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Abstract
It is no secret among deep learning researchers that finding the
optimal data augmentation strategy during training can mean the
difference between state-of-the-art performance and a run-of-the-mill
result. To that end, the AI community has seen many efforts
to automate the process of finding the perfect augmentation pro-
cedure for any task at hand. Unfortunately, even recent cutting-
edge methods bring massive computational overhead, requiring as
many as 100 full model trainings to settle on an ideal config-
uration. We show how to achieve equivalent performance using
just 6 trainings with Random Unidimensional Augmentation. Source
code is available at https://github.com/fastestimator/RUA/tree/v1.0.
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1 Introduction
Data augmentation is a widely used technique to improve deep-learning model
performance. It is sometimes described as a “freebie” [1] because it can improve
model performance metrics without incurring additional computational costs
at inferencing time. Unfortunately, creating a good data augmentation strategy
typically requires human expertise and domain knowledge [2], which is inconve-
nient during initial development as well as when transferring existing strategies
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between different tasks. In an effort to overcome these drawbacks, researchers
have begun looking for an automated solution to data augmentation.

AutoAugment [3] and its variants (FastAA [4] and PBA [5]) automated the
data augmentation process by introducing augmentation parameters which are
then jointly optimized alongside the neural network parameters during train-
ing. While these methods do offer an automated solution to the problem, they
also introduce massive search spaces which in turn significantly increase the
time required to train a model. For example, AutoAugment uses Reinforce-
ment Learning (RL) on a search space of size 1032, which costs thousands of
GPU hours to find a solution for a single task. Although later methods such
as FastAA and PBA greatly improved the search and reduced computation
requirements through data subsampling, they can still be undesirable due to
the complexity of implementing joint optimization algorithms.

RandAugment [2] took a different approach by completely removing the
policy optimization while achieving better results than prior methods. Unlike
its predecessors which rely on applying RL to a search space of size 1032,
RandAugment uses only two global parameters, reducing the search space from
1032 to 102 so that a grid search can be a simple yet viable solution to the
problem. As a result, RL is no longer needed for the policy search, making the
method significantly easier to implement and more computationally feasible
for practical usage.

Despite the significant complexity and efficiency enhancements made by
RandAugment, there is still room for improvement. For example, the default
setting of RandAugment uses a 10x10 grid search for the 102 search space.
While it is technically possible to run any training task 100 times, the com-
putational cost of doing so may still be prohibitive, especially on large-scale
datasets.

To reduce costs, a sub-grid is often selected from the 10x10 grid for the
actual search. Unfortunately, appropriate sub-grid selection is highly cus-
tomized to specific problems. This re-introduces a requirement on human
expertise and experience, which autonomous methods seek to avoid. For exam-
ple, for Cifar100 [6] the proposed subgrid is N ∈ {1, 2},M ∈ {2, 6, 10, 14}.
For ImageNet [7], a ResNet50 model [8] uses the subgrid N ∈ {1, 2, 3},M ∈
{5, 7, 9, 11, 13, 15}, whereas EfficientNet [9] on the same dataset searches N ∈
{2, 3}, and M ∈ {17, 25, 28, 31}. Where M represents the global distortion
magnitude which controls the intensity of all augmentation operations. N is
the number of transformations to be applied in each training step. It is difficult
to say what kind of intuition would allow someone to generate such sub-grids
for previously unseen problems.

To address these problems, we propose Random Unidimentional Augmen-
tation (RUA): a simpler yet more effective automated data augmentation
workflow. The goal of RUA is to achieve the following two objectives:

1. Reduce the computational cost required to perform automated search,
without sacrificing performance.



Springer Nature 2021 LATEX template

Optimizing Data Augmentation Policy Through Random Unidimensional Search 3

2. Eliminate the need for problem-specific human expertise in the process,
enabling a fully automated workflow.

2 Methods

2.1 Dimensionality reduction: 2D to 1D
There are 2 global parameters defined in the search space of RandAugment:
M and N . M represents the global distortion magnitude which controls the
intensity of all augmentation operations. N is the number of transformations
to be applied in each training step. By default, M and N are both integers
ranging from 1 to 10, with 10 giving the maximum augmentation effects.

