Skip to main content

FedCL: An Efficient Federated Unsupervised Learning for Model Sharing in IoT

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2022)

Abstract

Federated Learning (FL) continues to make significant advances, solving model sharing under privacy-preserving. However, these existing methods are only of limited utility in the Internet of Things (IoT) scenarios, as they either heavily depend on high-quality labeled data or only perform well under idealized conditions, which typically cannot be found in practical applications. As such, a natural problem is how to leverage unlabeled data among multiple clients to optimize sharing model. To address this shortcoming, we propose Federated Contrastive Learning (FedCL), an efficient federated learning method for unsupervised image classification. The proposed FedCL can be summarized in three steps: distributed federated pretraining of the local model using contrastive learning, supervised fine-tuning on a server with few labeled data, and distillation with unlabeled examples on each client for refining and transferring the personalized-specific knowledge. Extensive experiments show that our method outperforms all baseline methods by large margins, including 69.32% top-1 accuracy on CIFAR-10, 85.75% on SVHN, and 74.64% on Mini-ImageNet with the only use of 1% labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of Machine Learning Research, Fort Lauderdale, FL, USA, vol. 54, pp. 1273–1282 (2017)

    Google Scholar 

  2. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  3. Zhu, Y., Liu, Y., Yu, J.J.Q., Yuan, X.: Semi-supervised federated learning for travel mode identification from GPS trajectories. IEEE Trans. Intell. Transp. Syst. 1–12 (2021). https://doi.org/10.1109/TITS.2021.3092015

  4. Tran, N.H., Bao, W., Zomaya, A., Nguyen, M.N.H., Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1387–1395 (2019). https://doi.org/10.1109/INFOCOM.2019.8737464

  5. Itahara, S., Nishio, T., Koda, Y., Morikura, M., Yamamoto, K.: Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-iid private data. arXiv preprint arXiv:2008.06180 (2020)

  6. Nandury, K., Mohan, A., Weber, F.: Cross-silo federated training in the cloud with diversity scaling and semi-supervised learning. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3085–3089 (2021). https://doi.org/10.1109/ICASSP39728.2021.9413428

  7. Jeong, W., Yoon, J., Yang, E., Hwang, S.J.: Federated semi-supervised learning with inter-client consistency & disjoint learning. arXiv preprint arXiv:2006.12097 (2020)

  8. Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. CoRR abs/1812.06127 (2018). http://arxiv.org/abs/1812.06127

  9. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. CoRR abs/1806.00582 (2018). http://arxiv.org/abs/1806.00582

  10. Li, Q., He, B., Song, D.: Model-contrastive federated learning. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10708–10717 (2021). https://doi.org/10.1109/CVPR46437.2021.01057

  11. Zhang, F., et al.: Federated unsupervised representation learning. arXiv preprint arXiv:2010.08982 (2020)

  12. Zhuang, W., Gan, X., Wen, Y., Zhang, S., Yi, S.: Collaborative unsupervised visual representation learning from decentralized data. CoRR abs/2108.06492 (2021). https://arxiv.org/abs/2108.06492

  13. Saeed, A., Salim, F.D., Ozcelebi, T., Lukkien, J.: Federated self-supervised learning of multisensor representations for embedded intelligence. IEEE Internet Things J. 8(2), 1030–1040 (2021). https://doi.org/10.1109/JIOT.2020.3009358

    Article  Google Scholar 

  14. Shi, H., Zhang, Y., Shen, Z., Tang, S., Li, Y., Guo, Y., Zhuang, Y.: Federated self-supervised contrastive learning via ensemble similarity distillation. CoRR abs/2109.14611 (2021). https://arxiv.org/abs/2109.14611

  15. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  16. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)

  17. Zhang, C., Zhu, Y., Markos, C., Yu, S., Yu, J.J.: Towards crowdsourced transportation mode identification: a semi-supervised federated learning approach. IEEE Internet Things J. (2021). https://doi.org/10.1109/JIOT.2021.3132056

  18. Thakur, A., Sharma, P., Clifton, D.A.: Dynamic neural graphs based federated reptile for semi-supervised multi-tasking in healthcare applications. IEEE J. Biomed. Health Inform. (2021). https://doi.org/10.1109/JBHI.2021.3134835

  19. Verma, V., Kawaguchi, K., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019)

  20. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  21. Xie, Q., Dai, Z., Hovy, E.H., Luong, M.T., Le, Q.V.: Unsupervised data augmentation. CoRR abs/1904.12848 (2019). http://arxiv.org/abs/1904.12848

  22. Wu, Y., Zeng, D., Wang, Z., Shi, Y., Hu, J.: Federated contrastive learning for volumetric medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 367–377. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_35

    Chapter  Google Scholar 

  23. Jin, Y., Wei, X., Liu, Y., Yang, Q.: Towards utilizing unlabeled data in federated learning: a survey and prospective. arXiv preprint arXiv:2002.11545 (2020)

  24. Berlo, B., Saeed, A., Ozcelebi, T.: Towards federated unsupervised representation learning. In: Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking, pp. 31–36 (2020)

    Google Scholar 

  25. Zhuang, W., Gan, X., Wen, Y., Zhang, X., Zhang, S., Yi, S.: Towards unsupervised domain adaptation for deep face recognition under privacy constraints via federated learning. arXiv preprint arXiv:2105.07606 (2021)

  26. Zhuang, W., Wen, Y., Zhang, S.: Joint optimization in edge-cloud continuum for federated unsupervised person re-identification. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 433–441 (2021)

    Google Scholar 

  27. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from non-IID data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Article  Google Scholar 

  28. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. arXiv preprint arXiv:1906.00910 (2019)

  29. Tschannen, M., Djolonga, J., Rubenstein, P.K., Gelly, S., Lucic, M.: On mutual information maximization for representation learning. arXiv preprint arXiv:1907.13625 (2019)

  30. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical data augmentation with no separate search. CoRR abs/1909.13719 (2019). http://arxiv.org/abs/1909.13719

  31. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16

    Chapter  Google Scholar 

  32. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? arXiv preprint arXiv:1411.1792 (2014)

  33. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  34. Bucilua, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA (2006)

    Google Scholar 

  35. Yalniz, I.Z., Jégou, H., Chen, K., Paluri, M., Mahajan, D.: Billion-scale semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546 (2019)

  36. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  37. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4L: self-supervised semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1476–1485 (2019)

    Google Scholar 

  38. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  39. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  40. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR 2009 (2009)

    Google Scholar 

  41. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, vol. 3, p. 896 (2013)

    Google Scholar 

  42. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. Adv. Neural. Inf. Process. Syst. 29, 2234–2242 (2016)

    Google Scholar 

  43. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999). https://doi.org/10.1016/S1364-6613(99)01294-2

    Article  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (62072049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, C., Gao, Z., Wang, Q., Mo, Z., Yu, X. (2022). FedCL: An Efficient Federated Unsupervised Learning for Model Sharing in IoT. In: Gao, H., Wang, X., Wei, W., Dagiuklas, T. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 460 . Springer, Cham. https://doi.org/10.1007/978-3-031-24383-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24383-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24382-0

  • Online ISBN: 978-3-031-24383-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics