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Abstract

Electric vehicle (EV) range anxiety is an influential factor in electric vehicle’s low penetration into the transportation system.
There have been several developments on range estimation for electric vehicles, however, the studies which focus on determining the
remaining range based on the real-time publicly available data remain low. The majority of the current methods being employed
consider limited data collection and do not consider the most substantial factors that directly impact energy consumption. This
paper introduces a velocity model based on route information for the range estimation of electric vehicles. It uses publicly available
data sets obtained from several map services APIs and incorporates this data in the range estimation algorithm. Three map services
APIs were used to collect the data for an extended period, and then we analysed this data to extract the most representative data
to generate the velocity profiles. The paper uses MATLAB code and python libraries to process the representative data and apply
the velocity model. Moreover, we have integrated it into an electric vehicle model, including the battery, to estimate the power
demand for each trip and the remaining driving range. We observed that producing realistic driving cycles using public data is
possible; furthermore, it simulates the driving patterns and satisfies the constraints of the vehicle.
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1 Introduction

Electrifying transportation is one of the main targets for the transportation sector to reduce greenhouse emis-
sions in most countries [1]. However, Internal Combustion Engines (ICEs) are entirely dependent upon fossil
fuels and still the primary propulsion system in road transport globally. The increase in the dependency on
oil is considered significant as a result [2]. Therefore, there is an essential need to overcome this issue to
increase the sustainability of the transportation system and address the environmental issues. The demand
for electric vehicles has been increasing recently in the transportation markets, and it is expected to continue
to replace traditional vehicles in the next few decades. EVs are an intelligent solution for the planet and will
reduce gas emission significantly [3]. However, range anxiety is one of the main challenges that face electrifying
transportation, and it affects the adoption of electric vehicles.

In addition to the enormous advantage of reducing the levels of pollution EVs have, this invention has some
other benefits over conventional vehicles. These benefits include energy recovery when the battery restores
some of the energy due to braking, and the noise-freeness [4]. Regenerative braking is a crucial characteristic
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of EV when the generator returns the energy to the battery system due to braking. According to previous
studies, this feature is practical, especially in city driving and the daily commute. However, it is less effective in
motorway journeys, and long journeys [5]. Conventional vehicles consume more energy in city driving because
of the heat loss due to braking in contrast with EVs [3].

This paper aims to develop a velocity model using the publicly available routing data on specific routes.
It attempts to construct the speed profile for a specific journey between origin and destination using the
map API. After generating the potential realistic driving profile, we used a generic EV model to generate the
potential power demand for the trip. Hence we apply the state of charge estimation method to analyse the
impact of the route and traffic on the battery efficiency. This research concentrates essentially on developing
a data collection process using multiple maps service API. Many drivers rely on the GPS data provided by
map services to navigate to their destinations [6]. This paper uses the data collected from the drivers using
the map API. The first step of this paper involves exploring the routing information and using it to estimate
the energy consumption and improve the battery-powered vehicles’ efficiency. This research explores the data
of three different map information providers through their API. Google Maps API [7], HERE Maps API [§]
and TomTom Maps API [9] are the primary data sources in this research.

The amount of data collected from vehicles and drivers can significantly improve the range of electric vehicles
[10]. The battery management system (BMS) installed in electric vehicles senses the battery state of charge
and predicts the remaining range based on the battery status and some other data installed on the system
such as the vehicles’ specifications data. However, these data-sets do not consider the route information ahead.
Therefore, it uses the range values for its estimation. The proper use of the available data can improve the
driving range prediction and improve the energy consumption estimation.

In this paper we construct near to real-time velocity profiles to allow us to generate power profiles and estimate
the power consumption before performing the journey.

1.1  Energy consumption and driving cycles

Energy consumption in transportation systems has been a significant research and development topic recently
[11]. Previous work focused on how the driving behaviours affect the fuel consumption in internal combustion
engine (ICEs) vehicles [12]. In recent years, further studies have been conducted on the usage and consumption
of EVs [13]. These studies are characterised based on their methodology, and purpose [14]. In addition, some
researchers focus on the energy models of electric vehicles to improve the EV design [15], exploring the influential
factors on power consumption [16] and the influence of the driving patterns on the energy consumption and
the remaining driving range [17].

Whilst, there are many studies in the literature to improve the energy consumption of electric vehicles; there
is less research conducted on energy consumption based on the real-time velocity profile prediction. These
profiles are known as driving cycles for vehicles and generally defined as a series of points representing speed
versus time. The driving cycle is usually performed as a physical journey on a vehicle for various purposes and
based on various criteria [18].

Driving cycles developed in recent decades are used as a standard tool for estimating fuel consumption and
measuring the levels of air pollution produced by the transportation system. Many existing standard industrial
driving cycles such as NYCC, UDDS, and HWFET, have been used in some studies [19,20]. These driving
cycles are used as velocity profiles for validating the EV and battery models response. The current driving
cycles performed in unknown conditions and do not represent the real-time driving conditions. Some existing
studies developed methods to predict the driving profile [21,22], and each method relies on the nature of
the data used to develop this prediction method [23]. The map service API can help up to some extent to
develop and improve the real-time driving cycle construction methods. The API provides a wide range of route
information for any geographical location on the map and also considers the traffic situation. Even though the
API providers restrict developers from some features for commercial and competition reasons, it is still possible
to extract some valuable data to help to predict the journey and the velocity characteristics to improve the
range and energy estimation for electric vehicles. This approach makes it more convenient than performing
the physical journey considering many arrangements and set-ups such as a vehicle, driver and some equipment
making it a costly task [24].

2 Data collection process and analysis

2.1 Traffic data exploration

This section illustrates the process and the purpose of exploring the traffic data. In addition, the data collection
process and the challenges faced are also presented.
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Route Selection:

The main objective of collecting the data from the map service providers is to create a generic script that
gathers time-specific traffic data between two different Geo locations following a specific route. We have
specified the origin and destination on the map for two different routes that have different road structures.
These routes were sliced into multiple chunks so that we can collect more accurate data for each chunk.
Collecting the data for smaller segments is to separate the parts of the route that have possibilities of
speed reduction from more continuous high-speed such as motorways.

Data Analysis:

The data provided from the APIs are “duration”, “distance” and “segments”. Each segment profile
includes duration and distance. Since the distance and the time are known, we can calculate the average
speed for each segment and therefore, for the entire route. The plots for these raw collected data gives us
an idea of what the speed profile, as it presents the average speed for each segment of the route.

Data Manipulation:

Since the data obtained from the APIs are only average speed based on the duration in traffic and
distance of the segment, it provides a constant speed for each chunk of the road. Therefore, we introduce
some changes to those average speeds to reflect more realistic driving patterns. Therefore, it can represent
the velocity of the vehicle in each segment without altering the mean value of the speed provided from
the API data

Data collection

Data collection methodology.

e Extracting the data from the API provider.

¢ Collecting data from the API response.

¢ Scheduling the collection process for specific times.
¢ Loading the data into a CSV format.

Source of traffic data.
¢ Google Maps API
The API products provided from Google Maps were used as follows:

- Distance Matrix API: This API allows us to get the travel distance and time for the entire route and
each identified segment. In addition, it allows us to obtain the estimated duration within the current
traffic.

- Directions API: Allows introducing the way-points which helps force the API to follow the route we
specify; it is also responsible for the mode of transportation, which is ”Car” in our case.

e TomTom Maps API
The API products provided from TomTom were used as follows:

- Traffic Flow API : This allows developers to request the travel time from the origin and destination
with respect to the real-time traffic.

- Maps API: This product gives an access to the API data every time we make a request.

- Routing API : This API gives highly detailed information about the route, with respect to directions
and travel mode.

e HERE Maps API
The API products provided from HERE Maps were used as follows:

- Routing API: This product informs the estimated arrival time between the origin and destination.

- Traffic API: This API is responsible for reporting the traffic flow, its consequences and the incidents
information.

- Way-points sequence API: This allows us to specify the way-points on the route to divide it to the
segments we require.