Although the definitions of M and N are different, the end result of increas-
ing their values is the same: more augmentation. If they could be merged into
a single augmentation parameter, then the search space could be reduced by
an order of magnitude. To check whether this might be possible, we ran Ran-
dAugment on a full 10x10 grid for two classification tasks. We used ResNet9
for Cifar10, and WRN-28-2 [10] for SVHN [11]. Their test accuracies are shown
in Figure 1.

The gradients in Figure 1 show a diagonal trend from the bottom left to
the top right. Although the optimal accuracy regions vary between the two
problems, the fact that both exhibit an approximately diagonal gradient raises
the possibility of traversing the two parameters simultaneously. We confirmed
that this pattern is robust to variations in augmentation parameters, as well as
across different architectures, tasks, and datasets. These results can be found
later on in Figure 3. We therefore introduce a single parameter r ∈ [0, 1]
such that r = M/Mmax and r = N/Nmax. We then define our augmentation
operation parameters directly in terms of r, eliminating the need to pick an
explicit value for Mmax. This parameterization can be found in Table 1. This
formulation leaves Nmax as the single open parameter in the method. While
one could simply set Nmax = 10 in the footsteps of RandAugment, it can also
be set lower while still providing adequate gradient traversal. We defer further
discussion of this to Section 2.4.

Fig. 1 Model accuracy as a function of M and N using RandAugment. Note the (accuracy)
gradient as you traverse from the bottom left to the top right of each image.
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In situations where r∗Nmax is not an integer, we apply ⌊r∗Nmax⌋ augmen-
tations, plus a final augmentation which executes with probability equal to the
floating point remainder. For example, if r∗Nmax = 3.14, then 3 augmentations
will be guaranteed, and a fourth will execute with 14% probability.

2.2 More search with less computation
Another interesting observation one can make from Figure 1 is that, traversing
the diagonals of both Cifar10 and SVHN, accuracy first increases to a max-
imum and then decreases. In other words, there appears to be unimodality
with respect to r. If we extract these diagonal terms and plot their rela-
tive accuracies against r (Figure 2 top), the unimodal trend becomes more
apparent.

The same trend can be observed in the RandAugment paper [2], reproduced
here as Figure 2 bottom. This demonstrates that the unimodal relationship
persists across different network and dataset sizes.

In light of this unimodal property, we can leverage algorithms that are
more efficient than grid search to explore a larger search space using less com-
putation. One such algorithm is the golden-section search [12]. Golden-section
search is a simple method that is widely used for finding the maximum or
minimum of a unimodal function over a given interval. The pseudo code for
golden-section search is given in Algorithm 1.

With golden-section search, every evaluation (after the first) of the search
space will reduce the remaining search space by a constant factor of ≈ 0.618
(inverse golden ratio). As a result, we can search over 90% of the domain of
r using only 6 evaluations. This makes it practical to search over the entire

Fig. 2 RandAugment test accuracy as a function of r (Nmax = 10).
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Algorithm 1 Golden Section Search (Max-Finding)
Require: Input function:f , range:[a, b], max iterations:k
ϕ1, ϕ2 ←

√
5−1
2 , 3−

√
5

2
h← b− a
c← a+ ϕ2 ∗ h
d← a+ ϕ1 ∗ h
yc ← f(c)
yd ← f(d)
for i from 1 to k do

if yc > yd then
b← d
d← c
yd ← yc
h← ϕ1 ∗ h
c← a+ ϕ2 ∗ h
yc ← f(c)

else
a← c
c← d
yc ← yd
h← ϕ1 ∗ h
d← a+ ϕ1 ∗ h
yd ← f(d)

end if
end for
if yc > yd then return c
elsereturn d
end if

training dataset, without having to resort to subsampling like Fast AA or PBA.
Note that this search space reduction does not require any human expertise
or intervention, allowing the method to be used as an automated solution for
a deep learning task.

