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Abstract. A server subject to random breakdowns and repairs offers
services to incoming jobs whose lengths are highly variable. A check-
pointing policy aiming to protect against possibly lengthy recovery pe-
riods is in operation. The problem of how to choose a checkpointing
interval in order to optimize performance is addressed by analysing a
general queueing model which includes breakdowns, repairs, back-ups
and recoveries. Exact solutions are obtained under both Markovian and
non-Markovian assumptions. Numerical experiments illustrate the con-
ditions where checkpoints are useful and where they are not, and in the
former case, quantify the achievable benefits.
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1 Introduction

Checkpointing is an important and useful crash-tolerant technique that involves
storing process state during normal operation and restoring the recorded state
to speed up recovery after a failure. It is cost-effective compared to hardware
redundancy techniques, especially when the storage system for checkpointing
data is reliable (Elnozahy et al. [12]). Not surprisingly, many commercial systems
and public libraries, such as BlueGene/L (Adiga et al. [1]), IRIX OS (Tuthill et
al. [26]) and Unix (Wang et al. [27]), have emerged to provide convenient APIs
to facilitate its implementation.

The history of checkpointing goes back more than four decades, to the early
days of transaction processing. Traditionally, the technique has involved keep-
ing an ‘audit trail’ of transactions executed since the last checkpoint. Those
transactions would be re-run in the event of a breakdown. The main question
of interest would be how to choose the checkpoint frequency so as to minimize
some appropriate cost function. In answering that question, the actual lengths
of individual transactions were either ignored, or they were all assumed to have
the same characteristics (e.g., exponentially distributed with the same mean).

We are interested in studying a checkpointing policy under a more realistic
scenario where job processing times are random variables with a large coefficient
of variation. That is, most of the jobs requiring service are short, but a few are



very long. Exactly such a pattern of demand has been observed by monitoring
a real-life cluster, see Chen et al. [5]. Under those conditions, the purpose of
the policy would be to shorten the execution time of the long jobs by reducing
the recovery period following a breakdown, without at the same time adding
significantly to the processing of the short jobs. These considerations would
govern the choice of the checkpoint interval.

The contribution of this paper is to analyse a queue served by a single un-
reliable server, operating a checkpoint policy in a mixed workload environment.
That server is likely to be part of some distributed system. The incoming jobs
are typically submitted by a web server. Processing a request may involve one or
more database accesses whereby data is cached locally. All checkpoint back-ups
take place on a database or possibly on the local disk.

A server breakdown may occur while (i) a job is being served, (ii) a checkpoint
is being established, (iii) a recovery from a previous breakdown is in progress, or
(iv) the queue is empty and the server is idle. Following a breakdown event, the
server does nothing for a random interval which will be referred to as the ‘repair
period’. After that, in cases (i), (ii), or (iii), it performs a recovery operation
consisting of going back to the last checkpoint if there is one, or to the beginning
of the job if not, and redoing the work done since then. In case (iv), after being
repaired the server takes the first waiting job, if any, and starts a new service.

Note that the repair period may not in fact involve an actual repair or reboot
of the server. It may consist of disconnecting the primary server and replacing it
with a secondary one that had been kept in reserve and in receipt of checkpoints
from the primary (see Güler and Özkasap, [18], Oliveira et al. [23]). As far
as the model is concerned, the exact nature of the operation is immaterial; of
importance is only the distribution of the resulting inoperative interval.

The start of a job’s execution plays the role of an initial checkpoint. Further
checkpoints may be inserted at intervals as the run progresses. When the exe-
cution is completed, the job departs from the queue and a waiting job, if any,
starts service. Thus, the checkpoint policy can be designed so as to leave short
jobs largely unaffected, while reducing the run time of long jobs by shortening
their recovery periods following a server breakdown.

Such a model has not, to our knowledge, been analyzed before. The objec-
tive of the analysis is to determine a performance measure such as the average
response time or the average number of jobs present. This will enable the eval-
uation of the trade-offs between the costs incurred in backing-up the current
process state, and the benefits derived from faster recovery operations. We start
by solving the model under Markovian assumptions, but later generalize it to
allow non-exponential distributions and also multiple servers.

