0.0737<3 & 4-0.0914<5, 8-0.1543<5 & 10-0.0978<8,

11-0.0978<8, 6-0.0906<4, 7-0.0711<4
6-0.0906 8-0.1543 & 10-0.0978<8, 11-0.0978<8
1-0.0322 2-0.0459 & 6-0.0906<2 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8
3-0.0654 4-0.0914 & 6-0.0906<4 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8
5-0.0737 4-0.0914 & 6-0.0906<4 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8
2-0.0459 6-0.0906 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11,

13-0.0738<11
3-0.0654 5-0.0737 & 8-0.1543<5 & 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11,

13-0.0738<11
4-0.0914 6-0.0906 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11,

13-0.0738<11
9-0.0322 5-0.0737, 8-0.1543 & 4-0.0914<5, 10-0.0978<8, 11-00978<8
5-0.0737 8-0.1543 & 11-0.0978<8 & 12-0.0738<11, 13-0.0738>11 &
6-0.0906 8-0.1543 & 11-0.0978<8 & 12-0.0738>11, 13-0.0738>11 &
9-0.0322 8-0.1543 & 11-0.0978<8 & 12-0.0738>11, 13-0.0738>11 &

Table 3.5: Output of Reducer #3

3.5 Summary

In this chapter, we described our approach to construct PageRank based hierar-

chical structures in the directed graph along with the illustrative examples and

details of the implementation. Based on the forward and backward hierarchical

structure, a complete community around the core node can be generated. In

the next chapter, we will present the experimental results of our algorithm using

real-world datasets.
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Algorithm 7 Rducer #4: merge five-level subgraphs

Input: Key-Value pair from Rducer #3,
keyNode-keyNodePR as key and its three-level graph (secondLevel & thirdLevel)
and a set of five-level branches (newSecondLevel & newThirddLevel &; newFourth-
Level & newFifthLevel) as value;
Output: Key-Value pair: each node as key and its five-level subgraph as value

1: newSecondLevel = merge(secondLevel, all newSecondLevel)
2: newThirddLevel = merge(thirdLevel, all newThirddLevel)
3: newFourthLevel = merge(all newFourthLevel)
4: newFifthLevel = merge(all newFifthLevel)
5: result = newSecondLevel & newThirddLevel & newFourthLevel & newFifth-

Level
6: yield (keyNode-keyNodePR, result)

Key Value
1-0.0322 2-0.0459, 3-0.0654 & 6-0.0906<2, 4-0.0914<3, 5-0.0737<3 & 7-

0.0711<4, 8-0.1543<5/6 & 10-0.0978<8, 11-0.0978<8
2-0.0459 3-0.0654, 6-0.0906 & 8-0.1543<6, 4-0.0914<3, 5-0.0737<3 & 7-

0.0711<4, 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11, 13-0.0738<11
3-0.0654 4-0.0914, 5-0.0737 & 8-0.1543<5, 6-0.0906<4, 7-0.0711<4 & 10-

0.0978<8, 11-0.0978<8 & 12-0.0738<11, 13-0.0738<11
4-0.0914 6-0.0906 & 8-0.1543<6 & 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11,

13-0.0738<11
5-0.0737 4-0.0914, 8-0.1543 & 10-0.0978<8, 11-0.0978<8, 6-0.0906<4, 7-

0.0711<4 & 12-0.0738<11, 13-0.0738<11 &
6-0.0906 8-0.1543 & 10-0.0978<8, 11-0.0978<8 & 12-0.0738<11, 13-0.0738<11

&
9-0.0322 8-0.1543, 5-0.0737 & 4-0.0914<5, 10-0.0978<8, 11-0.0978<8 & 6-

0.0906<4, 7-0.0711<4, 12-0.0738<11, 13-0.0738<11 &

Table 3.6: Output of Reducer #4: five-level subgraphs with PageRank threshold
= 0.8
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Chapter 4
Experiments and Results

4.1 Introduction

In the previous chapter, we have described our Map-Reduce based community de-

tection algorithm for directed graphs and illustrated how to build the hierarchical

community around a core node based on PageRank values. To evaluate and vali-

date our approach, in this chapter we have applied it to several real-world directed

networks from various domains. We will demonstrate how the algorithm works on

these directed datasets, investigate the effect of the core node’s PageRank score

and the PageRank threshold in the clustering process, and examine the clustering

results of our method using evaluation metrics.

4.2 Dataset Description

In our experiments, the following five directed datasets with different sizes (shown

in Table 4.1) were utilized to evaluate our community detection algorithm.
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Dataset Type # of Nodes # of Edges

Highschool Friendship Network 70 366

Physicians Friendship/Trust Network 241 1,098

Bitcoin-Alpha Trust Network 3,783 24,186

Bitcoin-OTC Trust Network 5,881 35,592

Supreme-Court-citation Citation Network 34,613 202,167

Table 4.1: Five datasets with different sizes

Highschool dataset

This dataset describes friendships between boys in a high school in Illinois [30]. A

node represents a boy and an edge between two boys represents that the left boy

considered the right boy as a friend. This dataset has 70 nodes and 366 edges.

Physicians dataset

This dataset was prepared from the data collected by Coleman, Katz and Menzel

on medical innovation in 1966 [31]. It describes a social network among 245 physi-

cians. A node represents a physician. An edge between two physicians represents

that the left physician considered the right physician as a friend and turned to the

right physician if he/she needs information or advice about questions of therapy.

Bitcoin Alpha dataset

This is a user-user trust network on a Bitcoin trading platform called Bitcoin

Alpha where users can buy and sell products using Bitcoins [32, 33]. A node

represents a user and a directed edge between two users represents that the left

user trusts the right user.
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Bitcoin OTC dataset

This is also a user-user trust network from another Bitcoin exchange platform

called Bitcoin OTC [32, 33]. A node represents a user and a directed edge between

two users represents that the left user trusts the right user.

Supreme Court citation dataset

This legal citation network was captured by J. H. Fowler et al.[34] from majority

opinions written by the Supreme Court of the United States and cases that cite

them from 1791 to 2005. It contains 202,167 citations of USSC majority opinions.

A directed edge between two nodes represents that the left case cites the right

case.

4.3 Experiments

We constructed nine-level communities around core nodes to evaluate our ap-

proach. A five-level upper-level subgraph and a five-level lower-level subgraph

from each core node were generated and then merged to form a nine-level hierar-

chical community.

The importance scores of all the nodes in each dataset were computed before

clustering. It should be pointed out that both the regular PageRank algorithm

and the reversed PageRank algorithm (by reversing the directions of all edges)

can be used to measure the node importance. The choice of the two algorithms is

based on how influential nodes are defined in the graph. In some cases, the number

of incoming links is related to the importance of a node. While in other cases, the

number of outgoing links may contribute more to the importance of a node and

thus the reversed PageRank should be used for ranking nodes. Large PageRank

scores suggest nodes that can be reached by many nodes in the graph while large

reverse PageRank scores suggest nodes that can reach many nodes in the graph.
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For example, in a trust network, the person who is trusted by the most others

has the highest PageRank score. On the other hand, in a defeat network, the

player who defeated the most others has the highest reversed PageRank score. In

our experiments, only the regular PageRank score was used due to the underlying

semantics of our example datasets.

4.3.1 Experimental Setup

Our Map-Reduced based algorithm was implemented using Spark 2.3.2 in PyS-

park. The cluster configuration is shown in Table 4.2. The same setup was used

for processing all the example datasets.

Number of nodes 6

Number of cores per node 12

RAM per node 48.25 GB

Framework Apache Spark 2.3.2

Development platform PySpark 2.4.3

Table 4.2: Cluster configuration

4.3.2 Evaluation Metric

To measure the quality of clustering results, we have introduced an evaluation

metric called community coefficient (CC). The community coefficient is the ratio

of the actual number of edges in the community to the maximum possible number

of edges in the community, defined as follows:

CC =
# of actual edges in the community

# of all possible edges in the community
=

Nedge

C(Nnode, 2)× 2
, (4.3.1)

where Nedge is the total number of edges among all the nodes of the generated

community in the graph and Nnode is the total number of nodes in the commu-
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nity. The community coefficient is in the range 0 - 1. The higher the community

coefficient, the more densely connected the nodes in the community.

4.4 Results and Discussion

In this section, we have used the five example datasets for the evaluation of hier-

archical communities around core nodes generated using our approach. We have

discussed the effect of the PageRank score of the core node and the PageRank

threshold on the size of the generated communities as well as their community

coefficient values. We have also conducted the validation experiment to validate

the obtained communities.

