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Abstract. As humans, we have a remarkable capacity for reading the 
characteristics of objects only by observing how another person carries 
them. Indeed, how we perform our actions naturally embeds information 
on the item features. Collaborative robots can achieve the same ability by 
modulating the strategy used to transport objects with their end-effector. 
A contribution in this sense would promote spontaneous interactions by 
making an implicit yet effective communication channel available. This 
work investigates if humans correctly perceive the implicit information 
shared by a robotic manipulator through its movements during a dyadic 
collaboration task. Exploiting a generative approach, we designed robot 
actions to convey virtual properties of the transported objects, particu- 
larly to inform the partner if any caution is required to handle the carried 
item. We found that carefulness is correctly interpreted when observed in 
the robot movements. In the experiment, we used identical empty plastic 
cups; nevertheless, participants approached them differently depending 
on the attitude shown by the robot: humans change how they reach for 
the object, being more careful whenever the robot does the same. This 
emerging form of motor contagion is entirely spontaneous and happens 
even if the task does not require it. 
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1 Introduction 

Humans routinely engage in joint actions and coordinate their movements with 
others, e.g. working together, playing a team sport, or merely moving objects. 
These tasks involve a collaborative process to coordinate attention, communi- 
cation, and actions to achieve a common goal. During this process, humans 
observe the behavior of their partners to anticipate their actions and plan their 
own accordingly. Verbal communication is not the only means to express inten- 
tions. Since verbalizing every step of the interaction would be time-consuming 
and cognitively expensive, humans also exploit their bodies and movements to 
exchange information. While executing an intended action, we also implicitly 
communicate to others our goal, its urgency, and the required effort. This abil- 
ity is referred to as non-verbal communication (i.e., non-verbal cues), and it can 
be expressed with our body: from turning the head or torso to a simple eye 
movement. 

In ordinary life, humans are very proficient at monitoring different compo- 
nents of other people’s kinematics, which they leverage to disclose hidden qual- 
ities of a handled item. For instance, studies on human non-verbal cues found 
that joints kinematics and dynamics of hand manipulation are crucial features 
to estimate the weight of a manipulated object [1,16,19] or predicting action 
duration [7]. 
Given the importance of implicit cues in human-human communication, we be- 
lieve it should be taken into account also in the robotic field. A robot meant 
to interact with humans, able to exploit the same communication channels as 
the partner, would guarantee a natural and less cumbersome experience. Indeed, 
numerous channels of communication may be employed to convey information 
between robots and people (such as synthetic speech, light-based, digital display, 
mixed or augmented reality [5,15,13]). However, a valuable alternative that does 
not require any training or explicit instruction is mediated by movement, and 
it should be sought whenever feasible. Human non-verbal cues from eyes, head, 
and arm movements encode the intention driving the action; when such cues are 
embedded onto a robot, they similarly allow to read the robot’s intention [4]. Re- 
garding object manipulation, object affordances was popularized in robotics and 
linked to (i) the action associated with the object, (ii) a physical property, or 
(iii) the type of behaviour required to manipulate the object [18,9]. Specifically, 
works on affordance reasoning examine the object’s properties [21,8,23], e.g., 
how to infer the water level in cups [14], although trying to directly detect such 
property from the object appearance, making it only possible with transparent 
cups and glasses. 

To overcome the need to understand the properties of objects from their ap- 
pearance alone, it is relevant to quantify the effect their features have on the 
kinematics of the action during manipulation. In our previous works, we ex- 
ploited human kinematics to infer the impact of cup water content on human 
motion, irrespective of the cup’s transparency [3,11]. Indeed, it has been shown 
that humans alter their behavior, adapting to the properties of the object they 
transport, such as weight, fragility, or content. Additionally, depending on the 
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type of cup, these behaviors may be more predominant or less, which may in- 
dicate that the difficulty of the manipulation impacts the human motion [17]. 
Knowing from the mentioned studies that humans reveal some object properties 
through movements, in this work, we investigate if it is possible to modulate the 
movements adopted by a robot end-effector during the transport of an object to 
communicate some of its hidden properties. In a previous study [12], we assessed 
the communicative potential of movements on different humanoid robots, by 
asking participants to explicitly judge the robotic motion’s carefulness after ob- 
serving it in videos. This study proposes a dyadic interaction with a new robotic 
manipulator in a realistic collaborative context. We used Generative Adversarial 
Networks (GANs) to synthesize and design the robot movements to convey a 
particular style feature associated with object manipulation: carefulness [6]. By 
using a generative approach, we can consistently produce novel but meaningful 
robot actions. In this study, we explore (i) whether the attitude conveyed by 
the robot’s movements is perceived as expected, i.e., if the carefulness (or its 
absence) is correctly expressed by our controller, and (ii) if a robot transporting 
objects and expressing the appropriate human-like behavior can invoke motor 
adaptation in the human response. 

 
2 Materials and Methods 

The objective of our study is to assess whether the generated robot’s movements 
are informative of the properties of the transported object. Moreover, we evalu- 
ate if the robot behavior affects how humans perform their tasks. 
We will now explain how we synthesized the required velocity profiles and con- 
trolled a Kinova Gen3 robot with 7 degrees of freedom to execute them; then, 
we will describe the experimental setup and design. 

 
2.1 Generation of robot movements 

To create robot’s movements communicative about the object properties, we 
used Generative Adversarial Networks (GANs) and controlled the robot end- 
effector to follow the velocity profiles produced by such model. Our interest is in 
generating movements to convey whether the transported object requires caution 
and care to be transported (careful movement) or it is safe to move without any 
particular concern (not careful movement). Previous studies assessed this kind 
of object manipulation and showed a marked difference in the kinematics of 
the human hand associated with the two classes of motions [11,3]. The velocity 
profile is mainly affected, where actions associated with delicate objects, e.g., 
a cup full of water, are characterized by lower maximum velocity, prolonged 
deceleration phase a longer duration. This modulation is so marked that it is 
possible to discriminate between careful movement and not automatically [3,10]. 

 
GAN To define meaningful movements associated with the properties of the 
carried object, we decided to modulate the velocity profile adopted by the robot 
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Fig. 1: Velocity profiles generate by the GANs for associated to Not Careful 
(NC) and Careful (C) transportation of objects. These velocity profiles were 
used to control the robot and provide the stimuli to the participants during the 
interaction  experiment 

 
 

end-effector. We used Generative Adversarial Networks to synthesize novel veloc- 
ity profiles using an approach already tested [6]. The details on the Time-GAN 
model [22] and its training are described in [6]. The original data used to feed 
the GANs consisted of hand velocity profiles recorded with a Motion Capture 
System during the transport of glasses, either empty or containing water, at 
two possible weight levels. The trajectories followed by participants during the 
manipulations were designed to grant a good degree of variability. After train- 
ing, each generative model can produce novel yet meaningful velocity profiles 
belonging to the distribution of the human data used during the training. This 
approach provides new and unlimited synthetic data, always falling in the desired 
class of motion (careful or not), avoiding a trivial copy of the human velocity 
profiles. Moreover, learning the velocity norm is useful in generalization terms 
since the same pattern of motion can be applied to multiple spatial trajectories. 
For this specific study, from the trained GANs, we synthesized ten velocity pro- 
files for each of the two classes to be replicated by the Kinova robot. A repre- 
sentation of the generated data is available in Figure 1. 

 
Robot Controller The Kinova Gen3 robot is controlled using ROS and the 
package kortex_ros1. Such package provides a velocity controller in Cartesian 
space, which moves the end-effector at 40 Hz in linear (m/s) and angular (rad/s) 
velocities. Attached to the end-effector is the Robotiq 85 two-finger gripper2 used 
to grasp the cups. This work applies two high-level controllers: (i) a velocity PI 

 
 

