Skip to main content

Fault-Tolerant Graph Realizations in the Congested Clique, Revisited

  • Conference paper
  • First Online:
Book cover Distributed Computing and Intelligent Technology (ICDCIT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13776))

  • 383 Accesses

Abstract

We study the graph realization problem in the Congested Clique in a distributed network under the crash-fault model. We focus on the degree-sequence realization, each node v is associated with a degree value d(v), and the resulting degree sequence is realizable if it is possible to construct an overlay network with the given degrees. This paper focuses on the message and round complexity of deterministic graph realization in the anonymous network. It has been shown by Kumar et al. [ALGOSENSORS 2022] that the graph realization can be solved using \(O(n^2)\) message and O(f) round without the knowledge of f, of which f nodes could be faulty \((f<n)\). However, their algorithm works for \(KT_1\) (Knowledge Till 1 hop) model where nodes know their neighbors’ IDs; or in the \(KT_0\) (Knowledge Till 0 hop) model, in which each node knows the IDs of all the nodes in the clique, but doesn’t know which port is connecting to which node-ID. In this paper, we extend the result to \(KT_0\) when the network is anonymous, i.e., the IDs of the neighboring nodes are unknown. We present an algorithm that solves the graph realization problem in the \(KT_0\) model with matching performance guarantees as in the \(KT_1\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In contrast, a non-adaptive (static) adversary selects the nodes to be faulty before the execution of the algorithm starts.

  2. 2.

    Node which is in active state (standby state) considered as active node (standby node).

  3. 3.

    A non-faulty setup is the model in which all the nodes are non-faulty.

References

  1. Abraham, I., et al.: Communication complexity of Byzantine agreement, revisited. In: PODC, pp. 317–326 (2019)

    Google Scholar 

  2. Aspnes, J., Shah, G.: Skip graphs. ACM Trans. Algorithms 3(4), 37–es (2007)

    Google Scholar 

  3. Augustine, J., Choudhary, K., Cohen, A., Peleg, D., Sivasubramaniam, S., Sourav, S.: Distributed graph realizations. IEEE Trans. Parallel Distrib. Syst. 33(6), 1321–1337 (2022)

    Article  Google Scholar 

  4. Augustine, J., Molla, A.R., Pandurangan, G.: Sublinear message bounds for randomized agreement. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 315–324 (2018)

    Google Scholar 

  5. Augustine, J., Sivasubramaniam, S.: Spartan: a framework for sparse robust addressable networks. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1060–1069. IEEE (2018)

    Google Scholar 

  6. Bagchi, A., Bhargava, A., Chaudhary, A., Eppstein, D., Scheideler, C.: The effect of faults on network expansion. Theory Comput. Syst. 39(6), 903–928 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barenboim, L., Khazanov, V.: Distributed symmetry-breaking algorithms for congested cliques. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 41–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_5

    Chapter  Google Scholar 

  8. Becker, F., Montealegre, P., Rapaport, I., Todinca, I.: The impact of locality on the detection of cycles in the broadcast congested clique model. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.) LATIN 2018. LNCS, vol. 10807, pp. 134–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77404-6_11

    Chapter  Google Scholar 

  9. Behzad, M., Simpson, J.E.: Eccentric sequences and eccentric sets in graphs. Discret. Math. 16(3), 187–193 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Or, M., Pavlov, E., Vaikuntanathan, V.: Byzantine agreement in the full-information model in o(log n) rounds. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 179–186. ACM (2006)

    Google Scholar 

  11. Censor-Hillel, K., Dory, M., Korhonen, J.H., Leitersdorf, D.: Fast approximate shortest paths in the congested clique. Distrib. Comput. 34(6), 463–487 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again’’: finding triangles and small subgraphs in a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_14

    Chapter  MATH  Google Scholar 

  13. Dolev, D., Strong, H.R.: Requirements for agreement in a distributed system. In: Proceedings of the Second International Symposium on Distributed Data Bases, pp. 115–129. North-Holland Publishing Company (1982)

    Google Scholar 

  14. Drucker, A., Kuhn, F., Oshman, R.: On the power of the congested clique model. In: Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing, pp. 367–376 (2014)

    Google Scholar 

  15. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices (in Hungarian). Mat. Lapok (N.S.) 11, 264–274 (1960)

    MATH  Google Scholar 

  16. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous Byzantine agreement. SIAM J. Comput. 26(4), 873–933 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 94–103. Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  18. Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM J. Discrete Math. 5, 25–43 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frank, A.: Connectivity augmentation problems in network design. In: Mathematical Programming: State of the Art, pp. 34–63. Univ. Michigan (1994)