1.1 Related work

Models of checkpointing policies have been studied quite extensively over the
years, under a variety of assumptions and application contexts. Research ad-
vances on checkpointing have also been ‘checkpointed’ by surveys at regular in-
tervals. Worth mentioning are the surveys by Chandy [4], Nicola [22], Elnozahy



et al. [12] and Marzouk and Jmaiel [20]. The Elnozahy et. al. survey focusses
exclusively on long-running computations, while Chandy mainly surveys check-
pointing of streams of short transactions.

A large body of literature deals with long-running computations (sometimes
referred to as ‘infinite horizon’), motivated by scientific workloads which might
typically take hours or days to complete. Those papers are not interested in per-
formance metrics related to customers (e.g., average latency). The optimization
criterion is the fraction of time that the server is doing useful work. Examples of
such studies are Coffman and Gilbert [6], Liu et al. [19], Grassi et al. [17], Bruno
and Coffman [3], Plank and Thomason [24], Subasi et al. [25] and Gelenbe et al.
[16] (the last paper also aims to minimize the energy used).

More recently, Dimitriou [9] analysed a model where jobs finding a busy
server are not queued, but retry after a random period. Such a policy would not
be implemented in a transaction processing system because of its inefficient use
of service capacity: the server may remain idle while jobs requiring service are
present.

Models involving a queue of jobs have also been studied. Gelenbe [15] de-
rived an expression for the optimal checkpoint interval. Baccelli [2] developed
a numerical procedure for computing the average response time, while Dohi et
al. [10] generalized the checkpoint policy by making it age-dependent. All those
authors obtained their results by assuming that during operative periods the
system behaves like an M/M/1 queue. Instead of an implicit checkpoint at the
start of each job, an audit trail is maintained, keeping track of the jobs that
would have to be re-run in the event of a breakdown. The consequence of that
trail should be that results cannot be released to users, and jobs must be kept
in the queue, until the next checkpoint is successfully established.

However, that is not what happens in the above models. Jobs are assumed
to depart from the queue as soon as their service is completed. The recovery
following a breakdown is simply a period during which jobs continue to arrive
but none are served. The duration of that period is a linear function of the
operative time elapsed since the last checkpoint.

In our model, departures upon service completion are justified by the fact
that a breakdown only affects the job currently served, not the ones already
completed.

The analysis of the Markovian model is described in Section 2, and its exact
solution is presented in Section 3. The exact solutions when the back-up, check-
point and repair intervals have general distributions, and the approximation for
non-exponential intervals between breakdowns are described in Section 4. Sev-
eral numerical experiments exploring the behaviour of the system for different
parameter settings, under both Markovian and non-Markovian assumptions are
shown in Section 5. These include an evaluation of the maximum achievable
benefit of checkpointing.



2 Analysis under Markovian assumptions

The server goes through alternating periods of being operative and broken (or
available and unavailable). These are distributed exponentially with means 1/ξ
and 1/η, respectively. Jobs arrive in a Poisson stream with rate λ. The required
service times have a Hyperexponential distribution with K exponential phases,
where phase k is entered with probability qk and has an average of 1/µk (k =
1, 2, . . . ,K). After completing the chosen exponential phase, the job departs.

A Hyperexponential distribution with K phases can be used to model jobs
of K different types of the kind observed in [5]. Its coefficient of variation is
always greater than or equal to 1, and can be arbitrarily large. For example,
using just two Hyperexponential phases, with q2 and µ2 much smaller than q1
and µ1, respectively, one can model patterns of demand where most of the jobs
are short and a few are very long.

While being served, a job sets up periodic checkpoints at random intervals.
At the start of its service phase, or after a checkpoint has been established, a
timer distributed exponentially with mean 1/α is started. If that timer expires
before the phase completes, a new checkpoint is attempted. The establishment
of a checkpoint is not instantaneous but requires an exponentially distributed
interval of time with mean 1/β. That interval will be referred to as the ‘back-up’
operation.

Both the service intervals and the back-up operations may be interrupted by
a server breakdown. Bearing in mind that the shortest of several exponentially
distributed random variables is distributed exponentially with parameter equal
to the sum of the parameters of the participating variables, we conclude that
any service interval during phase k is distributed exponentially with parameter
νk, given by

νk = µk + α+ ξ . (1)

The end point of such an interval is either a service completion, with probability
µk/νk, or a checkpointing attempt, with probability α/νk, or a server breakdown,
with probability ξ/νk.

Similarly, any back-up operation in any phase is distributed exponentially
with parameter σ, given by

σ = β + ξ . (2)

Such an operation terminates with either the successful establishment of a check-
point, with probability β/σ, or a server breakdown, with probability ξ/σ.

If the server breaks down during a service interval or during a following back-
up operation, the work performed since the last checkpoint, or in the absence
of a checkpoint since the beginning of the phase, must be repeated when the
server is repaired. This is referred to as the ‘recovery’ operation. According
to the above observations, the recovery operations in phase k are distributed
exponentially with parameter νk. Of course, the server may break down again
during a recovery, in which case another recovery (depending on the phase) is
started after the repair.



We assume that each recovery operation is a new sample from the appropriate
distribution. That assumption is motivated by the fact that different runs of
the same task never take exactly the same time, particularly in a multi-core
environment.

Note that the action taken after the server is repaired following a break-
down depends on whether the breakdown occurred while the server was idle, or
whether it occurred while the server was active (i.e., serving a job, backing-up or
recovering). In the former case there is no need for a recovery: either the server
is again idle, or a job has arrived in the meantime and a new service begins. In
the latter case, a new recovery starts, whose duration depends on the phase that
was in progress when the breakdown occurred.

Denote by T the random variable representing the total period between the
start of a job’s service and its completion. That period includes service intervals
and back-up operations, as well as repair times and recovery operations following
any breakdowns. The interval T will be referred to as the ‘effective service time’.
We shall need the first and second moments of that interval. In particular, the
necessary and sufficient condition for stability of the system is that the offered
load generated by the effective service times of the incoming jobs should be less
than 1:

λE(T ) < 1 . (3)

Let Xk be the time a job takes to complete phase k. The moments of the
effective service time are simply expressed in terms of the moments of Xk:

E(T ) =

K∑
k=1

qkE(Xk) , (4)

and

E(T 2) =

K∑
k=1

qkE(X2
k) . (5)

3 Exact solution

To determine the moments of the effective service time, we shall introduce two
sets of auxiliary random variables. Define Yk as the interval between attempting
to establish a checkpoint during phase k, and resuming phase k service. That
interval may include repairs and recovery operations resulting from breakdowns
during the back-up operation. Also define Vk as the interval between a break-
down in phase k and resuming phase k service. It includes the repair and the
recovery operation, plus any additional repairs and recoveries caused by further
breakdowns. Denote by yk(s) and vk(s) the Laplace transforms of the Yk and Vk
probability density functions, respectively.

The Laplace transform of an exponential p.d.f. with some parameter, γ, is
equal to γ/(γ+s). Also, the transform of a sum of independent random variables



is equal to the product of their transforms. Hence, we can write the following
equation for vk(s):

vk(s) =
η

η + s

νk + ξ

νk + ξ + s

[
νk

νk + ξ
+

ξ

νk + ξ
vk(s)

]
, (6)

where νk is given by (1). The first term in the square brackets is the probability
that the recovery operation completes without interruption; the second term
contains the probability that another breakdown occurs and a new random Vk
is started.

The first and second moments of Vk are obtained from E(Vk) = −v′k(0) and
E(V 2

k ) = v′′k (0). Differentiating (6) twice at s = 0 yields, after some algebra,

E(Vk) =
νk + ξ + η

νkη
, (7)

and

E(V 2
k ) = 2

[
E(Vk)2 − 1

νkη

]
. (8)

Since the interval Yk terminates either as a successful back-up, or is inter-
rupted by a breakdown and is followed by a recovery operation Vk, we can express
yk(s) in terms of vk(s):

yk(s) =
σ

σ + s

[
β

σ
+
ξ

σ
vk(s)

]
, (9)

where σ is given by (2). The first and second moments of Yk are given by

E(Yk) =
1

σ
[1 + ξE(Vk)] , (10)

and

E(Y 2
k ) =

2

σ2
[1 + ξE(Vk)] +

ξ

σ
E(V 2

k ) . (11)

Now remember that the phase k execution, Xk, consists of a service interval
which either terminates uninterrupted, or is interrupted by a back-up operation,
Yk, and later resumed, or is interrupted by a breakdown interval, Vk, and later
resumed. This leads to the following equaton for the Laplace transform of Xk,
xk(s).

xk(s) =
νk

νk + s

[
µk

νk
+
α

νk
yk(s)xk(s) +

ξ

νk
vk(s)xk(s)

]
. (12)

Differentiating twice at s = 0 and substituting the moments of Yk and Vk
already derived, we obtain the first and second moments of Xk:

E(Xk) =
1

µk
[1 + αE(Yk) + ξE(Vk)] , (13)

and

E(X2
k) = 2E(Xk)2 +

1

µk
[1 + αE(Y 2

k ) + ξE(V 2
k )] . (14)



Using expressions (10) and (7), the average execution time of phase k can be
rewritten as

E(Xk) =
1

µk

ξ + η

η

α+ σ

σ

νk + ξ

νk
, (15)

The ergodicity condition (3) can now be stated explicitly:

K∑
k=1

qkρk
νk + ξ

νk
<

η

ξ + η

σ

α+ σ
, (16)

where ρk = λ/µk. Note that when α = 0 and ξ = 0, i.e. when there are no
checkpoints and no breakdowns, this reduces to the usual stability condition for
the M/G/1 queue: the offered load must be less than 1.

The exact solution for our model cannot be obtained by treating it as a simple
M/G/1 queue. This is because of the possibility that the server may break down
while the queue is empty. If that happens, a job may arrive into the system, find
an empty queue, yet be unable to start service immediately. This situation is
similar to what is known in the literature as a ‘server of walking type’, or ‘server
with vacations’, where a server encountering an empty queue goes away for a
random period (e.g., see [13]). In those studies, vacations are always taken, and
are independent of the arrival process. Our model is different, in that the server
only takes a vacation (a repair period) if a breakdown occurs while the queue is
empty.

For an exact analysis, we shall consider the number of jobs present at (just
after) consecutive departure instants. This is a discrete time Markov chain. The
following notation will be used:

πi is the steady-state probability that there are i jobs left in the system after
a departure (i = 0, 1, . . .). This is also the probability that an incoming job would
see i jobs present. Hence, by the PASTA property, it is also the probability that
a random observer would see i jobs present.

ai is the probability that i jobs arrive during an effective service time, T ;
bi is the probability that i jobs arrive during a repair period;
We shall also introduce the generating functions

π(z) =

∞∑
i=0

πiz
i ; a(z) =

∞∑
i=0

aiz
i ; b(z) =

∞∑
i=0

biz
i . (17)

If i > 0 and k jobs arrive during the ensuing service time (k = 0, 1, . . .), then
the next state will be i + k − 1. If i = 0, then the next state will also depend
on whether the idle period is interrupted by a breakdown or not. Transforming
the relevant probabilities and balance equations into generating functions, we
obtain, after some work, the following equation for π(z) in terms of a(z) and
b(z):

π(z) =
(1− ρ)a(z)(z − 1)

z − a(z)

[
η

ξ + η
+

ξ

ξ + η

η

λ+ η

zb(z)− 1

z − 1

]
. (18)



This representation is significant, because it expresses π(z) as a product of
two generating functions. The first fraction in the right-hand side of (18) is the
well-known generating function of the steady-state distribution of the M/G/1
queue (e.g., see [7]). The term in the square brackets is the generating function
of a random variable which we shall call U ; it is related to the number of arrivals
during a repair period. That product form implies the following result:

Lemma. The number of jobs present in our system in the steady state is
distributed as the sum of the number of jobs in the corresponding M/G/1 queue
(arrival rate λ and service time T ), plus the random variable U .

Similar results can be found in the literature related to models of servers
with vacations.