1 Official repository of the Kinova Gen3 ROS package: 
https://github.com/Kinovarobotics/ros_kortex 

2 Official website of the gripper: https://robotiq.com/products/2f85-140-adaptive- 
robot-gripper 

https://github.com/Kinovarobotics/ros_kortex
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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controller and (ii) a velocity GAN controller. The first controller is responsible 
for picking the cups from the table, and the second is for transporting and hand- 
ing over the cups to the participant. The former generates a constant velocity 
profile throughout the trials, while the latter follows one of the 20 GAN velocity 
profiles selected (10 careful and 10 not careful) during the experiment. For each 
GAN motion trajectory, the velocity profile is decomposed into the 3D Cartesian 
velocity coordinates by setting the current location and final location (handover 
point) at each time step. The handover location was fixed in advance to avoid 
any variability that could influence participants during the experiment. The po- 
sition of the participant’s wrist was tracked with a motion capture system, and 
the position of the robot gripper was estimated the same way (more details on 
the sensors used are stated in Section 2.2). The handover release moment was 
obtained by applying a threshold: the robot opened the gripper to release the 
cup whenever the distance between its end-effector and the participant’s wrist 
was below a fixed value. This simple design was enough to grant a smooth and 
reactive handover required for our experiment. 

 
 

2.2 Setup, sensors and experiment design 
 
 
 

 
(a) Setup frontal view (b) Setup lateral view 

 
Fig. 2: Setup: when interacting with the Kinova Gen3 robot, participants seated 
at a table. Once grasped the cup from the robot gripper, they had to put it down 
on one of the three areas delimited on the table. The motion capture markers 
used to analyse the human kinematics are visible on the participants’ right wrist 

 
 

Participants were asked to sort the items handled by the Kinova Gen3 robot 
by positioning them on the appropriate areas marked on the table where they 
were seated. We designed the experiment for the participants to focus on the 
robot behaviour and not on the characteristics of the items. For this reason, we 
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used identical plastic cups: in the instructions, we explained that we were simu- 
lating a bar-like scenario, where the robot and the human had to collaborate in 
sorting the glasses between those full to be served to the clients, and the used 
and empty ones, to be washed; in such context, the cups were meant to be either 
full of a liquid or empty: however, we explained to the participants that due to 
the danger of having a robot transporting water, all the cups were empty. This 
granted that participants could not rely on any visual cue or the actual object 
features to decide where to place the cup. In every trial, the Kinova robot grasped 
a cup from the table next to it (see Figure 2b) and transported it towards the 
participant, following either a careful (or not) velocity profile generated by the 
GANs (associated respectively, to the transport of a full or empty glass). The 
task for the participants was then to grasp the cup from the robot gripper and 
place it in the appropriate area on the table: on the “To be served” area, on 
the right, if they thought that the cup was actually meant to be full, or on the 
“To be washed” area, in case they assumed the cup was indeed empty. A third 
area, in the middle, was available to place the cups whose virtual content was 
not clear to the participant to avoid forcing them into making a decision. They 
were not informed about the modulation of the robot transport movements and, 
since the cups were all the same, they had to rely on the robot behavior to make 
their decision3. 
We used Optitrack4 motion capture system, with an acquisition frequency of 120 
Hz, to track the position of the participant wrist and shoulder. 
Twelve healthy participants, all members of Instituto Superior Técnico, volun- 
tarily took part in the experiment. Each evaluated 20 robot movements, where 
the sequence of careful and not careful modulation was randomized once and 
then maintained for every participant. The interactions were organized as five 
blocks of a sequence of four trials. At the end of each block, the experimenter 
put the cups on the table next to the robot. This resulted in a total of 240 
movements evaluated, equally balanced between careful or not robot behavior. 

 
3 Results 

One of the aims of this study was to verify whether modulating the robot end- 
effector velocity to express carefulness can inform participants about the virtual 
content of the manipulated glasses. Figure 3 shows the participants’ accuracy 
in evaluating, for each trial, if the observed transportation motion was meant 
to be associated with a delicate object, i.e., careful robot movement, or not. 
We represented with a dark bar the percentage of correct answers given by the 
participants, i.e., when they correctly interpreted the robot’s attitude. Consider- 
ing the total number of evaluated trials (240), 189 were correctly classified with 
no indecision, resulting in an accuracy of 78.75%. The transparent colored bars 
represent the misclassified movements. For instance, when we generated a robot 

 
 

3 Sample video of the human-robot interaction: 
https://www.youtube.com/watch?v=HVahS-0tn6g 

4 Optitrack website: https://optitrack.com/cameras/flex-13/ 

https://www.youtube.com/watch?v=HVahS-0tn6g
https://optitrack.com/cameras/flex-13/
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Fig. 3: Perception of robot’s movements: Percentage of correct interpretation of 
the robot’s transportation movements during the experiment. When the robot 
performed careful movements, in blue, they were correctly perceived 90% of the 
times. NC motions required more trials to be consistently classified. The dark 
bars represent the percentage of correct classification of the movement from the 
participant, the transparent bars the percentage of wrong attribution; finally, 
the light gray bars with a wavy pattern, the percentage of “Unknown” answers 
in each trial 