    Google Scholar 

  20. Frank, H., Chou, W.: Connectivity considerations in the design of survivable networks. IEEE Trans. Circuit Theory 17(4), 486–490 (1970)

    Article  MathSciNet  Google Scholar 

  21. Galil, Z., Mayer, A.J., Yung, M.: Resolving message complexity of Byzantine agreement and beyond. In: 36th Annual Symposium on Foundations of Computer Science, pp. 724–733. IEEE Computer Society (1995)

    Google Scholar 

  22. Ghaffari, M., Nowicki, K.: Congested clique algorithms for the minimum cut problem. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pp. 357–366 (2018)

    Google Scholar 

  23. Ghaffari, M., Parter, M.: MST in log-star rounds of congested clique. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing (PODC), pp. 19–28 (2016)

    Google Scholar 

  24. Gilbert, S., Kowalski, D.R.: Distributed agreement with optimal communication complexity. In: SODA, pp. 965–977 (2010)

    Google Scholar 

  25. Gomory, R., Hu, T.: Multi-terminal network flows. J. Soc. Ind. Appl. Math. 9(4), 551–570 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a linear graph - I. SIAM J. Appl. Math. 10(3), 496–506 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  27. Havel, V.: A remark on the existence of finite graphs. Casopis Pest. Mat. 80, 477–480 (1955)

    Article  MATH  Google Scholar 

  28. Jurdziński, T., Nowicki, K.: Connectivity and minimum cut approximation in the broadcast congested clique. In: Lotker, Z., Patt-Shamir, B. (eds.) SIROCCO 2018. LNCS, vol. 11085, pp. 331–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01325-7_28

    Chapter  MATH  Google Scholar 

  29. Jurdziński, T., Nowicki, K.: MST in \(O(1)\) rounds of congested clique. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2620–2632 (2018)

    Google Scholar 

  30. Kapron, B.M., Kempe, D., King, V., Saia, J., Sanwalani, V.: Fast asynchronous Byzantine agreement and leader election with full information. In: SODA, pp. 1038–1047. SIAM (2008)

    Google Scholar 

  31. King, V., Saia, J.: Byzantine agreement in expected polynomial time. J. ACM 63(2), 1–21 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Konrad, C.: MIS in the congested clique model in \(\log \log {\Delta }\) rounds. arXiv preprint arXiv:1802.07647 (2018)

  33. Korhonen, J.H., Suomela, J.: Towards a complexity theory for the congested clique. In: Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, pp. 163–172. SPAA 2018, ACM, New York (2018)

    Google Scholar 

  34. Kumar, M., Molla, A.R.: Brief announcement: on the message complexity of fault-tolerant computation: leader election and agreement. In: PODC 2021, pp. 259–262. ACM (2021)

    Google Scholar 

  35. Kumar, M., Molla, A.R., Sivasubramaniam, S.: Fault-tolerant graph realizations in the congested clique. In: ALGOSENSRS (2022). https://doi.org/10.48550/arXiv.2208.10135

  36. Lesniak, L.: Eccentric sequences in graphs. Period. Math. Hung. 6(4), 287–293 (1975). https://doi.org/10.1007/BF02017925

    Article  MathSciNet  MATH  Google Scholar 

  37. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in \(o(\log \log n)\) communication rounds. SIAM J. Comput. 35(1), 120–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of peer-to-peer overlay network schemes. IEEE Commun. Surv. Tutor. 7(2), 72–93 (2005)

    Article  Google Scholar 

  39. Malatras, A.: State-of-the-art survey on P2P overlay networks in pervasive computing environments. J. Netw. Comput. Appl. 55, 1–23 (2015)

    Article  Google Scholar 

  40. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 249–256 (2011)

    Google Scholar 

  41. Peleg, D.: Distributed Computing: A Locality Sensitive Approach. SIAM (2000)

    Google Scholar 

  42. Ratnasamy, S., Francis, P., Handley, M., Karp, R.M., Shenker, S.: A scalable content-addressable network. In: SIGCOMM, pp. 161–172. ACM (2001)

    Google Scholar 

  43. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE ACM Trans. Netw. 11(1), 17–32 (2003)

    Article  Google Scholar 

  44. Upfal, E.: Tolerating linear number of faults in networks of bounded degree. In: Proceedings of the Eleventh Annual ACM Symposium on Principles of Distributed Computing, pp. 83–89. PODC 1992, ACM, New York (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, M. (2023). Fault-Tolerant Graph Realizations in the Congested Clique, Revisited. In: Molla, A.R., Sharma, G., Kumar, P., Rawat, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2023. Lecture Notes in Computer Science, vol 13776. Springer, Cham. https://doi.org/10.1007/978-3-031-24848-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-24848-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-24847-4

  • Online ISBN: 978-3-031-24848-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics