
HAL Id: hal-03929913
https://hal.science/hal-03929913

Submitted on 9 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

LDViz: a tool to assist the multidimensional exploration
of SPARQL endpoints

Aline Menin, Pierre Maillot, Catherine Faron, Olivier Corby, Carla Maria Dal
Sasso Freitas, Fabien Gandon, Marco Winckler

To cite this version:
Aline Menin, Pierre Maillot, Catherine Faron, Olivier Corby, Carla Maria Dal Sasso Freitas, et al..
LDViz: a tool to assist the multidimensional exploration of SPARQL endpoints. Web Information
Systems and Technologies : 16th International Conference, WEBIST 2020, November 3–5, 2020, and
17th International Conference, WEBIST 2021, October 26–28, 2021, Virtual Events, Revised Selected
Papers, LNBIP - 469, Springer, pp.149-173, 2023, LNBIP - Lecture Notes in Business Information
Processing, 978-3-031-24196-3. �10.1007/978-3-031-24197-0�. �hal-03929913�

https://hal.science/hal-03929913
https://hal.archives-ouvertes.fr

LDViz: a tool to assist the multidimensional
exploration of SPARQL endpoints

Aline Menin1[0000−0002−9345−3994], Pierre Maillot1[0000−0002−9814−439X],
Catherine Faron1[0000−0001−5959−5561], Olivier Corby1[0000−0001−6610−0969],

Carla Dal Sasso Freitas2[0000−0003−1986−8435], Fabien
Gandon1[0000−0003−0543−1232], and Marco Winckler1[0000−0002−0756−6934]

1 University Côte d’Azur, CNRS, Inria, I3S (UMR 7271), France
{aline.menin, pierre.maillot, catherine.faron, olivier.corby,

fabien.gandon, marco.winckler}@inria.fr
2 Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre,

Brazil
carla@inf.ufrgs.br

Abstract. Over recent years, we witnessed an astonishing growth in
production and consumption of Linked Data (LD), which contains valu-
able information to support decision-making processes in various appli-
cation domains. In this context, data visualization plays a decisive role
in making sense of the large volumes of data created every day and in
effectively communicating structures, processes, and trends in data in
an accessible way. In this paper, we present LDViz, a visualization tool
designed to support the exploration of knowledge graphs via multiple
perspectives: (i) RDF graph/vocabulary inspection, (ii) RDF summa-
rization, and (iii) exploratory search. We demonstrate the usage and
feasibility of our approach through a set of use case scenarios showing
how users can perform searches through SPARQL queries and explore
multiple perspectives of the resulting data through multiple complemen-
tary visualization techniques. We also demonstrate the reach and generic
aspects of our tool through an evaluation that tests the support of 419
different SPARQL endpoints.

Keywords: Linked Data · Linked Data Visualization · RDF Visualiza-
tion · Visual Exploratory Search · SPARQL Endpoints Exploration

1 Introduction

An increasing amount of data is published as RDF (Resource Description Frame-
work) datasets and is made available as Linked Open Data (LOD) in different
domains, providing valuable information to support decision-making processes
in various application domains [15]. However, the value of these data depends on
the ability of decision makers to grasp the relevant information to describe the
phenomena embedded in the data. Information visualization, through the use
of visual representations of abstract data, reinforces human cognition to sup-
port the discovery of unstructured insights only limited by human imagination

2 A. Menin et al.

and creativity, making it a suitable approach to communicate the knowledge
described by RDF datasets. In particular, we observe an increasing interest in
using visual and interactive techniques to explore LOD resources via multiple
criteria and levels of abstraction by the Semantic Web community to accomplish
three main goals: (i) to explore the relevant concepts of an application domain
via ontology representation; (ii) to inspect RDF graphs (e.g., “for debugging
triples”) [1]; and (iii) to analyze the instances based on their types/classes.

Among the many evolution trends of the Web, knowledge graphs (KGs) are
now widely used to describe in standard ways the semantics of entities in the
real world and their relations [16], and to link descriptions with additional in-
formation in semantic LOD repositories. Typically, KGs are generated through
the integration of many different data sources, which results on highly heteroge-
neous information. This heterogeneity represents both a leverage and a challenge
in their effective utilization. Further to the often unknown structure and nature
of the data, visualizing linked data requires a preceding KG processing to retrieve
suitable data, which requires knowledge of the underlying RDF vocabulary used
to build the KG, less and less familiar even to data producers and analysts, as
different vocabularies can be used to describe the same phenomenon, and nearly
inaccessible to application domain users. Furthermore, retrieving suitable data
often requires combining data from different KGs (available from the same or
different SPARQL endpoints), which results in several data quality issues (e.g.,
missing data, inconsistency, etc.). Thus, visual methods are a necessary and
suitable approach to support an effective exploration of knowledge graphs.

The design process of every visualization tool follows a well-known pipeline
(i.e., import → transform → map → render → interact) [4, 31]. In particular,
a visualization pipeline for LOD data should also take into account the linked
nature of these datasets by leveraging/supporting/exploiting these links while
being capable of processing and visualizing the data appropriately. In a previous
work [25], we presented and discussed a visualization pipeline for LOD explo-
ration that supports a high level of flexibility in every step. This versatility is
found in the drafting of SPARQL queries in a way that appropriately addresses
the links in the linked data, in the possibility of tuning the parameters of the
graphic display and the associated interaction, and in the availability of multiple
visualization techniques that can help users see data according to diverse and
complementary viewpoints. To demonstrate the feasibility of our visualization
pipeline, we had implemented a proof of concept in the form of a web-based
visualization tool called LDViz. In this paper, we further explore the genericity
and flexibility of LDViz by defining a scope of SPARQL queries to support the
exploration of RDF graphs via different methods and by evaluating the extent
to which LDViz can support LOD visualization. In particular, our contributions
are summarized as follows:

– A generic web-based visualization tool for LOD exploration, LDViz, that
supports data visualization through multiple perspectives from any SPARQL
endpoint that is W3C compliant.

Title Suppressed Due to Excessive Length 3

– A classification of the scope of SPARQL queries with respect to KGs explo-
ration methods. This classification cover RDF graph/vocabulary inspection,
RDF summarization, and exploratory search.

– An analysis of LDViz using 419 SPARQL endpoints, which results shows an
average coverage of 41.77% of SPARQL endpoints by our approach.

The remaining of this document is organized as follows. Section 2 presents
the proposed visualization tool. Section 3 presents the scope of SPARQL queries
in terms of KG exploration methods and illustrate their use in LDViz. Section 4
presents a coverage analysis of the genericity and reach of our approach. Section 5
summarizes previous contributions for LOD visualization and compares them
with our approach. Section 6 discusses our results and concludes the paper.

2 Visual Exploration of LOD

In this section, we present the Linked Data Visualizer (LDViz), a web-based
visualization tool for LOD exploration. Our visualization techniques are imple-
mented using D3.js (Data-Driven Documents) library, while the nodejs library is
used to manage the linked data access server that handles data retrieval through
SPARQL queries. We also use Stencil JS to implement visualization techniques
as reusable Web components. LDViz implements each step of the visualization
pipeline (i.e., import → transform → map → render → interact) as described in
[25] and summarized hereafter:

Import. Data import is handled via SPARQL queries. The generality of
LDViz relies on the fact that users can query any SPARQL endpoint as long
as it can return result sets in a JSON format. We provide an interactive inter-
face where the user can test and debug SPARQL queries or import predefined
queries, which they may modify at will. The data import process can be launched
at different times throughout the exploration process by using follow up queries,
which allows to import external data (a different subset of data from the same
SPARQL endpoint or data from a different SPARQL endpoint) into the explo-
ration process to enrich the analysis (bring supplementary information to the
analysis or compare datasets).