2.3 RUA augmentation parameters
After our search space reduction, we are left with one parameter, r, which
controls the global augmentation intensity. The exact manner of this control
is given in Table 1 (right). A zero value of r means no augmentation, whereas
a value of 1 achieves maximum augmentation.

This is a conceptual divergence from RandAugment, as 6 of their 14 trans-
formations are not set up to scale this way. These transformations are marked
with a “*” in Table 1 (left). For example, the transformation intensity of Solar-
ize and Posterize are inversely correlated with r. Moreover, Color, Contrast,
Brightness, and Sharpness are all ‘shifted’ in that they cause no augmentation
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Augmentations RandAug (RA) RUA
Identity - -

AutoContrast - -
Equalize - -
Rotate degree = ±30r degree = U(−90r, 90r)

Solarize∗ threshold = 256r threshold = 256− U(0, 256r)
Posterize∗ bit shift = 8− 4r bit shift = U(0, 7r)

Color∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)
Contrast∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)

Brightness∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)
Sharpness∗ factor = 1.8r + 0.1 factor = 1 + U(−0.9r, 0.9r)
Shear-X coef = ±0.3r coef = U(−0.5r, 0.5r)
Shear-Y coef = ±0.3r coef = U(−0.5r, 0.5r)

Translate-X coef = ±100r coef = U(−r, r) ∗ width/3
Translate-Y coef = ±100r coef = U(−r, r) ∗ height/3

Table 1 Augmentations and their associated parameters. Augmentations marked with a
“∗” have non-zero impact at r = 0 under RA, but are zero-aligned under RUA.

when r = 0.5, whereas values closer to 0 or 1 lead to stronger alterations to
the input.

In addition to aligning r with augmentation intensity, we also introduce
non-deterministic parameter selection into our augmentations. For example,
rather than rotating an image exactly ±30 degrees whenever the Rotate oper-
ation is applied, we instead draw from a random uniform distribution (U) to
cover the augmentation space more thoroughly. The maximum intensity of
certain augmentations are also increased to keep the expected intensity con-
sistent in spite of the switch to uniform distributions. We justify each of these
decisions with an ablation study in Section 3.2.

2.4 Selecting a maximum N
One question which must be answered when applying RUA is what value to
use as Nmax. While one may be content to use 10, since that was the extent of
the RandAugment search space, other numbers may well be equally valid. We
ran a second grid search (Figure 3) using our RUA augmentation parameters
to verify that large values of Nmax may not be necessary in order to achieve a
good performance. Based on this search, we examined what outcomes a user
would achieve if they ran RUA using different values of Nmax ranging from
1 to 10. This sensitivity analysis is shown in Figure 4. In our tests, setting
Nmax > 5 does not appear to provide any significant benefit, though small
values like 1 or 2 can clearly be harmful, especially for ViT/Tiny ImageNet.
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Fig. 3 Test performance as a function of M and N using RUA augmentation parameters.
Note that the (accuracy/dice) gradients as you traverse from the bottom left to the top right
of each image are similar to Figure 1. Interestingly, this trend exists even in more recent
attention-based architectures (ViT[13] on Tiny ImageNet[14]) and on segmentation tasks
(U-Net[15] on CUB200[16]). Cells which are candidates for our RUA search when Nmax = 5
are hatched with white.

Fig. 4 The best performances along a diagonal path as a function of Nmax.

Given that RUA is relatively insensitive to higher values of Nmax, there are
pragmatic reasons to choose values smaller than 10. Applying a large number
of transformations during training can severely bottleneck the training speed.
See Figure 5 for an example. For our hardware, with any N ≥ 3 the cpu-
based preprocessing became rate limiting, especially once N ≥ 5. This may be
one reason why RandAugment never chose N > 3 in their sub-grid selections.
With these factors in mind, we selected Nmax = 5 for our final experiments.
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Fig. 5 Preprocessing and training speeds as a function of N . Measurements were taken
on an AWS EC2 P3.2xlarge instance (8 core Intel Xeon CPU, NVIDIA Tesla V100 GPU).
Training was conducted using the ResNet9 architecture on Cifar10.