(iii) Extracting the time and speed data

e The data of the time taken during current traffic and the average speed calculated are added into
separate files for each journey. These files are formatted in two columns that show the time in seconds
for the whole journey versus the average speed at each second. These files are then processed to generate
possible velocity profiles.

In Table 1, the main features of the used map services API are illustrated.
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Goog[e Map AP1 Here Map API TomTom Map API

Free Transactions 40,000 requests per 250,000 requests per | 2500 request per day.
month, 1333 request | month. 8333 per day.
per day.
Pricing S5 for requests from 0 | S1 per 1000 requests. | $0.5 per 1000
to 100,000. requests.
Direction and Distance | Routing APl is being Routing APl is being
Matrix APIs are being used from python used from python
Technology used called from python script. Response is in script. Response is in
script. Response is in JSON format. JSON‘format.
JSON format.
23 Way-points for No limit in way-points
Way-points limit each request 50 Way-points for but below 128 is
each request. recommended in each
request.
Table 1

API features

The data was collected at multiple time-slots for each API. These slots were at 8:15am, 12:00pm, 16:45pm and
12:00am. This time selection was done to evaluate and analyse the differences between the peak traffic hours
and when it is quiet.

During each slot, the data is requested for an hour, and then loaded the data into CSV files in several rows.
The number of rows are dependent upon how many intermediate points were introduced. The data consists of
many columns starting from the date when the data was collected, until the average speed that was calculated
using the distance and the duration in traffic. Each row is a repetition of the same process during the specific
time we selected. Figure 1 illustrates a step by-step-process of collecting the data through the APIs.

Time of the Collect all the
Take Inputs —> collection Try again data and dump
it into csv file
l L A
. Error———Success—
» Obtain local Option
time L
Process each A
l way-point
Wait for the next
time slot
Call the API T
with coordinates Process each
I way-point
Option Y
vLﬁErr't:nr—l—Succ:tasa—lv
. Parse the data
" ometime. romsson  —>|  TC AN
response

Fig. 1. Data Collection Process

3 Route based driving cycle construction

This section explains how the acceleration and deceleration is applied to the average speed data then add the
noise function to introduce some kind of variations to the speed profile wherever it is constant. In addition it
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Fig. 2. Mean velocity obtained from HERE Maps API
illustrates the method used to smooth the velocity curves.

8.1 Applying acceleration and deceleration between route segments

To smooth the transition of velocity between segments, we applied the acceleration and deceleration rate to
the beginning and ending intervals. Based on Nissan leaf’s 2019 [25] acceleration rate for 0-100 km/h, we

determine the maximum acceleration on the car. We consider that the acceleration and deceleration rates the
same.

N

S $ $3 \)

Fig. 3. The initial driving cycle before the speed transition between segments

Using the data retrieved from the API, we obtain the initial driving cycle as shown in Figure 3. It is charac-
terised by sharp edges, corresponding with unrealistic significant speed changes. In addition it does not take
into account the technical constraints imposed by the vehicle and the road characteristics. Therefore, the final
driving cycle needs to be developed realistically before performing the energy consumption estimation.

The process of developing the driving cycle is implemented in iterative manner. In Figure 4, the driving cycle
shows three different segments which constant speeds. The velocity on the first segment is assumed to be at
speed V7, and since the recorded velocity on the second segment is higher than the vehicle’s velocity on the
second segment, the vehicle needs to accelerate gradually after exceeding point A. The determination of the
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acceleration is based on the speed difference between V7 and V5 using the following equation:

3.5, V2 — U1 Z 10kTm
a =
%(1)2 —v1),v2 — V1 < 10’“7m

After determining the acceleration, The time At needed for the vehicle to accelerate from the velocity in the
first segment V3 to the following velocity Va2 can be calculated as:

V2 — U1

At = (2)

a

\J)

V3

v

51 |ds 5,-ds s

Fig. 4. The gradual acceleration added to the driving cycle

Calculating the distance As the vehicle needs during the accelerating process leads to the division of the
following segment into separated segments as shown in Figure 5