Transform. Data transformation occurs in three moments during the ex-
ploration process. First, at the definition of the SPARQL query, the RDF graph
is filtered to retrieve the appropriate data to solve a particular domain question
and reshaped into the required data model (see Subsection 2.1) to be visual-
ized. Second, in the transformation engine, the SPARQL result sets are cleaned
and re-shaped into a suitable data model for visualization, handled by MGEx-
plorer [23], a visualization interface to explore multidimensional network data.
Finally, as the user filters the input data set through a selection operation in a
particular view to explore it in another, the data are filtered and reshaped to fit
the selected visualization technique.

Visual Mapping. Visual mapping occurs during the transformation of the
SPARQL results set into the LDViz data model, followed by the mapping of data

4 A. Menin et al.

variables into the visual variables of each technique, and the tuning of certain
variables through the use of a Graph Style Sheet (e.g., by defining colors to
represent them) (see Subsection 2.2).

Rendering. This is handled by MGExplorer [23], the visualization interface
to explore multidimensional network data mentioned before.

Interaction. Via the MGExplorer interface, we provide selection operations
that allow the user to subset the input data to be explored using different visu-
alization techniques, which present complementary views of the data.

2.1 Importing data from SPARQL endpoints

SPARQL Result Sets The W3C Recommendation [29] describes a specific
data format to represent SPARQL SELECT query results using JSON. The
results of a SPARQL query are serialized in a single top-level JSON object
with two keys: head and results. The results key is an object with a single
key, bindings, which is an array with zero or more elements, one element per
query solution. The Listing 1.1 illustrates this data format through an extract
of the results of the SELECT query presented in Listing 1.5. Each SPARQL
query solution is a JSON object whose keys are the variable names of the query
solution. A solution describes an RDF term that has a type and a value key,
and other keys depending on the specific kind of RDF term (e.g., language,
datatype). In LDViz, we use this data format, which means that our approach
supports data from any SPARQL endpoint, as long as it can return SPARQL
result sets in a JSON format that is W3C compliant.

{head: { link: [], vars: ["s", "p", "o", "label", "type", "date"] },
results: { distinct: false , ordered: true , bindings: [

{s: { type: "literal", xml:lang: "en", value: "Maximilian Schell" },
p: { type: "uri",

value: http :// dbpedia.org/resource/A_Bridge_Too_Far_(film)},
o: { type: "literal", xml:lang: "en", value: "Dirk Bogarde"},
label: { type: "literal", xml:lang: "en",

value: "A Bridge Too Far (film)"},
type: { type: "literal", xml:lang: "en", value: "non -fiction" },
date: { type: "typed -literal",

datatype: http ://www.w3.org /2001/ XMLSchema#date ,
value: "1977 -06 -15" }}

] } }

Listing 1.1. Example of a SPARQL SELECT result set serialized in a JSON object
as specified by the W3C Recommendation.

LDViz Data Model The data model corresponds to a custom graph model
defined through a SPARQL SELECT query, which uses arbitrary query patterns
on RDF graphs to generate the edges ?s ?p ?o of the graph that one wants to
visualize, where ?s and ?o represent the nodes of the graph while ?p corresponds
to labeled edges between them. Listing 1.5 illustrates an example SPARQL query
supported by LDViz. In this example, ?s and ?o are bound to the actors and
?p to the films. The result of this SPARQL query will be used to build a visu-
alization of the social network of actors co-starring in films. In addition to these

Title Suppressed Due to Excessive Length 5

three variables, the data model allows three other reserved variables to be used
to describe the edges (?p) of the output graph in visualization: ?type, ?label,
and ?date. Variable ?type can be used to type the edges of the output graph
(e.g., in a graph where films connect actors, films can be “typed” or classified by
their genre). Due to human perceptual and cognitive limits towards visualiza-
tions, only a certain number of graphic elements can be perceived on the screen.
For that, we allow the variable ?type to be bound to only four different values
that describe the edges. If the variable ?type is bound to more than four dis-
tinct values in the SPARQL query result, the system automatically determines
the three more relevant ones based on the number of bindings and considers the
remaining values as the ”Other” category. The variable ?label is intended to
provide a description of the edges in natural language (e.g., the value of prop-
erties rdfs:label that describe resources). Finally, the ?date variable is used
to provide a visual representation of the distribution of edges over time (e.g., if
edges are films, it could correspond to the release year).

2.2 SPARQL Query Editor

Fig. 1. SPARQL Query Management Interface. (a) Listing of predefined queries. (b)
The querying area. (c) The GSS editing area. (d) Control buttons to visualize and
export the results. Image reused from [25].

6 A. Menin et al.

The query editor (Fig. 1) allows users to create, test, and debug SPARQL
queries. Users can also clone predefined queries and adapt them according to spe-
cific needs3. The interface expects a SPARQL endpoint, a name for the SPARQL
query and the query code itself. Users can retrieve data from more than one
endpoint by leveraging the full strength of the SPARQL language, including the
SERVICE clause by using the Corese proxy [9], for example. The action but-
tons at the bottom (Fig. 1d) allow to visualize the SPARQL query results using
MGExplorer or export them as a JSON file.

(a) {"node": { "fst": {"color": "green"},
"snd": {" color": "orange "} },
"services ": { "Corese Browser ": { "url":
"http :// corese.inria.fr/srv/service/covid?uri ="}}}

(b) select * where { ?s ?p ?o
bind("fst" as ?style1) bind("snd" as ?style2)}

Listing 1.2. Example of (a) GSS and (b) its usage in a SPARQL query

Each query is associated with aGraph Style Sheet (GSS) that can be used
to transform the default node-link diagram through a declarative specification
of visibility, layout, and styling rules [28]. So that, it is possible to define styling
rules as classes in a style sheet of reference (JSON format) (e.g., Listing 1.2a)
and bind them to dedicated variables in the SPARQL query (i.e. ?style1 to
style ?s, ?style2 to style ?o, and ?style for both). This information is then
processed in the transformation engine, which associates the style classes to the
visual variables used in the visualization. Moreover, the GSS supports a behavior
feature that enables exploring data (the graph nodes) via an external service
(e.g., the Corese browser [9], which allows browsing the original repository of
open data) as long as an URL is provided (see Listing 1.2a).

2.3 Using predefined queries

Fig. 2. Using a query panel, users can (a) choose a SPARQL endpoint they want to
explore, (b) a predefined query to start the exploration process, and (c) custom certain
parameters of the query such as time period, location, etc.

3 For security reasons, authentication is required to use the editor. Interested readers
might contact the authors to acquire access.

Title Suppressed Due to Excessive Length 7

We assume that many users might be expert on the application domain of an
endpoint and interested in exploring such as data sets. However, an expertise in
the application domain does not imply that the user knows SPARQL. For that
kind of user, the visualization tool includes a querying process that allows the
use of predefined queries (defined by expert users in the SPARQL query editor)
to retrieve data from endpoints without having to understand SPARQL or the
complexity of the underlying knowledge graph. From a query panel (see Fig. 2)
users can select a SPARQL endpoint (Fig. 2a) and have a simple access to the
queries (Fig. 2b) that have been specifically created for that endpoint. That panel
also displays a set of custom parameters that allow users to filter the data (e.g.
in a bibliometric network, these could be the publication period and research
institution of scholarly articles) (Fig. 2c). The button “Run” at the bottom of
the panel, will trigger the query against the chosen endpoint, prompt the system
to transform the resulting data, and then launch the visualization technique to
display the resulting data. For the purpose of optimizing the process, we use
a cache that stores the results of queries for a certain amount of time (i.e. 15
days), thus reducing the requests to the data server. To acquire fresh data, the
user can deliberately clear the results stored in the cache by using the button
“Clear cache” at the bottom, which will force the system to apply the query to
the SPARQL endpoint at the next execution.

2.4 Data Visualization using MGExplorer

Graph View
Cluster
View

Egocentric
View

Pairwise
Relationship

View

Distribution
View

Listing View

Table 1. Visualization techniques available in MGExplorer according to the given
perspective to the data.

In our approach, data visualization is provided through MGExplorer [23], a
tool that assists in the exploration of multidimensional and multivariate graphs.
The tool provides a set of complementary visualization techniques (see Table 1)
that can be instantiated at will during the exploration process to further ex-
plore the data through different perspectives. The graph view shows the nodes
as items and the edges between them as relationships. This visualization pro-
vides an overview of the network defined by the SPARQL query. The cluster
view [6] shows clusters according to some relationship among the data items.
The technique features a multi-ring layout, where the innermost ring is formed

8 A. Menin et al.

by the data items (represented by circles), and the remaining rings display the
data attributes (represented by rectangles). The items belonging to the same
cluster are connected via curved lines. The egocentric view isolates a data
item of interest (in the center) and shows all other data items with which it has
a specific relationship in a circular view [7]. The data attributes of the pairwise
relationships are encoded by the height and color of a bar placed between the
item of interest and each related item. The user can place any item in the field
of view center by clicking on it, switching the focus of the IRIS. The pairwise
relationship view [5] features a matrix in which rows and columns represent
data items, and cells contain glyphs that encode attributes that describe the
relationship between these items. The default glyph is a star-plot-shaped object
with a variable number of axes that are used to encode the values of the selected
data attributes. By pointing a glyph to the matrix, it is possible to enlarge the
glyph to see the details of the data attributes. The distribution view shows
the data attributes of an item or a set of items distributed over a particular vari-
able. For example, in one of our use-case scenarios, the x-axis encodes temporal
information (in years), while the y-axis encodes the counting of publications co-
authored by an author or a set of authors. The data is displayed as a single bar
per time period or multiple colored bars to represent categorical information of
attributes. The listing view displays the elements that form the relationship
between two or more nodes in the graph. Each item of the list is linked to a
descriptive web page in the dataset where the user can obtain more information
about it.

Fig. 3 shows an overview of the exploration process using MGExplorer. It
starts with a query panel, where the user can choose a SPARQL endpoint and a
predefined query (Fig. 3a), or directly with a graph view of the data (Fig. 3b),
when the visualization is launched from the SPARQL query editor. From the
graph view, the user can select nodes of interest to subset the data and explore
it using other views, such as a temporal distribution (Fig. 3c) or a listing of items
(Fig. 3d). The views are connected via line segments to represent their depen-
dencies and enable retracing the exploration path. This same information can
be retrieved through a history panel that is progressively completed with prove-
nance information (Fig. 3e). To avoid clutter and help users focus on the relevant
information to the ongoing analysis, users can hide any of the displayed views,
which they may revisit later using the history panel. The input data (defined by
the SPARQL query) is the reference data for selection operations throughout the
whole exploration process. The system supports data and view selection, allow-
ing users to specify subsets of interest from the whole input graph and suitable
views to explore them. Upon selection of elements, the system filters the input
dataset accordingly, and the resulting subset undergoes a transformation and
mapping process that properly filter and reshape the data to be visualized with
the selected visualization technique. The history records information about the
selection operation, the data subset, the chosen view, and the transformed data.

Title Suppressed Due to Excessive Length 9

Fig. 3. Overview of MGExplorer exploration process. In the query panel (a), the user
chooses a SPARQL endpoint and a predefined query, which results are displayed in the
graph view (b). By right-clicking on a node of interest, the user can subset the data
and explore it through different views such as a distribution (c) or listing view (d) of
items. The lines between views represent their dependency, which is also displayed in
the history view (e).

2.5 Visualizing multiple SPARQL endpoints during exploration

The tool proposes a feature, called Follow-up Queries, that allows users to si-
multaneously explore multiple SPARQL result sets on the visualization dash-
board [24]. This feature supports exploratory tasks such as (i) the comparison
of a particular phenomenon described by different KGs and (ii) the inclusion of
complementary data (from the same or a different SPARQL endpoint) to enrich
the ongoing analysis. Fig. 4 illustrates the usage of follow-up queries subsequent
to the exploration process depicted in Fig. 3. To avoid clutter, we first hide the
views that are no longer necessary, which replaces the view by an icon (Fig. 4a)
that serve to retrace the exploration process and is interactive to allow users to
display the view again by clicking on it. In the listing view (Fig. 4b), suppose
we are interested in the paper entitled “A Survey of the First 20 Years of Re-
search on Semantic Web and Linked Data” and we want to know more about
the author, “Fabien Gandon” and, particularly, about his scientific collabora-
tions. For that purpose, we will query the HAL SPARQL endpoint to retrieve
the coauthorship network of “Fabien Gandon”. We right-click on the name of
the author and select the option “New Query” (Fig. 4b), which instantiates a
query panel giving the author’s name as input data to be used as a parameter
in the new query. As for the initial query, we select the endpoint of interest and
the query (Fig. 4c), which results are displayed on a new graph view (Fig. 4d).
This process allowed us to bring complementary data to the exploration process.

10 A. Menin et al.

Fig. 4. Usage of follow up queries. We hide the views that are no longer necessary
(a) and launch a new query by right-clicking on an item displayed on the listing view
(b). In the new query panel (c), we choose an endpoint and query, which results are
displayed in a new graph view (d). We can clone the query to reuse information, which
creates a new query panel (e) where we can modify the information if necessary and
relaunch the query. The results are then displayed in a new graph view (f).

Up to this point, we have explored the scientific collaboration network of
“Fabien Gandon” from the perspective of the HAL knowledge graph. Now, let us
compare these data with the coauthorship network of this researcher retrieved
from another KG (i.e., the Microsoft Academic Knowledge Graph4. The tool
allows us to clone the query view to reuse information and speed up the process.
In the cloned query view (Fig. 4e), we change the SPARQL endpoint to MAKG
and select query 9, the results of which can be seen in a new graph view (Fig. 4f).
We can compare these visualizations side-by-side, where we can quickly observe
that the network found in MAKG is slightly larger than that found in HAL.
By hovering over the node that represents “Fabien Gandon” in both node-link
diagrams, we observe that this author had 36 co-authors between 2015 and 2021
in 28 scholarly articles in the network retrieved from HAL. For the same period,
the MAKG provided a network where this author had 64 co-authors through 64
scholarly articles.

2.6 Transformation Engine

The LDViz transformation engine consists of a converter module from SPARQL
JSON results to the MGExplorer data model and a set of algorithms (i.e., map-
pers) that process subsets of data defined during the exploratory process via

4 Available at https://makg.org/sparql

https://makg.org/sparql

Title Suppressed Due to Excessive Length 11

visual querying operations and map the resulting data to a particular visualiza-
tion technique, also interactively chosen by the user.

From SPARQL Results to MGExplorer Data Model. The system re-
ceives the SPARQL JSON results set, which undergoes a transformation process
to extract an attributed graph, encoded in the JSON format, that will serve as
input data to MGExplorer. In addition to identifying mandatory and optional
variables from the dataset, the process also derives indicators to describe the
relationship between each pair of nodes, such as the total count of items and the
count of items per type, when this information is provided.

MGExplorer Mappers. Every selection operation triggers a transforma-
tion process that filters and transforms the data and maps it to the selected visu-
alization technique via: the cluster view mapper, which extracts clusters of nodes
grouped according to the existing links among them, e.g., in a co-authorship
network, the algorithm detects groups of authors co-authoring the same pub-
lication(s); the egocentric view mapper, which extracts pairwise relationships
between the selected node and the other nodes in the subset; the pairwise rela-
tionship view mapper, which extracts pairwise relationships by analyzing every
possible combination of pairs of nodes within the subset; the distribution view
mapper, which extracts the distribution of items in the subset according to a
particular attribute (e.g., date); and the listing view mapper, which extracts the
list of links in the graph and their descriptive information (if provided). Regard-
less of the resulting relationship type, every mapper keeps information on the
count and type of items per relationship.

3 KG Exploration Methods and SPARQL Queries

LDViz covers three domains of data exploration: (i) RDF graph/vocabulary
inspection, (ii) RDF graph summarization, and (iii) exploratory search. In this
section, we present the spectrum of SPARQL queries capable of extracting the
necessary data from RDF graphs to support such as data. We then demonstrate
the generic use of LDViz by applying those queries on two distinct SPARQL
endpoints giving access to the DBpedia FR dataset5 (over 400 million triples
describing the content generated in the Wikipedia project) and the HAL dataset6

(an open archive for scientific publications in all domains).

3.1 RDF Graph/Vocabulary Inspection

When working with the Semantic Web, a recurring task is to inspect the RDF
graph and its ontology to learn its content. In particular, we consider exploration
tasks where the user wants to (1) display the RDF graph with no particular goal
in mind and (2) get an idea of the ontology used in the RDF graph. The RDF
graph can be extracted through a simple SPARQL SELECT query retrieving

5 SPARQL endpoint: http://fr.dbpedia.org/sparql
6 SPARQL endpoint: http://sparql.archives-ouvertes.fr/sparql.

http://fr.dbpedia.org/sparql
http://sparql.archives-ouvertes.fr/sparql.

12 A. Menin et al.

Fig. 5. Graph view of an extract of DBpedia’s (a) RDF graph, (b) hierarchy of classes,
(c) hierarchy of properties, and (d) signatures of properties linking classes (orange) and
properties (light green).

every triple ?s, ?p, ?o in the graph, without specific matching (Listing 1.3a).
To support the exploration of the RDF vocabularies, we define three SPARQL
query templates based on the RDF Schema data-modeling vocabulary to retrieve
the (a) hierarchy of classes, defined by the rdfs:subClassOf property (List-
ing 1.3b), (b) the hierarchy of properties, defined by the rdfs:subPropertyOf

property Listing 1.3c), and (b) the signature of properties, defined by the prop-
erties rdfs:domain and rdfs:range, which give the class to which the subject
of an RDF statement using a given property belongs, and the class of its ob-
ject (value), respectively (see Listing 1.3d). These SPARQL query templates are
generic enough to retrieve information from any SPARQL endpoint, as long as
it includes the RDF Schema description.

To demonstrate the feasibility of these SPARQL queries, we apply them to
the DBPedia endpoint and visualize the results using LDViz. Fig. 5a shows an
interactive graph view of the 1000 first statements in the DBpedia graph. The
graph views in Figures 5b-d show the above mentioned methods of RDF vo-
cabulary inspection: hierarchy of classes and properties, and the signatures of
properties. Users can hover over nodes to inspect and navigate within hierarchies
and explore property signatures by hovering over nodes that represent proper-
ties to inspect their signature or classes to identify all the properties to whose
signatures the selected class belongs (e.g., dbo:Athlete is related to eleven prop-
erties). In this example, we leverage the GSS feature to assign meaningful visual
elements to certain variables as shown in Fig 5d, where color encodes property
(light green) and class nodes (orange), assisting visual search and understanding
of relationships between nodes of different types.

(a) select * where { ?s ?p ?o } (b) select * where { ?s ?p ?o
filter (?p = rdfs:subClassOf) }

(c) select * where { ?s ?p ?o (d) select * where { ?s ?p ?o
filter (?p = rdfs:subPropertyOf) } filter (?p = rdfs:domain ||

?p = rdfs:range)}

Listing 1.3. SPARQL query templates for RDF graph/vocabulary inspection via the
(a) RDF graph, (b) hierarchy of classes, (c) hierarchy of properties, and (d) signature
of properties.

Title Suppressed Due to Excessive Length 13

3.2 RDF Graph Summarizations

Fig. 6. Graph views of DBpedia RDF summarizations representing (a) class paths, (b)
property paths, and (c) paths of type class → property → class.

A benefit of visualization for exploring RDF graphs relies on its capacity to
reveal tendencies and patterns within the data. However, visualization knows its
limitations as one tries to display millions of triples on the screen, resulting in a
huge and cluttered graph that hinders the discovery of meaningful information.
Structural RDF graph summarization addresses this issue by providing indices
or summaries of RDF graphs to aggregate the triples in meaningful ways. We
consider three methods of RDF graph summarization, which we support through
three SPARQL query templates (Listing 1.4) capable of extracting (i) the exist-
ing paths between classes of resources in an RDF graph, (ii) the existing property
paths between the resources of the graph, or (iii) the paths between classes and
properties (i.e. Class → Property → Class path). To demonstrate the feasibility
of these queries, we applied them on the DBPedia SPARQL endpoint. The graph
view in Fig. 6a summarizes the DBPedia RDF graph by showing how classes are
connected through properties, while the graph view in Fig. 6b shows how prop-
erties are connected through resources. Finally, Fig. 6c shows how properties
and classes are connected together through resources.

prefix ldv: <http :// ldv.fr/path/>
(a) select distinct ?s ?p ?o

where { ?a ?p ?b . ?a a ?s . ?b a ?o }

(b) select distinct ?s (ldv: as ?p) ?o where {
?x ?s ?y . ?y ?o ?z . filter (?s != ?o)}

(c) select distinct ?s (ldv: as ?p) ?o where {
{?a ?b ?c. ?a a ?s . bind (?b as ?o)} UNION
{?a ?b ?c. ?c a ?s . bind (?b as ?o)}}

Listing 1.4. SPARQL query templates for exploring RDF summarizations through
(a) class paths, (b) property paths, and (c) paths of type class → property → class.

14 A. Menin et al.

3.3 Exploratory Search of Knowledge Graphs

Fig. 7. Exploratory path of Robert Redford’s co-starring network (a-d) and Fabien
Gandon’s co-authorship network (e-g).

The set of KG exploration methods presented above are useful to support
data producers while inspecting or discovering the RDF graph. As for any
dataset, KGs provide data that describes a particular phenomenon, which analy-
sis could support decision-making processes on a particular application domain.
Therefore, we support exploratory search in KG starting from a question or
hypothesis, which is then formulated as SPARQL query to retrieve an initial
dataset used in the exploration. Hereafter, we define SPARQL query templates
to support exploratory search in KGs with focus on relationship networks.

The SPARQL query template presented in Listing 1.5a is able to retrieve
the co-starring network of a given artist described by the DBPedia KG. In this
example, we focus on Robert Redford, which resulting graph view shown in
Fig. 7a consists of 28 nodes (actors) and 137 links (movies). We see that Redford
has 27 co-stars across four movies where details are available at the Listing view
(Fig. 7b). The resources can be explored using the Corese browser (Fig. 7c) or
any other service enabled in the GSS. Furthermore,the cluster view (Fig. 7d)
shows Redford’s co-stars grouped by movie.

Title Suppressed Due to Excessive Length 15

(a) prefix dbo: <http :// dbpedia.org/ontology/>
prefix dbp: <http :// dbpedia.org/property/>
select * where { ?x rdfs:label {artist name} .

?p dbo:starring ?x, ?a1, ?a2; rdfs:label ?label;
dbp:released ?date ; dbp:genre ?type .

?a1 rdfs:label ?s . ?a2 rdfs:label ?o . }

(b) prefix dc:<http :// purl.org/dc/terms/>
prefix foaf:<http :// xmlns.com/foaf /0.1/>
prefix hsc:<http :// data.archives -ouvertes.fr/schema/>
select * where { ?p dc:creator ?x, ?x1 , ?x2 ;

dc:type ?type ; dc:title ?label ; dc:issued ?date.
?x hsc:person ?a . ?a foaf:name {researcher name}.
?x1 hsc:person ?a1 . ?a1 foaf:name ?s .
?x2 hsc:person ?a2 . ?a2 foaf:name ?o . }

Listing 1.5. SPARQL query template for retrieving (a) the co-starring network of
a particular artist from DBpedia and (b) the co-authorship network of a particular
researcher from HAL

The SPARQL query template in Listing 1.5b allows to retrieve the co-authorship
network of any researcher from the HAL SPARQL endpoint. In this example, we
focus on the co-authorship network of Fabien Gandon between the year of 2015
and 2021. The resulting graph view in Fig. 7e is formed by 35 nodes (authors)
and 109 links (publications). We observe that Fabien Gandon has 36 co-authors
via 28 publications. We further explore the pairwise relationship between this
researcher and his peers using the pairwise relationship view, where we can iden-
tify the researcher with whom he has the most publications. As an example, we
focus on the co-authorship between him and Franck Michel, which resulted in 8
scholarly articles during that period (Fig. 7f). Further, we explore these articles
over time using a distribution view (Fig. 7e), where we can observe a constant
collaboration with the most articles being published together in 2019. The distri-
bution view also displays the publications’ types (i.e., conference paper, article),
showing that they have mostly published conference papers together.

4 Coverage Analysis

To demonstrate the extent to which LDViz can support the exploration of LD
datasets, we implemented a script that tested 419 different SPARQL endpoints
to identify whether the SPARQL result set could be visualized by our tool.

4.1 Data

The 419 SPARQL endpoints used in this analysis were obtained from IndeGx [21],
a framework designed to index public KGs that are available online through a
SPARQL endpoint. The indexing process uses SPARQL queries to either ex-
tract the available metadata from a KG or to generate as much metadata
as the endpoint allows it. The generated metadata not only describes KGs
and their endpoints but also conveys an estimation of certain quality crite-
ria. The queries used by IndeGx to index KGs and their endpoints are avail-
able in a public repository at https://github.com/Wimmics/dekalog, and the

https://github.com/Wimmics/dekalog

16 A. Menin et al.

results of its indexations are publicly available through a SPARQL endpoint at
http://prod-dekalog.inria.fr/sparql, from which we retrieved the list of endpoints
using the query presented in Listing 1.6. These SPARQL endpoints are present
in the dataset generated by IndeGx because they appeared in different publicly
available catalogs of datasets. In particular, they were retrieved from the LOD
Cloud website7, Yummy Data [34], Wikidata8, Linked Wiki9, SPARQLES [33]
and the OpenLink company endpoint10.

prefix index: <http ://ns.inria.fr/kg/index\#>
prefix desc: <http :// www.w3.org/ns/sparql -service -description \#>
SELECT DISTINCT ?endpointUrl where {

GRAPH ?g { ?metadata index:curated ?dataset .
?dataset desc:endpoint ?endpointUrl . } }

Listing 1.6. SPARQL query used to retrieve the list of available endpoints from the
IndeGx RDF graph.

4.2 Procedure

The queries in the exploratory search category require a knowledge of the RDF
graph and vocabulary to retrieve suitable data to start the exploration. Thus,
we ran the evaluation using only queries that serve to inspect the RDF graph
or vocabulary, and those that provide RDF summarizations as they are rather
generic to any endpoint. The only specific vocabulary used by these queries is
the RDF Schema, which provides a data modeling vocabulary for RDF data and
would be therefore expected to appear in most RDF graphs. We implemented
a nodejs script that applies each query against every one of the 419 SPARQL
endpoints retrieved from the IndeGx endpoint using the fetch API provided
by the node-fetch module. We limited each query to 10 solutions to speed
up the process, as our goal was to inspect the resulting data format to check
whether we could visualize it using LDViz; the actual data was not important
for this analysis. A request would have mainly two possible outcomes. In case
of a successful request, we inspect the resulting data format to verify whether
it matches the SPARQL JSON result set defined by W3C Recommendation. If
the data does not match the expected format, we inspect it further to identify
its format, which may sometimes be HTML or CSV, for instance. In case of a
failed request, we inspect the error thrown to understand why we were unable
to retrieve data from that particular endpoint.

4.3 Results

Figure 8 presents a TreeMap graph showing the distribution of different responses
obtained while querying 419 SPARQL endpoints obtained from IndeGx [21]. The
top level of the TreeMap graph contains seven rectangles each of which covers a

7 https://lod-cloud.net
8 https://www.wikidata.org/
9 https://linkedwiki.com/

10 http://lod.openlinksw.com/sparql/

http://prod-dekalog.inria.fr/sparql
https://lod-cloud.net
https://www.wikidata.org/
https://linkedwiki.com/
http://lod.openlinksw.com/sparql/

Title Suppressed Due to Excessive Length 17

Fig. 8. Summary of results per type of query. In the case where results cannot be
visualized with LDViz, we display the issues encountered while querying the SPARQL
endpoints.

specific query type (i.e Paths→Properties→Class, Class paths, Class hierarchy,
RDF graph, property hierarchy, signature of properties, and properties path).
These rectangles are further divided in smaller colored rectangles that summarize
the results obtained per query type including SPARQL endpoints supported
by LDViz and issues encountered while accessing the endpoints (e.g., Access
Unauthorized, Service not found, etc.). The size of the rectangle encodes the
number of results obtained for each query.

On average, 41.77% of the SPARQL endpoints returned a valid result set that
could be explored using LDViz. We noticed that the queries seeking for class and
property hierarchy, and signature of properties were slightly less successful than
the remaining, where only about 38.19% of SPARQL endpoints returned a valid
result set. Regarding the issues found while querying the SPARQL endpoints,
we could identify 11 different reasons for why it cannot be explored using LDViz.
Table 4 summarizes the percentage of issues per query type. Hereafter we present
the issues in decreasing order of occurrence:

– HTML: About 16.06% of the requests returned an HTML object, which may
contain valid results from the SPARQL endpoint, but cannot be processed
by the LDViz transformation engine.

18 A. Menin et al.

– Service Not Found: The SPARQL endpoint could not be found (request
status 404 and 410). We encountered this issue in about 14.18% of requests.

– Service Unreachable: This issue is identified when the connection is re-
fused by the server (throwing the ECONNREFUSED error), or the pro-
tocol encountered an unrecoverable error for that endpoint (throwing the
EPROTO error). On average, 7.06% of requests encountered this issue. We
noticed that this issue appeared slightly more often for the SPARQL query
recovering the RDF summarization through class paths then for the remain-
ing, where we observed the issue in 8.59% of requests.

– Timeout: About 6.27% of the requests encountered a timeout issue. This is
due to the request response not being received within the default timeout of
the fetch request, which is of about 300 seconds (request statuses 408 and
504) or the Virtuoso server estimating the query processing time to be longer
than its established timeout of 400 seconds.

– No results: This issue means that the request returned a valid JSON object,
but the bindings array was empty. In average, 4.30% of SPARQL endpoints
did not provide results to our queries. However, once again, we observe that
this number is higher for SPARQL queries seeking for the signature of prop-
erties, class, and property hierarchies, where we observe that about 8.35%
of endpoints did not provide results against an average of only 1.25% of
endpoints not providing results for the remaining queries.

– Invalid Certificate: The request could not be completed due to an invalid
certificate on the SPARQL endpoint side. This issue was observed in about
3.10% of requests, which correspond to 13 SPARQL endpoints.

– CSV: On average, 2.18% of the requests returned a string object which
content follows a CSV format. The result set may contain valid data but
cannot be processed by the LDViz transformation engine.

– Bad Request: The request could not be fulfilled due to bad syntax (request
status 400). This error was thrown by 2.18% of requests, which correspond
to 9 to 11 SPARQL endpoints. We could observe that the SPARQL queries
seeking for the RDF graph and an RDF graph summarization through class
paths were slightly less affected than the remaining.

– Format Not Supported: Requests for 6 different SPARQL endpoints have
responded with this error (1.43% of requests), which means that the server
can only generate a response that is not accepted by the client (status 406).

– Access Unauthorized: This issue encompasses the following request re-
sponses: the server refuses to respond (status 401 and 403), and authenti-
cation is required (status 407 and 511). We observed that three endpoints
(0.95% of requests – 4 SPARQL endpoints) required authentication, which
we could not provide.

– Not W3C compliant: The request responded with a JSON object that
does not follow the JSON format specified by the W3C Recommendation.
This issue was observed in 2 SPARQL endpoints (0.48%).

Title Suppressed Due to Excessive Length 19

To better understand the issues, we further inspected some of the SPARQL
endpoints using the KartoGraphi application11 [21], which provides an overview
of the state of the 419 endpoints used in this analysis through the metadata
generated by IndeGx. It shows, for instance, that not every SPARQL endpoint
is transparent regarding the used vocabularies (only 110 endpoints provide the
list of vocabularies used). Furthermore, only 95 endpoints contain a RDF Schema
vocabulary, revealing that not every SPARQL endpoint contains the description
of RDF Schema, which may explain the higher rate of empty results for the
queries retrieving the hierarchies and signature of properties using RDF Schema
properties such as subClassOf, subPropertyOf, domain, and range. Moreover,
we noticed that some of the SPARQL endpoints do not support the majority
of the SPARQL features, which could explain why they did not recognize the
syntax of the queries, throwing a bad request error.

5 Related Work

A complete survey of tools designed for LOD exploration is beyond the scope of
this paper. For that, we suggest the reading of the comprehensible survey of 70
such tools [12], previous surveys of linked-data based exploration systems [22],
and the definitions and models of exploratory search [26]. In this section, we fo-
cus on LOD visualization tools that support the exploration of (i) OWL or RDF
Schema, (ii) the RDF graph, and (iii) custom datasets represented according to
data types, while examining their support to perform tasks of (i) RDF graph/vo-
cabulary inspection, (ii) RDF summarization, and (iii) exploratory search. Ta-
ble 2 summarizes the reviewed tools according to supported data format, access
methods, represented aspects of data, visualization, and interaction tools.

OWL/RDF Schema Visualization.Kremen et al. [20] represent the struc-
ture of RDF datasets and the relationship with other datasets by using class/prop-
erties statistics, spatial and temporal information, and a dataset summary. Sim-
ilarly, the tool proposed by Anutariya and Dangol [2] uses a node-link diagram
to visualize schema information inferred via SPARQL queries using ontological
characteristics of the triples in the LOD data sources.

RDF Graph Visualization. Aiming at simplifying the exploration of large
RDF graphs, various visualization tools have been proposed in the literature
to support the progressive visual exploration of LOD, which would simply re-
quire a particular resource or a RDF dataset as starting point [10, 11, 19]. In
such tools, the RDF graph is represented via a node-link diagram and the user
can incrementally reveal or hide neighboring resources via selection operations
to explore and visualize relevant data from very large RDF graphs [11], while
discovering linked RDF graphs in the Web [19], and inspecting information and
internal relations of data subsets [10]. To assist the user in interpreting all nodes
and links of an RDF graph as knowledge structures by keeping only interesting
triples, Chawuthai and Takeda [8] use graph simplification methods to visualize

11 Accessible at http://prod-dekalog.inria.fr/

http://prod-dekalog.inria.fr/

20 A. Menin et al.

Ref. Year Tool
Input
Data

Rep. Data Access Visualization Interaction

[13] 2020 S-Paths
RDF

Dataset
Per Datatype RDF Dump

CO, G, H, P,
PT

CC, F

[14] 2018 N/A
RDF

Dataset
RDF Graph RDF Dump H, PT, R CC, F, M

[2] 2018 VizLOD
RDF

Dataset
OWL/RDF
Schema

SPARQL /
RDF Dump

R F, V

[20] 2018
Dataset
Dash-
board

RDF
Dataset

OWL/RDF
Schema

RDF Dump R, TT F, V

[19] 2018
LOD

Explorer
RDF

Dataset
RDF Graph JSONP R DD, F

[18] 2018 JLO/GIG
SPARQL
Result
Sets

RDF Graph SPARQL CL, R CC, F, M, V

[8] 2016 N/A
RDF

Dataset
RDF Graph

SPARQL
construct

R CC, F

[27] 2016 N/A
SPARQL
Result
Sets

Per Datatype
SPARQL /
RDF Dump

CO, G, P, R N/A

[32] 2015 LinkDaViz
RDF

Dataset
Per Datatype RDF Dump

CO, D, G, P,
T

CC, E, M, V

[10] 2014
LOD/

VizSuite
RDF

Dataset
RDF Graph SPARQL R CC, F

[17] 2013 VisualBox
SPARQL
Result
Sets

Per Datatype SPARQL G, R, T E, F

[3] 2012 LDVM
Non/RDF
Dataset

Per Datatype RDF Dump G, H, P F, M, V

[30] 2012 Sgvizler
SPARQL
Result
Sets

Per Datatype
SPARQL
select

CO, D, G, H,
R, P, T

N/A

[35] 2011 ViziQuer
SPARQL
Result
Sets

OWL/RDF
Schema

SPARQL R F, V

[11] 2007 PGV
RDF

Dataset
RDF Graph SPARQL R CC, F, V

Table 2. Summary of related work: publication reference, year, name (if provided),
input data type, represented information, data access, visualization type (CO: compar-
ison, CL: clustering, D: distribution, G: geographical, H: hierarchical, P: proportional,
PT: patterns, R: relationship, T: temporal, TT: text and table), and interaction oper-
ations (CC: chart customization, E: chart export, F: data filtering, M: visual mapping,
V: view operations, DD: details on demand). N/A stands for non-available. Source:
Menin et al. [25]

an RDF graph, which remove redundant triples to present a sparse graph to the
user, while ranking triples according to topics of interest.

Frasincar et al. [14] propose an RDF data format plugin for a general-purpose
visual environment that supports browsing and editing graph data. Users can
define new operations for data processing, visualization, and interaction while
being able to modify visual mapping by changing the shape, size, and color
of nodes and edges. Graziosi et al. [18] provide a user-friendly SPARQL query
builder to support non-programmers users in extracting data from the Web and

Title Suppressed Due to Excessive Length 21

exploring it through a node-link diagram. Likewise, users can modify visual
attributes of nodes (shape, color, border, etc.) via a customizable template for
the visualization of entities and properties.

Visualization per Datatype. In an attempt to improve the visualization
of LOD by considering the characteristics of the data, a few tools have been
proposed to analyze the RDF vocabulary of the input data to visualize it ac-
cordingly (e.g., data containing properties such as xsd:date and ical:dtstart

would be visualized through timeline or calendar visualizations) [3,27,32]. Sim-
ilarly, the S-Paths visualization tool [13] supports the visualization of resources
sets based on semantic paths by identifying and ranking a set of visualization
techniques suitable to explore the data. Via interaction tools, the user can ex-
plore different resource sets and/or use different visualization techniques to get
a different perspective to the dataset delivered via different semantic paths.

The Visualbox tool [17] generates graph, temporal, and geographical visu-
alizations to explore SPARQL result datasets; it also exports the visualization
in a format suitable for incorporation into hypertextual documents. Similarly,
the JavaScript wrapper proposed by Skjaeveland [30] generates visualizations of
SPARQL result sets via HTML elements, such as web components, embedded
with SPARQL SELECT queries, which are rendered to contain the specified
visualization type on page load or function call.

Tool & Ref.
RDF graph /
vocabulary
inspection

RDF Summa-
rization

Exploratory
Search

S-Paths [13] ✓
[14] ✓

VizLOD [2] ✓
Dataset Dashboard [20] ✓ ✓

LOD Explorer [19] ✓
JLO/GIG [18] ✓ ✓

[8] ✓ ✓
[27] ✓ ✓

LinkDaViz [32] ✓
LOD/ VizSuite [10] ✓

VisualBox [17] ✓
LDVM [3] ✓
Sgvizler [30] ✓
ViziQuer [35] ✓
PGV [11] ✓
LDViz ✓ ✓ ✓

Table 3. Summary of related work regarding task support: RDF profiling, RDF sum-
marization, or exploratory search.

22 A. Menin et al.

Table 3 presents these related works according to the type of KG explo-
ration they support, i.e. RDF graph/vocabulary inspection, summarization, and
exploratory search. To our knowledge, there is no LOD visualization tool that
supports all three types of analysis, which can be achieved with LDViz. In par-
ticular, the advantage of our approach compared to existing solutions relies on a
flexibility that allows users to define meaningful datasets via SPARQL SELECT
queries applied to any SPARQL endpoint, so that they can explore multiple
aspects of RDF datasets, as well as to progressively explore the LOD Cloud
through the usage of follow-up queries launched on the fly to include external
data into the exploration process. It also allows users to perform exploratory
searches using various complementary visualization techniques, instantiated on
demand, focusing on meaningful subsets of data according to the task at hand,
instead of a single visualization technique that represents the whole data set,
restricting the analysis to a single view of the data.