4.4.1 Nine-level Communities

Highschool dataset

The highschool dataset has 70 nodes which represent 70 high school students. In

this dataset, nodes with large PageRank scores are the students who were chosen

as friends by many other students. Three nodes with the highest, medium and

lowest PageRank scores are selected as examples to demonstrate the generated

9-level communities, as shown in Figure 4.1. For the generated community of

each core node (highlighted in yellow), blue nodes constitute the upper part of

the community where nodes directly or indirectly point to the core node, and red

nodes constitute the lower part of the community where the core node directly

or indirectly points to these nodes. 4 shades in blue and red represent the level

number of a node in the upper part and lower part of the community, respectively.

Lighter shades indicate nodes with deeper levels. The dimension of the node

represents its PageRank score. Node 28 has the highest PageRank score of 0.0662

and shows a small community of 4 nodes with only one upper level and one lower

level. In contrast, node 10 has the smallest PageRank score of 0.0021 and shows a
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Figure 4.1: Highschool dataset: nine-level communities of node (a) 28, (b) 53 and
(c) 10 with PageRank threshold = 0.8

community with no upper levels. Node 53 has a medium PageRank score (0.0091)

and displays a community with 4 levels in both the upper and lower part.

Physicians dataset

The physicians dataset has 245 nodes representing 245 physicians. Nodes with

higher PageRank scores represent the physicians who were considered as friends

for suggestions and advice by many other physicians. Three generated 9-level

communities for nodes 15, 5 and 43 with the highest, medium and lowest PageRank

scores of 0.0223, 0.0028 and 0.0009 are shown in Figure 4.2. Node 15 has the

highest PageRank score and forms a small community with only a lower part of 2

nodes. Since a PageRank threshold of k = 0.8 was used, the generated community

implies that those nodes that point to node 15 have much smaller PageRank scores.
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Figure 4.2: Physicians dataset: nine-level communities of nodes (a) 15, (b) 5 and
(c) 43 with PageRank threshold = 0.8

Similar to the highschool dataset, the community around node 5 exhibits complete

9 levels and the community around node 43 only has lower levels.

Bitcoin Alpha dataset

Bitcoin Alpha dataset represents a trust network where nodes with high PageRank

scores are the users who are trusted by many other users in the Bitcoin transaction

platform. Node 4 has the highest PageRank score and thus is the most trustworthy

user in the graph, while node 6434 has the lowest PageRank score, indicating that

either he/she is not trusted by most of the users or there is no enough transaction

data available related to him/her. As we can see in Figure 4.3, the community

around node 4 is consist of 10 other nodes; the community around node 2278 with

a medium PageRank score has many more nodes and its upper part and lower

part have comparable sizes. Node 6434 has the smallest PageRank score. It can
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Figure 4.3: Bitcoin Alpha dataset: nine-level communities of node (a) 4, (b) 2278
and (c) 6434 with PageRank threshold = 0.8
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be observed clearly that in the community of node 6434, several nodes with much

higher PageRank scores than that of node 6434 appear on the second and third

levels of the community. These high PageRank nodes attract a lot of deeper-level

nodes, which largely increases the size of the community.

Bitcoin OTC dataset

Bitcoin OTC is also a trust network. Three 9-level communities for nodes 1810,

3831 and 3386 with the highest, medium and lowest PageRank scores of 0.00697,

0.00008 and 0.00004 are shown in Figure 4.4, respectively. These communities

generated from the three example nodes show similar structures and behaviors as

in the Bitcoin Alpha dataset. Node 1810 has the highest PageRank score and thus

results in a small community with 8 nodes. Node 3831 has a medium PageRank

score and displays a complete 9-level community with both the upper and lower

parts. The community around node 3386 contains several high PageRank nodes

that form small highly connected regions in the community.