2
As = v At + ant

(3)

The first segment has the length ds where the vehicle acceleration is applied until it reaches the speed V5.
The second segment has the length Sy - ds when the vehicle’s velocity is constant and equals V5. The API
data speed data are often imperfect and inconsistent, it deviates from the real life conditions and constraints.
Therefore, the acceleration between velocities are not always feasible, in other words, for the above analysed
case of the acceleration from V; to V5, sometimes the distance that the vehicle needs to accelerate is longer
than the length of the following segment itself. To overcome this issue, the acceleration V5 will not take place,
moreover, we reduce the speed on the following segment by small step A, and repeat the process where the
speed on the next segment is V5 - A. This whole process is repeated until it satisfies the feasibility yielding
the final driving cycle as shown in Figure 5.

8.2  Adding noise function

To mimic a real driving cycle, we add noise to the intervals in which the speed is constant. The noise is
generated as uniformly distributed random numbers in the interval [a, b]. Considering that small variations in
speed are accepted, a and b are defined as functions of the maximum and minimum speeds of an interval i.

1 1
a=-5x—— and b=Hx — (4)
minimum(v;) maximum(v;)
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Fig. 5. Final driving cycle after applying the acceleration method

The noise must not interfere in the travelled distance and the average speed in a plateau must remain unchanged.
Therefore, the mean of the noise must be zero. To ensure this condition, after the noise n is generated for NV
samples, it is corrected as follows.

N corrected = Ni — N, 1=1,2,-- '7N (5)

3.8 Smoothing the sharp edges

As abrupt variations in speed remain after the acceleration method and noise adding, the last step consists of
smoothing the speed curve. We apply the LOESS (locally estimated scatter plot smoothing) method, using
4% of the samples for calculating smoothed values.

LOESS is a method of non-parametric regression that produces a smooth curve by locally fitting polynomial
functions. Thus, the fitted values are determined with neighboring subsets of data. LOESS, among other
methods, and the percentage of samples are chosen based on a qualitative evaluation of the final driving cycle
— the main criteria are the decrease of sharp edges, preservation of noise-induced variations and preservation
of the cycle when compared to its pre-processing shape. We determine that the cycle starts and ends at 0
m/s. To ensure a smooth transition, the speed curve is linearly interpolated from zero to the speed value of
an arbitrary point at the beginning and ending of the cycle.

After applying the previous methods, the represented driving cycles are generated as shown in the Figure
6. These figures present the velocity profiles for Google Map API after the representative driving cycles are
selected for the route. After we constructed driving cycles for each route and API, it is clear that the driving
cycle for each API is different at some points on the route and quiet similar at other points along the routes.
The generated driving cycles will be used in the next section to develop the power profile for the electric vehicle.
Hence, the energy estimation can be performed and the battery dynamics can be captured.
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Fig. 6. Google Maps driving cycles for Route 1

4 Generating the power demand using electric vehicle’s dynamics

This section consider an electric vehicle model based on existing Nissan leaf to perform the power demand
generation and the state of charge estimation based on the data used on this research. With the vehicle speed
determined in the driving cycle, we calculate the power consumed to generate the vehicle, or, in case of braking,
the power provided back to the battery pack [25].

Py Pin
Battery |- _fF o - -—

Transmission
system

Motor/
Generator

Ft

Tm, Tbrake Ntr

Battery discharge
(motoring)

Accessories

Battery charge
(regenerative braking)

Fig. 7. Electric vehicle power transition diagram

Fi(t) = Fo.(t) + Fo(t) + Fa(t) + Fo(t) (6)

Starting at the wheels, the traction force F} required for the vehicle’s motion is expressed by the sum opposing
forces, which is the rolling friction, grade resistance, aerodynamic drag, and acceleration force [26] and [25].
We consider the road slope @ = 0 for the whole extension of the routes. Even though the road slop data is
available from some API map providers, it was not possible to obtain it accurately in this approach, since the
way-points were manually selected upon our previous knowledge of the routes, and this makes obtaining the
road slope information a complex task and inaccurate due to the uneven route segments length. In addition,
we implemented the rolling resistance and the force resisting the tires on the road surface.
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4.1 Battery model dynamics and energy consumption estimation

The implementation of the battery model, was considering the Rint model proposed in [27]. This model
includes a voltage source V., representing the open-circuit voltage, in series with the parallel branch of internal
resistance. Any battery model can be implemented in this part of the research to estimate the state of charge
based on our power profiles. The current model is less complex and validated in previous studies such as in
[27].

R charge

I
Voe (¢ v,
oc C_D Rdischarge load

Fig. 8. The equivalent circuit model based on Rint with two resistors in parallel

The current flow in the resisting branch is represented by ideal diodes. When the battery is discharging, the
diode in series with the discharging resistance (Rgischarge) conducts the current; contrarily, in case of battery
charge, the diode conducting the current is in series with charging resistance (Rchmge). Given an initial state-
of-charge, we start by calculating open-circuit voltage V,. in terms of the SOC, where K, a, b, ¢ and d are
constants.

Voo(t) = K — aSOC(t) — bﬁc(o

+eln(SOC(t)) = din(1 — SOC(t))

The charging or discharging resistance R, is a function of the SOC and is determined based on look-up tables
obtained from [25]. Then, the battery current is calculated by:

_ Voc(t) - \/Voc(t)2 - 4R3Pb(t) (7)
B 2R,
The current is positive if the battery is discharging, and negative if it is charging. Finally, the SOC is estimated

with the coulomb counting method [28], in which the battery current is integrated over time to calculate the
transferred charge.

I(t)

SOC(t) = SOC(to) Ci / YIAr (8)

I(t)AT
- o)

Where SOC(t) is the current state-of-charge, SOC|(t() is the initial state-of-charge, C,. is the rated capacity,
I is the current flowing in or out of the battery, ¢ is the initial time and ¢, the current time. Alternatively,
the SOC can be expressed in terms of its previously estimated value SOC(t — 1) and the current for the time
interval of A7 = [t — 1,¢].

The equations of V., I and SOC' are applied iteratively over time to obtain the profiles for a full driving cycle.

SOC(t) = SOC(t — 1) +

5 Results

This section presents the power needed for some journey based on each API and route. It also shows the
battery voltage and the state of charge estimation.
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6 Conclusion and future work

noindent This paper constructed different driving cycles based on three API data and two different routes. A
data collection framework is developed which gathers the same data from different API and process the data
to generate realistic driving cycles. We divided the routes into slices using the route segmentation technique.
The data contain the distance of the journey, the time taken for the whole journey, the average speed for the
whole journey, and the waypoints. We developed a velocity model algorithm and introduced variations using
a random function based on Gaussian normal distribution.

After introducing some randomness to the mean data extracted from the APIs, we used the locally weighted
scatterplot smoothing function "LOWESS” in MATLAB to fit a smooth curve to the randomised data and
eliminate any sharp edges. The data selection is based on data classification and statistical analysis. An electric
vehicle’s model based on Nissan leaf was implemented to calculate the power demand and the remaining range
for each cycle.

The results show that the driving cycles are within the range and the vehicle’s constraints are satisfied. More-
over, it simulates the driving patterns for each cycle. The results also show the variation between the different
data sources and the times for the data collection. The state of charge estimation for each cycle and route
varies for each route and data source. The route includes motorway driving, shows massive energy consumption
when the vehicle manages to drive at the highest speed limit and shows less energy consumption when the
traffic density restricts the speed. In contrast, the results also show less energy efficiency for city driving when
the traffic is dense because the journey time is longer.

The proposed velocity model can be implemented to any other data source with more flexibility for the route
segmentation. It can produce real-time velocity profiles construction without the need of collecting more data
for more extended periods. It was not possible to integrate weather API and Traffic lights detection due
to the restrictions in the map sources. However, this can be included when using open source API such as
OpenStreetMaps API, even though it has less accuracy. Further laboratory experiments will be conducted in
future to validate the results in this paper using Nissan leaf battery.
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