6 Discussion, Conclusion and Future Work

In this paper, we present a web-based interactive visualization tool for LOD
exploration called LDViz. It provides access to any SPARQL endpoint by allow-
ing users to perform searches with SPARQL queries and visualize the results via
multiple perspectives delivered through complementary visualization techniques.

KG exploration methods. Our approach supports the exploration of KG
through a set of methods which we support via a set of SPARQL query templates
that allow (i) RDF graph/vocabulary inspection, (ii) RDF summarizations ex-
ploration, and (iii) exploratory search. We defined the scope of SPARQL queries
through templates that can be reused over any SPARQL endpoint, either di-
rectly or after slight modifications to accommodate the RDF vocabulary. We
demonstrated their usage and feasibility through a set of use case scenarios and
a coverage analysis that apply those queries over 400 SPARQL endpoints.

Visual design and interactions. We support exploration search via MG-
Explorer, a visualization tool for progressively exploring multidimensional net-
work data via multiple complementary views. Users can select subsets of data
through visual queries and display the results in a separate view that shows a
different perspective to the data. The multiple views can be hidden, revisited,
and arranged in the display area in meaningful ways to support efficient data ex-
ploration while reducing cognitive overhead and clutter-related issues. The tool
provides yet a follow up query feature that allow the user to bring external data
into the exploration process via predefined queries processed on-the-fly. The dif-
ferent datasets can be simultaneously explored in the same dashboard, enriching
the ongoing analysis, while allowing the progressive exploration of the Web.

User support. When exploring KGs, a great deal of time and effort is spent
in testing and debugging SPARQL queries to ensure that the resulting data
is sufficient to accomplish the task at hand. Thus, we support data producers
and analysts via a SPARQL query editor, where users can test and debug their
queries, or import predefined queries, which they may use as templates to create

Title Suppressed Due to Excessive Length 23

new queries, simplifying the process. Furthermore, to support domain users on
their decision-making processes without having to deal with the complexity of
the SPARQL language, LDViz includes an interface where users can perform
exploratory search through predefined queries. The tool is available at http:
//dataviz.i3s.unice.fr/ldviz.

Generalization. Through the scope of SPARQL queries defined in this pa-
per, our results showed that LDViz can support the exploration of KGs from
about 42% of the 419 analyzed SPARQL endpoints. We noticed that certain
queries, such as the ones describing the signature of properties, class and prop-
erty hierarchies of KGs were less successful encountering issues such as bad
request and no results more often than the remaining queries, which may be ex-
plained by the SPARQL endpoint missing RDF Schema vocabulary description.
In general, we observe that most issues encountered were rather caused by acces-
sibility limitations at the SPARQL endpoint side. We follow the W3C standards,
as we believe this ensures the accessibility and homogeneity of data throughout
the Web. However, this could be considered a limitation of our approach, as it
prevents the visualization of SPARQL endpoints that are not W3C compliant
(about 18% of endpoints in our analysis).

Usability and Suitability. Although our use case scenarios and our cover-
age analysis are enough to support the feasibility and genericity of our approach,
user-based evaluations are essential and should be performed to determine the
usability and suitability of LDViz. Thus, future work includes developing user-
based evaluations to investigate the usability of LDViz to assist the resolution
of these and other use cases by expert users in Semantic Web, as well as to as-
sist decision-making processes via exploratory search of RDF graphs, involving
expert users in diverse application domains.

Acknowledgements

We are grateful to Ricardo A. Cava, who provided us with the first version
of MGExplorer, which was developed as part of his Ph.D. thesis at the Fed-
eral University of Rio Grande do Sul. C.D.S. Freitas is funded by the Brazilian
funding agencies CNPq and CAPES (Finance Code 001). This work is also par-
tially funded by University of Côte d’Azur through its IDEXJEDI program (CC:
C870A06232 EOTP: LINKED OPEN DATA DF: D103).

References

1. Antoniazzi, F., Viola, F.: RDF graph visualization tools: A survey. In: 2018 23rd
Conference of Open Innovations Association (FRUCT). pp. 25–36. IEEE (2018).
https://doi.org/10.23919/FRUCT.2018.8588069

2. Anutariya, C., Dangol, R.: VizLOD: Schema extraction and visualization of
linked open data. In: 2018 15th International Joint Conference on Com-
puter Science and Software Engineering (JCSSE). pp. 1–6. IEEE (2018).
https://doi.org/10.1109/JCSSE.2018.8457325

http://dataviz.i3s.unice.fr/ldviz
http://dataviz.i3s.unice.fr/ldviz
https://doi.org/10.23919/FRUCT.2018.8588069
https://doi.org/10.1109/JCSSE.2018.8457325

24 A. Menin et al.

3. Brunetti, J.M., Auer, S., Garćıa, R., Kĺımek, J., Nečaskỳ, M.: Formal linked
data visualization model. In: Proceedings of International Conference on Infor-
mation Integration and Web-based Applications & Services. pp. 309–318 (2013).
https://doi.org/10.1145/2539150.2539162

4. Card, S.K., Mackinlay, J.D., Shneiderman, B. (eds.): Readings in Information Visu-
alization: Using Vision to Think. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1999)

5. Cava, R., Freitas, C.D.S.: Glyphs in matrix representation of graphs for displaying
soccer games results. In: The 1st Workshop on Sports Data Visualization. IEEE.
vol. 13, p. 15 (2013)

6. Cava, R., Freitas, C.M.D.S., Winckler, M.: Clustervis: visualizing nodes attributes
in multivariate graphs. In: Proceedings of the Symposium on Applied Computing.
pp. 174–179 (2017). https://doi.org/10.1145/3019612.3019684

7. Cava, R., Freitas, C.M., Barboni, E., Palanque, P., Winckler, M.: Inside-
in search: an alternative for performing ancillary search tasks on the web.
In: 2014 9th Latin American Web Congress. pp. 91–99. IEEE (2014).
https://doi.org/10.1109/LAWeb.2014.21

8. Chawuthai, R., Takeda, H.: Rdf graph visualization by interpreting linked data
as knowledge. In: Joint International Semantic Technology Conference. pp. 23–39.
Springer (2015). https://doi.org/10.1007/978-3-319-31676-5 2

9. Corby, O., Gaignard, A., Faron-Zucker, C., Montagnat, J.: KGRAM Versatile Data
Graphs Querying and Inference Engine. In: Proc. IEEE/WIC/ACM International
Conference on Web Intelligence. Macau (Dec 2012)

10. De Vocht, L., Dimou, A., Breuer, J., Van Compernolle, M., Verborgh, R., Mannens,
E., Mechant, P., Van de Walle, R.: A visual exploration workflow as enabler for the
exploitation of linked open data. In: IESD’14 Proceedings of the 3rd International
Conference on Intelligent Exploration of Semantic Data. vol. 1279, pp. 30–41. CER-
WS. org (2015)

11. Deligiannidis, L., Kochut, K.J., Sheth, A.P.: Rdf data exploration and
visualization. In: Proceedings of the ACM first workshop on Cyber-
Infrastructure: information management in eScience. pp. 39–46 (2007).
https://doi.org/10.1145/1317353.1317362

12. Desimoni, F., Po, L.: Empirical evaluation of Linked Data visualiza-
tion tools. Future Generation Computer Systems 112, 258–282 (2020).
https://doi.org/https://doi.org/10.1016/j.future.2020.05.038

13. Destandau, M., Appert, C., Pietriga, E.: S-Paths: Set-based visual exploration
of linked data driven by semantic paths. Semantic Web 12(1), 99–116 (2021).
https://doi.org/10.3233/SW-200383

14. Frasincar, F., Telea, A., Houben, G.J.: Adapting graph visualization techniques
for the visualization of rdf data. In: Visualizing the semantic web, pp. 154–171.
Springer (2006). https://doi.org/10.1007/1-84628-290-X 9

15. Gandon, F.: A Survey of the First 20 Years of Research on Semantic Web and
Linked Data. Revue des Sciences et Technologies de l’Information (Dec 2018).
https://doi.org/10.3166/ISI.23.3-4.11-56

16. Gandon, F., Hall, W.: A Never-Ending Project for Humanity Called ”the Web”.
In: WWW 2022 - ACM Web Conference. Lyon (virtual), France (Apr 2022).
https://doi.org/10.1145/3485447.3514195

17. Graves, A.: Creation of visualizations based on linked data. In: Proceedings of the
3rd International Conference on Web Intelligence, Mining and Semantics. pp. 1–12
(2013). https://doi.org/10.1145/2479787.2479828

https://doi.org/10.1145/2539150.2539162
https://doi.org/10.1145/3019612.3019684
https://doi.org/10.1109/LAWeb.2014.21
https://doi.org/10.1007/978-3-319-31676-5_2
https://doi.org/10.1145/1317353.1317362
https://doi.org/https://doi.org/10.1016/j.future.2020.05.038
https://doi.org/10.3233/SW-200383
https://doi.org/10.1007/1-84628-290-X_9
https://doi.org/10.3166/ISI.23.3-4.11-56
https://doi.org/10.1145/3485447.3514195
https://doi.org/10.1145/2479787.2479828

Title Suppressed Due to Excessive Length 25

18. Graziosi, A., Di Iorio, A., Poggi, F., Peroni, S., Bonini, L.: Customis-
ing LOD views: a declarative approach. In: Proceedings of the 33rd
Annual ACM Symposium on Applied Computing. pp. 2185–2192 (2018).
https://doi.org/10.1145/3167132.3167367

19. Jacksi, K., Zeebaree, S.R., Dimililer, N.: LOD Explorer: Presenting the Web of
Data. Int. J. Adv. Comput. Sci. Appl. IJACSA 9(1) (2018)

20. Kremen, P., Saeeda, L., Blasko, M.: Dataset dashboard-a sparql endpoint explorer.
In: VOILA@ ISWC. pp. 70–77 (2018)

21. Maillot, P., Corby, O., Faron, C., Gandon, F., Michel, F.: KartoGraphI: Drawing A
Map Of Linked Data. In: The Semantic Web: ESWC 2022 Satellite Events: ESWC
2022 Satellite Events, Heraklion, Crete, Greece, May 29 – June 2, 2022, Revised
Selected Papers. Springer-Verlag, Berlin, Heidelberg (2022)

22. Marie, N., Gandon, F.: Survey of linked data based exploration systems. In: IESD
2014 - Intelligent Exploitation of Semantic Data. Riva Del Garda, Italy (Oct 2014),
https://hal.inria.fr/hal-01057035

23. Menin, A., Cava, R., Freitas, C.M.D.S., Corby, O., Winckler, M.: Towards a visual
approach for representing analytical provenance in exploration processes. In: 2021
25th International Conference Information Visualisation (IV). pp. 21–28 (2021).
https://doi.org/10.1109/IV53921.2021.00014

24. Menin, A., Do, M.N., Dal Sasso Freitas, C., Corby, O., Faron Zucker, C., Giboin, A.,
Winckler, M.: Using Chained Views and Follow-up Queries to Assist the Visual
Exploration of the Web of Big Linked Data. International Journal of Human-
Computer Interaction (2022), https://hal.archives-ouvertes.fr/hal-03518845

25. Menin, A., Faron, C., Corby, O., Freitas, C., Gandon, F., Winckler, M.: From
Linked Data Querying to Visual Search: Towards a Visualization Pipeline for
LOD Exploration. In: Proceedings of the 17th International Conference on Web
Information Systems and Technologies - WEBIST, ISBN 978-989-758-536-4; ISSN
2184-3252. pp. 53 – 64 (Oct 2021). https://doi.org/10.5220/0010654600003058

26. Palagi, E., Gandon, F., Troncy, R., Giboin, A.: A Survey of Definitions and
Models of Exploratory Search. In: ESIDA ’17 - ACM Workshop on Exploratory
Search and Interactive Data Analytics. pp. 3–8. Limassol, Cyprus (Mar 2017).
https://doi.org/10.1145/3038462.3038465

27. Peña, O., Aguilera, U., López-de Ipiña, D.: Exploring lod through metadata ex-
traction and data-driven visualizations. Program (2016)

28. Pietriga, E.: Semantic web data visualization with graph style sheets. In: Proceed-
ings of the 2006 ACM symposium on Software visualization. pp. 177–178 (2006)

29. Recommentation, W.: Sparql 1.1 query results json format. https://www.w3.org/
TR/2013/REC-sparql11-results-json-20130321/, accessed on April 11th, 2022

30. Skjæveland, M.G.: Sgvizler: A javascript wrapper for easy visualization of sparql
result sets. In: Extended Semantic Web Conference. pp. 361–365. Springer (2012)

31. Telea, A.C.: Data visualization: principles and practice. CRC Press (2014)
32. Thellmann, K., Galkin, M., Orlandi, F., Auer, S.: Linkdaviz–automatic binding

of linked data to visualizations. In: International Semantic Web Conference. pp.
147–162. Springer (2015). https://doi.org/10.1007/978-3-319-25007-6 9

33. Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: SPAR-
QLES: Monitoring public SPARQL endpoints. Semantic Web 8(6), 1049–1065 (Aug
2017). https://doi.org/10.3233/SW-170254

34. Yamamoto, Y., Yamaguchi, A., Splendiani, A.: YummyData: provid-
ing high-quality open life science data. Database 2018 (03 2018).
https://doi.org/10.1093/database/bay022

https://doi.org/10.1145/3167132.3167367
https://hal.inria.fr/hal-01057035
https://doi.org/10.1109/IV53921.2021.00014
https://hal.archives-ouvertes.fr/hal-03518845
https://doi.org/10.5220/0010654600003058
https://doi.org/10.1145/3038462.3038465
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
https://doi.org/10.1007/978-3-319-25007-6_9
https://doi.org/10.3233/SW-170254
https://doi.org/10.1093/database/bay022

26 A. Menin et al.

35. Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query
SPARQL Endpoints. In: The Semanic Web: Research and Applications,
vol. 6644, pp. 441–445. Springer Berlin Heidelberg, Berlin, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21064-8 31

https://doi.org/10.1007/978-3-642-21064-8_31

Title Suppressed Due to Excessive Length 27

A Results of the coverage analysis

RDF graph/vocabulary inspection RDF Summarization

Result RDF
graph

Class
hierar-
chy

Property
hierar-
chy

Signature
of Prop-
erties

Class
paths

Property
paths

Paths
Class →
Property
→ Class

Supported 45.35 38.42 37.71 38.42 41.77 45.11 45.58

HTML 16.71 16.71 16.71 15.75 15.99 15.51 15.27

Service Not
Found

14.08 14.08 14.08 14.08 14.32 14.32 14.32

Service
Unreachable

6.68 6.68 6.68 6.92 8.59 6.92 6.92

Timeout 6.21 5.97 5.97 5.97 7.88 5.97 5.97

No results 0.72 7.88 8.59 8.59 1.43 1.67 1.19

Invalid
Certificate

3.10 3.10 3.10 3.10 3.10 3.10 3.10

Bad
Request

1.91 2.15 2.15 2.15 1.91 2.39 2.63

CSV 2.39 2.15 2.15 2.15 2.15 2.15 2.15

Format Not
Supported

1.43 1.43 1.43 1.43 1.43 1.43 1.43

Access
Unautho-

rized
0.95 0.95 0.95 0.95 0.95 0.95 0.95

Not W3C
compliant

0.48 0.48 0.48 0.48 0.48 0.48 0.48

Table 4. Percentage of SPARQL endpoints per response and per SPARQl query.

	LDViz: a tool to assist the multidimensional exploration of SPARQL endpoints