Supreme Court citation dataset

Supreme Court citation dataset is a legal citation network in which a node rep-

resents a majority opinion. Nodes with higher PageRank scores represent the

opinions that were cited by many other opinions. Three 9-level communities of

nodes 33549, 24769 and 7072 with the highest, medium and lowest PageRank

scores are shown in Figure 4.5, respectively. As we can see, all the core node

have smaller communities compared to that of the Bitcoin OTC dataset. Con-

sidering the size of the Supreme Court citation dataset is larger than that of the

Bitcoin OTC dataset, we can infer that the Supreme Court citation dataset is

more sparser.
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Figure 4.4: Bitcoin OTC dataset: nine-level communities of node (a) 1810, (b)
3831 and (c) 3386 with PageRank threshold = 0.8
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Figure 4.5: Supreme Court citation dataset: nine-level communities of node (a)
33548, (b) 24769 and (c) 7072 with PageRank threshold = 0.8
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4.4.2 Community Coefficient and Community Size

Figure 4.6: Change of community coefficient and community size of the generated
communities for core nodes with different PageRank scores. Nodes are
ordered by their PageRank scores. (a) Plot of the highschool dataset:
70 nodes in the graph; (b) plot of the physicians dataset: 241 nodes
in the graph; (c) plot of the Bitcoin Alpha dataset: 200 sample core
nodes are selected with equal width in terms of PageRank scores; (d)
plot of the Bitcoin OTC dataset: 200 sample core nodes are selected
with equal width in terms of PageRank scores; (e) plot of the Supreme
Court citation dataset: 200 sample core nodes are selected with equal
width in terms of PageRank scores.
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Furthermore, we have also investigated the change of the community coefficient

value and the community size when the PageRank scores of the core node increases.

The resulting plots for all five example datasets are shown in Figure 4.6. Each

marker represents a core node in the graph. The green line is the PageRank

score of the core node, the blue line is the community coefficient of the generated

community around the core node, and the red line is the community size. Our

experiments show that in the case of HighSchool, Physicians, Bitcoin Alpha and

Bitcoin OTC datasets, as the PageRack score of the core node increases, the

community coefficient increases while the community size decreases in general. For

Supreme Court Citation dataset, however, there is no clear relationship between

the PageRank score of the core node and the community coefficient and community

size.

4.4.3 Effect of PageRank Threshold k

In the clustering process, we need to identify the nodes that show comparable or

higher importance than that of the core node and refine the cluster size. Therefore,

a PageRank threshold k is applied to all the nodes in the forward and backward

five-level subgraphs rooted at the core node. In this section, we will discuss the

effect of the PageRank threshold on the obtained community structure.

When various PageRank threshold values k are used, the number of nodes in

upper levels and lower levels of resulting communities for the Bitcoin Alpha dataset

and Bitcoin OTC dataset are shown in Table 4.3 and 4.4, respectively. For each

dataset, 6 sample core nodes and their communities under different k values were

selected based on PageRank scores: we selected two nodes with highest PageRank

scores, 2 nodes with medium PageRank scores and 2 nodes with lowest PageRank

scores. It can be seen in both tables, for these nodes with high and medium

PageRank scores, as we lower the PageRank threshold, the number of nodes in

both upper and lower levels of the generated community increases. Using the
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PageRank Threshold

Node 0.9 0.85 0.8 0.75 0.7

u l u l u l u l u l

Highest
#4 1 1 1 1 5 5 6 6 6 6

#2 6 6 6 6 7 7 8 8 10 10

Medium
#2278 1808 1913 1912 2032 1971 2108 2073 2213 2235 2405

#1532 1808 1913 1912 2034 1971 2110 2073 2215 2235 2409

Lowest
#6434 0 3060 0 3060 0 3060 0 3060 0 3060

#7063 0 3503 0 3503 0 3503 0 3503 0 3503

Table 4.3: Bitcoin Alpha dataset: number of nodes in communities around core
nodes #4 and #2 (highest PageRank scores), #2278 and #1532
(medium PageRank scores), and #6434 and #7063 (lowest PageRank
scores) when PageRank thresholds k = 0.9, 0.85, 0.8, 0.75 and 0.7 are
used (u: upper level of the community, l : lower level of the community)

PageRank Threshold

Node 0.9 0.85 0.8 0.75 0.7

u l u l u l u l u l

Highest
#1810 2 2 2 2 4 4 5 5 7 7

#2028 2 2 4 4 4 4 6 6 8 8

Medium
#3831 2921 2964 3039 3076 3218 3195 3501 3478 3861 3858

#4770 2872 3162 2984 3313 3147 3515 3429 3853 3784 4302

Lowest
#3386 0 5487 0 5487 0 5487 0 5487 0 5487

#2218 0 5503 0 5503 0 5503 0 5503 0 5503

Table 4.4: Bitcoin OTC dataset: number of nodes in communities around core
nodes #1810 and #2028 (highest PageRank scores), #3831 and #4770
(medium PageRank scores), and #3386 and #2218 (lowest PageRank
scores) when PageRank thresholds k = 0.9, 0.85, 0.8, 0.75 and 0.7 are
used (u: upper level of the community, l : lower level of the community)