3 Experiments

3.1 RUA performance assessment
In order to perform a direct comparison with previous works, we deploy RUA
in the same training setting used by RandAugment on Cifar10, Cifar100,
SVHN, and ImageNet. Details regarding the parameters used in each exper-
iment are given in Table 2. There are a few things worth highlighting about
our experimental parameters:

Dataset CIFAR10 CIFAR10 CIFAR100 SVHN
(Core) ImageNet

Network PyramidNet-
272-200

Wide-
ResNet-
28-10

Wide-
ResNet-
28-10

Wide-
ResNet-

28-2
ResNet50

Epochs 900 200 200 200 180
Batch Size 128 128 128 128 4096

Image
Preprocessing

mean-std-
Normalize

mean-std-
Normalize

mean-std-
Normalize

Divide
by 255 None

Augmentations

[pad-and-
crop,

horizontal
flip, RUA,
Cutout]

[pad-and-
crop,

horizontal
flip, RUA,
Cutout]

[pad-and-
crop,

horizontal
flip, RUA,
Cutout]

[RUA,
Cutout]

[random
resized
crop,

horizontal
flip, RUA]

Optimizer SGD SGD SGD SGD SGD
Weight Decay 1e−4 5e−4 5e−4 5e−4 1e−4

Initial LR 0.1 0.1 0.1 0.1 1.6

LR Schedule Cosine
Decay

Cosine
Decay

Cosine
Decay

Cosine
Decay

×0.1 at
epoch 60,
120, and

160
Momentum 0.9 0.9 0.9 0.9 0.9

Nmax 5 5 5 5 5
Best r 0.867 0.6 0.733 0.8 0.666

Table 2 Experiment parameter details. Note that PyramidNet uses ShakeDrop
regularization for consistency with the RandAugment experimental setup.
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Methods
CIFAR10 CIFAR100 SVHN ImageNet

PyramidNet WRN-28-10 WRN-28-10 WRN-28-2 ResNet50

Baseline 97.3 96.1 81.2 96.7 76.3

AA 98.5 97.4 82.9 98.0 77.6

Fast AA 98.3 97.3 82.7 - 77.6

PBA 98.5 97.4 83.3 - -

RA 98.5 97.3 83.3 98.3 77.6

RUA 98.5 97.4 83.6 98.0 77.7
Table 3 Experimental results for RUA compared with previous works. We report our
average test accuracy over 10 independent runs (as in prior works). Best values in bold.

1. In order to be consistent with previous works, we also applied default
augmentations before and after applying RUA augmentation on different
tasks. For example, pad-and-crop, horizontal flip, and cutout [17] are used
on the Cifar 10/100 datasets.

2. In Cifar10, RandAugment trained for 1800 epochs whereas the official
implementation of PyramidNet [18] and ShakeDrop [19] trained for 300
epochs. We picked 900 epochs as a compromise between different official
implementation settings.

3. In every dataset we hold out 5k training samples as evaluation data for
selecting the best r. After selecting r, we put the hold-out set back into
the training set and train again. We then record the test performance at
the end of that final training.

The final test results of RUA are shown in Table 3, where our performance
scores are from an average of 10 independent runs. The results of previous
methods including the baseline, AA, Fast AA, PBA, and RA are taken from
previous work [2]. The best accuracies for each column are highlighted in bold.
The search space and the number of iterations reqired by each method is shown
in Table 4, with the best highlighted in bold.

As demonstrated in Table 3, RUA achieved equal or better test scores than
previous state-of-the-art methods on 4 out of 5 tasks. For the Cifar10 tasks,
we are equivalent to the best prior methods, with one-tailed t-test p-values
of 0.0017 and 0.034. For Cifar100 and ImageNet our performance exceeds
that of prior methods, with one-tailed t-test p-values of 0.002 and 0.039.
On SVHN, despite being outperformed by RandAugment, RUA nonetheless
achieved competitive performance on par with AutoAugment.

In addition to the performance, RUA also managed to reduce the search
space by an order of magnitude and cut the training iteration requirements of
the previous best method by more than 2x as shown in Table 4. This proved
that the method could optimize the augmentation policy more efficiently than
prior methods while achieving equivalent or better results.
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Methods Search Space Order Search Iterations Required

AA 1032 15000

Fast AA 1032 200

PBA 1061 16

RA 102 100

RUA 10 6
Table 4 The search spaces of various auto-augmentation solutions. Fast AA and PBA
search by training on subsampled datasets to improve search speed. Since reduced datasets
can be equally applied to any of the above search methods, we directly compare iterations
required by each search algorithm rather than dataset/hardware specific metrics. For each
method, one iteration involves training the target model to convergence.

3.2 Ablation study
We conducted an ablation study on the various design decisions outlined in
Section 2.3. The results of this study are given in Table 5. There are several
noteworthy takeaways from these comparisons. First, making the “*” augmen-
tations from Table 1 positively correlated with r is always beneficial. This can
be seen through pairwise comparisons of rows 1 vs 5, 2 vs 6, 3 vs 7, and 4 vs
8. The second takeaway is that using a random distribution to draw the trans-
formation arguments is always beneficial. This can be seen through pairwise
comparisons of rows 1 vs 3, 2 vs 4, 5 vs 7, and 6 vs 8. Finally, increasing the
maximum strength of augmentations (for example rotating ±90 rather than
±30) is always deleterious on its own (rows 1 vs 2 and 5 vs 6), but advanta-
geous when paired with random sampling (rows 3 vs 4 and 7 vs 8). This is not
particularly surprising since larger effects under deterministic sampling will
consistently and seriously distort an image, whereas under uniform sampling
they permit a larger exploration of the distortion space while still more often
sampling less extreme distortions. All told, the best design was to apply all
three modifications (row 8).

Aligned Random Expanded Accuracy
1 0 0 0 0.916
2 0 0 1 0.912
3 0 1 0 0.917
4 0 1 1 0.920
5 1 0 0 0.917
6 1 0 1 0.915
7 1 1 0 0.920
8 1 1 1 0.922

Table 5 An ablation study of the RUA design decisions from Section 2.3. A ResNet9
architecture was trained on Cifar10, with accuracies averaged over 10 independent runs.
‘Aligned’ indicates our modifications to the “*” transforms in Table 1, ‘Random’ indicates
our use of a random uniform distribution, and ‘Expanded’ indicates the use of expanded
augmentation parameters. Row 1 is thus analogous to running RandAugment using our
dimensionality reduction and golden section search routine, and row 8 is the full RUA
method.
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3.3 Additional findings on out-of-domain generalization
While exploring the proposed RUA transformations on a segmentation prob-
lem, we discovered an interesting Out-of-Domain Data (ODD) generalization
benefit. ODD generalization problems can arise in machine learning tasks
whenever the training data (namely In-Domain-Data: IDD) under-represents
the real-world domain. This can result in a model which has high performance
within the dataset scope, but poor performance otherwise - even when per-
forming the same task. For example, a segmentation model trained on chest
X-Ray images collected from one hospital/region may not generalize well to
a different hospital/region. The two datasets might have different distribu-
tions for any number of reasons (different quality hardware, different patient
demographics, etc.), which may be difficult to account for ahead of time.

Data augmentation can be applied during training to ameliorate this prob-
lem to some degree. The hope is that through augmentation the IDD will
be expanded to encompass a larger fraction of the data domain, reducing
the chance of encountering truly ODD samples. What specific transforma-
tions ought to be used to accomplish this, however, remains an open question.
One popular school of thought is to select transformations based on domain
availability [20]. In other words, only select transformations which result in
outputs which are ‘realistic’ in the sense that you would expect to find them in
the real world. For example, if solarization never occurs in clinically acquired
chest X-Ray images, then applying solarization during training would not be
recommended for chest X-Ray applications. While domain availability is an
intuitively reasonable heuristic, it is potentially at odds with RUA, which pro-
poses searching over a standardized set of augmentations regardless of the
target task.

To test whether domain availability is a valuable/necessary heuristic, we
designed an experiment using two different datasets: the Montgomery dataset
[21] and the NIH dataset[22]. Both datasets contain Chest X-Ray images with
pixel-level mask annotations for lung cavities. To test IDD performance we
trained segmentation models on the Montgomery dataset using traditional
train/test dataset splitting. To test ODD generalization, we then inferenced
the models on the NIH dataset (which is larger and more heterogeneous).

We experimented with 6 different augmentation strategies, with 4 strategies
proposed by different prior works for domain-specific applications on Chest
X-Ray data. The augmentation baselines include:

• No Aug - No data augmentation is applied
• Method 1 (M1) - Chest X-Ray transformations as proposed in [23]
• Method 2 (M2) - Chest X-Ray transformations as proposed in [24]
• Method 3 (M3) - Chest X-Ray transformations as proposed in [25]
• Method 4 (M4) - Chest X-Ray transformations as proposed in [26]
• RUA - Our proposed transformations, applied at their maximum

strength
While all of the baseline methods adhere to the domain availability heuristic

(being comprised of mostly minor rotates, flips, stretching, etc.), our approach
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Fig. 6 A sample image under different augmentation strategies.

results in heavily distorted images that would never be found in a real clinical
setting. A representative example can be found in Figure 6.

For these experiments we used a U-Net architecture trained via a pixel-
level cross entropy loss. The training ran for 480 epochs with 5 checkpoints
saved evenly throughout. For each augmentation strategy, all 5 checkpoints
were evaluated on the NIH dataset and the checkpoint with the highest average
dice score was selected for comparison against other strategies. We report both
the IDD and ODD dice scores for each strategy in Table 6, along with ODD
dice score histogram counts. The sample-wise breakdown of dice scores for
each strategy is also visualized in Figure 7. Detailed evaluation results for all
checkpoints and strategies are provided in Appendix Table 7, 8, 9, 10, 11.

No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.0 98± 1.5 98± 1.9 98± 1.6 98± 1.7 98± 0.8
ODD Avg Dice 85± 12 88± 11 86± 14 86± 13 84± 17 94± 5.0

ODD Dice Bins No Aug M1 M2 M3 M4 RUA
0.0 - 0.2 18 15 47 30 83 0
0.2 - 0.4 43 27 62 44 88 2
0.4 - 0.6 141 86 155 161 212 10
0.6 - 0.8 923 642 656 757 743 110
0.8 - 1.0 3841 4196 4046 3974 3840 4844

Table 6 Best Dice scores and distributions for various augmentation strategies.

As Table 6 demonstrates, every strategy suffers reduced ODD performance
compared to their nearly perfect IDD performance. The size of this gap,
however, varies significantly between different baselines. In particular, RUA’s
augmentation strategy greatly outperforms all of the ‘domain availability’
augmentations in spite of its less realistic outputs.

The qualitative nature of the difference between RUA and the other meth-
ods can be seen in Figure 7. The swarm plot tail (outlier cases where the model
mostly failed) is significantly smaller for RUA than any of the other strate-
gies (especially for dice scores < 0.7). As the overlaid violin plot indicates,
RUA also shifts the mean performance up significantly, with predictions cen-
tered around a dice score of 94 and a much smaller standard deviation than
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Fig. 7 A swarm plot (points corresponding to individual data sample performance) overlaid
by a violin plot (showing distributional performance measures) on ODD data for different
augmentation strategies.

the other methods. These improvements are observed in every checkpoint, as
demonstrated in Appendix A, Table 7, 8, 9, 10, 11.

This finding suggests a new perspective for viewing data augmentation. The
fact that the network can learn from heavily distorted (even unrealistic) images
in order to solve real-world ODD generalization problems may imply that data
augmentation offers a more generalized benefit than simply teaching the model
to be invariant to whatever specific transformation has been applied. There
is presumably some bound/limit on how much unrealistic data augmentation
can be added before causing more harm than good, which is something we
plan to investigate further in future work.