 
 
 
 

action modulated to communicate a not careful attitude, while participants asso- 
ciated it with the transport of a full cup. As it can be noticed, misunderstanding 
a not careful action for a careful one was the most frequent occurrence, especially 
in the first trials. In detail, 90% of the careful robot movements were perceived 
as such, whereas 75% of the not careful ones were correctly interpreted. Finally, 
the grey bars with a wavy pattern represent those trials where participants pre- 
ferred not to make a choice and placed the cup on the neutral area on the table. 
Also, these occurrences, which happened in 9 trials out of 240, decrease as the 
experiment progresses. 
Another aspect we were interested in investigating is if the two attitudes shown 

by the robot had any effect on how participants performed their tasks. An ex- 
ploratory inspection of the hand velocity data encouraged us to deepen this 
intuition: Figure 4 reports an example of the velocity adopted by one partic- 
ipant when reaching for the cup in the robot gripper. There is a noticeable 
modulation in the participant’s movements that correlates with the attitude 
shown by the robot. When the robot handled the cup with a careful attitude, 
also the participant reached for it with slower and prolonged action compared 
to the not careful situation. To assess this modulation quantitatively in human 
actions, we considered the duration and median velocity of the movements as 
relevant features. To perform statistical analyses on the acquired data, we used 
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Fig. 4: Velocity reaching movement: profiles adopted by one participant when 
reaching for the cup in the robot gripper. It is noticeable a modulation of both 
the duration and the maximum values depending on the style of the movement 
adopted by the robot: not careful (NC) or careful (C). The colormap is associated 
to the trial numbers, in order 

 
 
 

 
(a) Reaching duration (b) Reaching median velocity 

 
Fig. 5: Reaching movement: in (5a) mean duration of the participants reaching 
movements towards the robot’s gripper. When the robot performs a Careful (C) 
transportation movement, participants are significantly slower in reaching for 
the cup. Also the median velocity adopted in the reaching movements (5b) is 
modulated by how the robot moved in the transport action. The mean values 
for each participant are represented in a different color. The thick black lines 
represent the mean over the twelve participants, with the standard error. The 
star indicates a significant difference with p < 0.001 
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Jamovi software5, in particular the GAMLj module6 for mixed models. Figure 
5a shows the mean durations of the participants reaching movements toward 
the robot gripper. We ran a mixed model assuming the duration of the par- 
ticipants’ reaching movements as the dependent variable, the carefulness in the 
robot movement as a factor, and the subjects as cluster variables. The effect of 
condition resulted significant (C −NC, estimate = 0.443, SE = 0.055, t = 8.00, 
p < 0.001), indicating that when the robot end-effector was following a care- 
ful velocity profile, the subsequent human reaching action was longer, with an 
extended duration estimate of 0.443 seconds. A second mixed model was used 
to evaluate the median velocity adopted by the participants when reaching the 
robot gripper (see Figure 5b), using this time the median velocity as dependent 
variable: when the robot was careful, participants significantly diminished their 
median velocity, with an estimated reduction in speed of 0.055m/s (C − NC, 
estimate = 0.055, SE = 0.012, t = −4.60, p < 0.001). These findings prove 
that the modulation of the robot movements affected how participants moved to 
reach the cup and take it from the robot gripper. This happened even if there 
was no reason to adapt to the object properties since we consider a reaching 
movement without any object directly involved; moreover, all the cups had ex- 
actly the same characteristics. We also verified, for both the duration and the 
median velocity of the reaching movements, if there was an interaction with the 
participants’ accuracy in evaluating the robot’s behavior in every trial. We used 
the accuracy in their classification as an additional factor in the mixed model, 
but we found no interaction with how they performed the reaching duration or 
velocity. The modulation in response to the robot attitude also occurred when 
participants did not recognize it explicitly. 