Bitcoin OTC dataset as an example, Figure 4.7 and 4.8 visualize the nine-level

communities of nodes 1810 and 3831 with threshold k = 0.9, 0.8 and 0.7. As
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Figure 4.7: Nine-level communities of node 1810 with PageRank threhsold = (a)
0.9, (b) 0.8 and (c) 0.7 for the Bitcoin OTC dataset

Figure 4.8: Nine-level communities of node 3831 with PageRank threhsold = (a)
0.9, (b) 0.8 and (c) 0.7 for the Bitcoin OTC dataset
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can be seen clearly in Figure 4.7, when a high k value of 0.9 is used, since node

1810 has the highest PageRank score, a very small community with 4 nodes is

generated. As we relax the threshold, more nodes are found in the community.

However, as shown in Figure 4.8, nodes with smaller PageRank scores are not

obviously affected by the PageRank threshold. This is because most of the nodes

in the community have higher PageRank scores than that of the core node and

thus the change of the PageRank threshold does not significantly alter the cluster

structure. On the other hand, we also obverse that the community size of low

PageRank nodes does not change with the PageRank threshold. Because those

core nodes have smaller PageRank scores than any other nodes in the community,

the PageRank threshold has no affect on the community structure.

In addition, we have further evaluated the effect of the PageRank threshold k on

the community coefficient. Taking the Bitcoin Alpha and Bitcoin OTC datasets

as examples, Figure 4.9 and 4.10 show the computed community coefficient value

and the community size of the resulting communities for top 50 nodes with highest

PageRank scores. The x-axis represents the nodes sorted by their PageRank scores

in descending order. It can be clearly observed that as the PageRank score of the

core node decreases, the value of community coefficient drops while the community

size increases. When the PageRank score of the core node is high, the size of the

generated community is generally small, resulting in a high value of the community

coefficient. When the PageRank score of the core node decreases, more nodes with

slightly smaller PageRank scores start to be included in the community. As the

community size becomes larger, the cluster connectivity may reduce accordingly,

leading to a smaller value of the community coefficient. Meanwhile, with the

decrease of the PageRank threshold, the community coefficient decreases and the

community size increases. When we lower the PageRank threshold, more nodes

with relatively lower PageRank scores are added to the community, which may

introduce weak connections to the original community.
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Figure 4.9: Bitcoin Alpha dataset: change of (a) community coefficient and (b)
community size for top 50 nodes with highest PageRan scores when
PageRank threhsold = 0.9, 0.85, 0.8, 0.75 and 0.7

In conclusion, when selecting the PageRank threshold for generating hierarchical

communities, it is necessary to consider what the community size we would like to

generate and how large the community coefficient we would like to achieve. Then

we can tune the PageRank threshold to obtain the communities that meet our

desired performance.
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Figure 4.10: Bitcoin OTC dataset: change of (a) community coefficient and (b)
community size for top 50 nodes with highest PageRan scores when
PageRank threhsold = 0.9, 0.85, 0.8, 0.75 and 0.7

4.4.4 Validation of Hierarchical Communities

In this section, we have validated our approach for finding communities around

core nodes and evaluated the goodness of the discovered communities. The basic

idea of our validation experiment is to add a new node to an existing community
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around a core node and examine if the newly added node improves or degrades

the quality of the original community. To assess the connectivity of the nodes

within the new community, the community coefficient is re-computed. The new

community coefficient can be calculated using the following formula:

CCnew =
Nedge +N ′edge

C(Nnode + 1, 2)× 2
, (4.4.1)

where Nedge is the number of edges between all the nodes of the original community

in the graph, N ′edge is the number of additional edges introduced by the new node,

and Nnode is the total number of nodes in the original community. If the new

community coefficient is increased compared to the old value, it indicates that

this new node has strong connections with the nodes in this community; however,

if the new community coefficient value is lower than the old one, it implies that

the new node has a weak connection to the community and by introducing the

new node to the community, the connectivity of the initial community decreases.

The validation experiment has been performed on the Bitcoin Alpha and Bitcoin

OTC datasets, as shown in Figure 4.11 and 4.12. For each dataset, we have selected

three sets of communities based on the PageRank score of the core node. The blue

line is the new community coefficient value and the red line is the new average

PageRank score of the community after adding new nodes to the community.

The x-axis represents newly added nodes and is ordered by the values of the

new computed community coefficient. The two dashed horizontal lines correspond

to the community coefficient of the original community (red) and the average

PageRank score of all nodes in the original community (blue).

As seen in Figure 4.11, for nodes 4 and 2 with high PageRank scores, their

original communities have high values of community coefficient (0.53 for node 4

and 0.67 for node 2) and average PageRank score (0.0090 for node 4 and 0.0082

for node 2). For most of the new nodes outside the original community, they
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Figure 4.11: Bitcoin Alpha dataset: change of community coefficient and average
PageRank score by adding new nodes to the community. The node
labels are omitted here.

lower the community coefficient and the average PageRank score when we place

them in the community. Although we observe that there exist several nodes that
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Figure 4.12: Bitcoin OTC dataset: change of community coefficient and average
PageRank score by adding new nodes to the community. The node
labels are omitted here.

do increase the community coefficient, these nodes have low PageRank scores and

decrease the average PageRank score, which fails the PageRank threshold criterion.
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For nodes 2278 and 1532 with medium PageRank scores, the addition of new

nodes does not improve the community coefficient in both cases. For nodes 6434

and 7063, since they have the lowest PageRank score, the addition of some new

nodes helps on the improvement of the average PageRank score of the community.

However, almost all the new nodes do not improve the value of the community

coefficient (except one node in the plot of node 6434). Similar results can be

observed for Bitcoin OTC dataset shown in Figure 4.12. It should be pointed out

that these communities are generated by utilizing a PageRank threshold of 0.8.

Better quality of communities can always be obtained in terms of the community

coefficient value when using higher PageRank thresholds. From the above results,

we can conclude that the communities generated from our proposed algorithm

have strong connections among the nodes with comparable PageRank scores and

weak connections to the nodes outside the community.

4.4.5 Scalability Analysis

In order to evaluate scalability of our approach, we have compared the execution

statistics of our algirithm on the five datasets for building nine-level communities

when using PageRank threshold k = 0.8. To gain further insight of scalability,

we have also created two smaller versions of the largest dataset, Supreme Court

Citation dataset, by randomly sampling one third and two third of its edges. The

Supreme Court Citation dataset originally contains 202,167 edges, thus the two

datasets with 67,322 and 134,845 edges (labeled as Supreme-Court-citation 1 and

Supreme-Court-citation 2) were created. A comparison of the execution statistics

including input data size, the volume of the intermediate data, output data size,

number of generated five-level communities, average community length, and total

execution time are as shown in Figure 4.13. The intermediate data is the maximum

amount of data generated from the Map-Reduce phases. The average community
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length is the average number of levels in the generated communities. Note that

all data processing was carried out using our cluster with 6 nodes.

Figure 4.13: Execution time and data statistics for constructing nine-level com-
munities using PageRank threshold = 0.8. Supreme-Court-citation 1
and Supreme-Court-citation 2 were created by sampling edges from
the Supreme-Court-citation dataset. Intermediate data, output data
size, number of generated communities, average community length
and the total time are recorded for both the upper and lower five-
level subgraphs.

From the table in Figure 4.13, we can see that as the size of the dataset increases,

the execution time and the size of the intermediate data increase accordingly in

most cases. For each dataset, the processing time for generating the upper and

lower five-level subgraphs depends on the average community length. It can also

be observed that the size of the intermediate data is about 1-15 times of the size

of the output data. The size of generated intermediate data plays a vital role in

program efficiency. The larger the intermediate data, the longer the execution

time. We also notice that for all the Supreme Court Citation datasets, much less

intermediate data was generated compared to that of other datasets. For example,

although the number of nodes and edges in the Supreme Court Citation dataset are

almost 6 times than those in the Bitcoin OTC dataset, the generated intermediate
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data and the execution time of upper-level communities for the Supreme Court

Citation are much less than those of Bitcoin OTC dataset. Furthermore, 99%

and 82% of nodes in the Bitcoin OTC dataset have developed five-level subgraphs

in upper and lower parts, respectively; while 29,671 upper-level and 23,512 lower-

level subgraphs are generated in the Supreme Court Citation dataset, which count

for 86% and 68% of the total number of nodes in the graph, respectively. We can

infer from above observations that in the Supreme Court Citation dataset there

exist more nodes with very sparse connectivity so that they cannot develop into

communities, which results in less intermediate data and thus shorter execution

time.

Figure 4.14: Bitcoin Alpha dataset: execution time and data statistics for con-
structing 5-level, 9-level and 17-level communities (with 3-level, 5-
level and 9-level upper and lower subgraphs) when using PageRank
threshold = 0.8

To investigate the impact of the community length on the performance of our

algorithm, we have also compared the processing time, size of the output data and

the intermediate data, and average community length when constructing 5-level,

9-level and 17-level communities in Bitcoin Alpha dataset. From Figure 4.14,

we can see that the total execution time increases with increase in the length of
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the community. It takes about 30 seconds to build all the 5-level communities,

whereas more than 2,000 seconds are required when we build 17-level communities.

This is because the construction of longer communities involves more iterations,

resulting in more data shuffling and intermediate data. However, we notice that

the size of the output data and the average community length do not increase

much when building 17-level communities. It can be inferred from the table that

the maximum average length of the community that can be generated from the

Bitcoin Alpha dataset is around 7 levels. Most of the community will not grow

further even when a higher community-length parameter is used.

4.5 Summary

In this chapter, we have described the experiments we utilized to evaluate and val-

idate our algorithm for constructing hierarchical communities around core nodes.

We have analyzed and discussed the results obtained from several real-world di-

rected networks. In addition, we have studied the relationship between the PageR-

ank threshold and the size and connectivity of the resulting communities. The

validation experiment has demonstrated that our approach is an effective way to

discover communities in directed graphs.
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Chapter 5
Conclusion and Future Work

5.1 Conclusions

In this thesis, we have proposed a new Map-Reduce based approach for discov-

ering PageRank based hierarchical communities in directed graphs. Most of the

previous community detection approaches for directed graphs have ignored the

edge directionality and applied methods that were developed for undirected ones.

Although some methods do incorporate information on edge directions during clus-

tering, they suffer from poor scalability. To our knowledge, our method is the first

scalable Map-Reduce algorithm for community detection in directed graphs that

constructs hierarchical structures around core nodes with maintaining edge direc-

tions. These hierarchical communities are generated in a three-phase Map-Reduce

process. By utilizing the PageRank ranking algorithm, nodes with a similar rank

as the core node are considered as the candidate nodes. An upper-level and a

lower-level hierarchical subgraphs are built level by level and then merged into a

final community centered around the core node. This method is especially suitable

for finding communities in the graphs with the structure of the flow hierarchy, such

as trust networks, citation networks, and defeat networks. We have successfully

applied our algorithm to several real-world networks from various domains includ-

ing the friendship social network, trust network and legal citation network, and
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demonstrated the effectiveness of our method. In addition, we have investigated

the effect of the PageRank value of the core node and the PageRank threshold on

the size and structure of the generated communities.

5.2 Future Work

Several potential directions for the future research are outlined as follows:

• Using improved ranking algorithm. In our study, we treat our sample

graphs as unweighted graphs. However, in many real network systems, the

linkages between nodes are typically not of the same strength. For example,

in a directed trust network of a online transaction platform, an edge from i to

j indicates that user i has some trust relationship with user j. A weight can

be added to reflect the trust level of user i on user j. In such a case, strong

links and weak links play different roles in community formation. In our

work, we use the PageRank algorithm to measure the global importance /

influence of a node in the graph. In order to incorporate the trustworthiness

of a individual by other individuals, an extended PageRank algorithm that

considers the edge weight can be used. The weighted PageRank is defined

as

Weighted PR(i) =
1− d
N

+ d
k∑
j=1

PR(j)× wj,i,

wj,i =
Wj,i

Wi

,

where Wj,i is the edge weight of the link (j, i) and wj,i is the ration of edge

weight of the link (j, i) to the total edge weight of all incoming links to i.

The normalized edge weight wj,i indicates how strongly one node is related

another node.
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