4 Conclusion
In this work, we proposed Random Unidimensional Augmentation (RUA), an
automated augmentation method providing several benefits relative to previ-
ous state-of-the-art algorithms. Our search space is one order of magnitude
smaller than prior works, our transformations are more effective, and we lever-
age more efficient search algorithms. As a result of these improvements, RUA
achieves equivalent results while requiring significantly less computation. We
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experimentally demonstrated RUAs strength on the same tasks used by previ-
ous works across various network architectures and datasets. Unlike previous
methods, RUA does not rely on any problem-specific human expertise, mak-
ing the method truly automated and thus fit for use in conjunction with larger
autoML pipelines. We also showed that automated data augmentation need
not necessarily produce realistic data samples to have a positive impact on a
network’s generalization performance.
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Appendix A Unabridged Segmentation Results

No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.0 98± 1.4 98± 1.6 98± 1.6 98± 2.0 98± 0.9
ODD Avg Dice 84± 15 87± 11 85± 17 86± 13 83± 16 91± 7.0

ODD Dice Bins No Aug M1 M2 M3 M4 RUA
0 - 0.2 50 21 79 30 65 0

0.2 - 0.4 73 24 99 44 92 0
0.4 - 0.6 219 110 198 161 234 20
0.6 - 0.8 858 661 663 757 926 370
0.8 - 1 3766 4150 3927 3974 3649 4576

Table 7 Dice scores for models trained for 96 epochs using various augmentation
procedures when tested on out of domain data.

No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.0 98± 1.6 98± 1.9 98± 2.0 98± 1.7 98± 1.2
ODD Avg Dice 85± 13 86± 13 86± 14 86± 14 84± 17 89± 8.7

ODD Dice Bins No Aug M1 M2 M3 M4 RUA
0 - 0.2 23 34 47 36 83 0

0.2 - 0.4 40 51 62 63 88 3
0.4 - 0.6 169 136 155 160 212 64
0.6 - 0.8 921 711 656 770 743 615
0.8 - 1 3813 4034 4046 3937 3840 4284

Table 8 Dice scores for models trained for 182 epochs using various augmentation
procedures when tested on out of domain data.

https://github.com/fastestimator/RUA/tree/v1.0
https://github.com/fastestimator/RUA/tree/v1.0
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No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.1 98± 1.9 98± 2.0 98± 2.3 98± 1.7 98± 1.1
ODD Avg Dice 85± 13 86± 12 85± 14 86± 13 83± 18 93± 5.7

Dice Std 13.0 12.2 14.3 13.0 17.7 5.7
ODD Dice Bins No Aug M1 M2 M3 M4 RUA

0 - 0.2 30 21 55 28 103 0
0.2 - 0.4 40 37 62 46 97 0
0.4 - 0.6 181 121 153 153 235 10
0.6 - 0.8 918 792 754 774 762 199
0.8 - 1 3797 3995 3942 3965 3769 4757

Table 9 Dice scores for models trained for 288 epochs using various augmentation
procedures when tested on out of domain data.

No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.1 98± 1.5 98± 2.1 98± 2.1 98± 1.9 98± 0.8
ODD Avg Dice 85± 13 88± 11 85± 15 86± 13 83± 18 94± 5.0

ODD Dice Bins No Aug M1 M2 M3 M4 RUA
0 - 0.2 30 15 65 28 109 0

0.2 - 0.4 48 27 61 48 101 2
0.4 - 0.6 176 86 176 143 231 10
0.6 - 0.8 929 642 749 738 811 110
0.8 - 1 3783 4196 3915 4009 3714 4844

Table 10 Dice scores for models trained for 384 epochs using various augmentation
procedures when tested on out of domain data.

No Aug M1 M2 M3 M4 RUA
IDD Avg Dice 98± 2.0 98± 2.0 98± 2.0 98± 2.2 98± 1.7 98± 0.6
ODD Avg Dice 85± 12 87± 13 84± 15 86± 14 83± 18 92± 6.4

ODD Dice Bins No Aug M1 M2 M3 M4 RUA
0 - 0.2 18 29 72 32 119 0

0.2 - 0.4 43 40 67 50 95 0
0.4 - 0.6 141 121 183 169 236 18
0.6 - 0.8 923 695 744 752 831 264
0.8 - 1 3841 4081 3900 3963 3685 4684

Table 11 Dice scores for models trained for 480 epochs using various augmentation
procedures when tested on out of domain data.
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