 
4 Discussion 

In our study, we exploited a generative approach to produce robot movements 
that could implicitly communicate if a handled object required or not carefulness 
to be transported. To avoid influencing the choice, all the items transported by 
the Kinova robot were identical (empty plastic cups). The participants had to 
decide if they were supposed to be virtually full or empty, without any particular 
hint or instruction on how to proceed. Firstly, we assessed (i) whether our con- 
troller can express caution in the gestures or its absence. According to the results 
shown in Figure 3, we notice that the careful robot actions have been perceived 
as such since the first trials of the experiment. Regarding the not careful actions, 
there is a learning curve in how they were perceived during the experiment. In 
the first trials, they were sometimes mistaken for actions associated with trans- 
porting a full cup. As the experiment progressed, the difference between the 
two modulations became more evident, with an accuracy in the participants’ 
choices above 80%. Reflecting on the original dataset of human movements used 
to train the GANs, associated with the transport of full and empty cups [11], 

 
 

5 Jamovi software website: https://www.jamovi.org 
6 General analyses for linear models Jamovi module: https://gamlj.github.io/ 

https://www.jamovi.org/
https://optitrack.com/cameras/flex-13/


10 L. Lastrico et al. 
 

 
we can observe that a not careful attitude is standard in our actions. Indeed, 
when no particular circumstances are forcing us, for instance when picking and 
placing an ordinary object, we tend to move in a “neutral” way, and we can 
shortly describe our gesture as not careful. On the contrary, a strong kinematics 
modulation appears when we are paying attention to not spill the content of a 
glass [3,10]. This careful kinematics shaping is what we truly modeled in the 
communicative robot’s movements, and it is rewarding that careful movements 
were perceived correctly from the beginning. 
This study also allows us to evaluate (ii), the effect that the implicit modulation 
of the robot actions has on the interaction. Even though participants knew from 
the beginning that the plastic cups were all the same and all empty, there was a 
modulation in how they approached the robot gripper. We gave an overview of 
this phenomenon in Figure 4 and a quantitative assessment in Figure 5. If the 
robot manifested a careful attitude, adopting a lower magnitude in the velocity 
profile and a longer duration of the movement (see Figure 1 for reference), also 
the reaching movement of the humans was significantly slower. Interestingly, this 
also happened when participants had trouble explicitly recognizing the motion 
style and classifying the cup: the contagion in how they performed the reaching 
task was still present. This result emphasizes how important it is to modulate the 
actions of robots appropriately, with a view to collaborative interaction. Indeed, 
we proved a motor contagion from the robot to the human, even if there was for 
the participants no need directly associated with the task to adapt their motor 
strategies. We observed natural coordination emerging from such a simple task, 
where the pace of the human spontaneously adapted to the robot one, mimick- 
ing, even unconsciously, the attitude observed. Human-robot motor contagion on 
velocity was already observed, as far as the robot velocity profile is biologically 
plausible [2,20]. In our approach, the reasonableness of the velocity profiles was 
granted using a generative network trained on human examples. The findings in 
our study extend the existing evidence of motor contagion in Human-Robot In- 
teraction, proving that robotics arms can also leverage it to convey appropriate 
ways of handling fragile objects. 

 

5 Conclusion 
 

In this study, we showed how a generative approach could be used to generate 
meaningful and communicative robot actions that a human partner can success- 
fully interpret to infer some properties of the involved objects. This modulation 
on the robot side also led to a motor contagion in how the human performed its 
actions and synchronized with the pace of the robot; through motion alone, it 
was possible to open a channel of communication between the two agents, with 
measurable effects on the interaction. 
Finally, it should be noted that we obtained these results by modulating the 
movements of a 7 degrees of freedom robotic manipulator, not a humanoid robot. 
Nevertheless, even though its kinematics was far from the one of a human arm, it 
was possible to achieve the desired communication intent by simply modulating 
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the end-effector control. This proves the power of the proposed approach and 
its potential scalability in other contexts and with other robots, also industrial 
ones, where implicit communication through motion could improve the efficiency 
and safety of a joint collaborative task. 
In future works, we plan to exploit the same controller and have the robot actu- 
ally manipulate full and empty cups to assess how the movement’s modulation 
affects trust, perceived competency, and efficiency in a dyadic interaction, while 
facing a challenging task. 
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