In particular, denoting by L and LM/G/1 the steady-state average numbers
of jobs in our system and in the corresponding M/G/1 queue respectively, we
can write

L = LM/G/1 + E(U) . (19)

When the repair periods are distributed exponentially, the distribution bi is
geometric with parameter λ/(λ+ η). The generating function b(z) is

b(z) =
η

λ(1− z) + η
. (20)

Substituting this into the generating function of U and differentiating at
z = 1, we obtain

E(U) =
λξ

η(ξ + η)
. (21)

This is quite an intuitive expression: it represents the average number of arrivals
during a repair period (λ/η), multiplied by the fraction of time during which the
server is broken.

Equation (19), together with Pollaczek-Khinchin’s result (e.g., see [21]), now
provides the average L in terms of quantities that have already been derived:

L = λE(T ) +
λ2E(T 2)

2(1− λE(T ))
+

λξ

η(ξ + η)
, (22)

where E(T ) and E(T 2) are given by (4) and (5).

This completes the exact solution of the model under Markovian assumptions.
It is worth mentioning that other phase-type distributions of the required service
times can be handled by the same methods. For example, in some applications
it may be more convenient to assume a Coxian distribution with K exponential
phases, where phase k has an average of 1/µk and is followed by phase k + 1
with probability qk. After completing phase K, the job departs. A three-phase
Coxian distribution is illustrated in Figure 1.

The class of Coxian distributions is, for most purposes, general (see [8]), and
can also model mixed job populations.
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Fig. 1. A Coxian distribution with three phases

Let rk be the probability that a job reaches phase k during the course of its
service:

r1 = 1 ; rk =

k−1∏
i=1

qi ; k = 2, 3, . . . ,K . (23)

Then the moments of the effective service time, T , are obtained from

E(T ) =

K∑
k=1

rkE(Xk) , (24)

and

E(T 2) =

K∑
k=1

rkE(X2
k) + 2

K∑
k=2

rk

k∑
i=1

E(Xi)E(Xk) . (25)

The analysis presented above would apply, provided that each new phase
begins with a checkpoint.

4 Generalizations

It is possible, and desirable, to relax a number of the assumptions that have
been made so far. In the majority of cases this can be done while retaining the
exact nature of the solution. However, one of the generalizations appears to be
intractable and requires an approximation.

4.1 General repair, backup and checkpoint intervals

Suppose that the repair period, R, has a general distribution, with Laplace
transform η(s). The exact analysis can proceed largely as before, subject to two
important changes. First, equation (6) becomes

vk(s) = η(s)
νk + ξ

νk + ξ + s

[
νk

νk + ξ
+

ξ

νk + ξ
vk(s)

]
. (26)

Given the first two moments of the repair time, E(R) and E(R2), this expression
enables us to evaluate E(Vk) and E(V 2

k ), and hence proceed to determine E(Xk)
and E(X2

k).
The second change is that the argument leading to (22) should now be gen-

eralized to include random vacations with general distribution. The analysis of



the previous section can be modified to produce a generalized form of expression
(18), involving the Laplace Transform of the Random Modification of the repair
period (i.e. the remaining duration of the repair period, as seen by a random
observer). The resulting quantity E(U), which appears in (19) and (21) now
contains the first and second moments of the repair time:

E(U) = λ
E(R2)

2

ξ

1 + ξE(R)
. (27)

Similar arguments can be employed when the back-up times and the check-
point intervals have general distributions with Laplace transforms b(s) and a(s),
respectively. They lead to a generalized form of equation (12), from which the
moments E(Xk) and E(X2

k) are determined by differentiation at s = 0. The
details of those developments are omitted for lack of space.

4.2 Approximation for general breakdown intervals

Relaxing the Markovian character of the breakdown process, while still comput-
ing an exact solution, appears to be considerably more difficult. We are therefore
proposing a simple approximation that can be readily justified in a practical sit-
uation. The argument is based on the fact that breakdowns are rare events.

Assume that the operative periods of the server, i.e. the intervals between
completing a repair and the next breakdown, are i.i.d. random variables with an
m-phase Coxian distribution. That is sufficiently general for practical purposes.
By choosing the number of phases and their parameters appropriately, one can
approximate most commonly used distributions, such as Erlang, Weibull, Hy-
perexponential, Lognormal, Normal, etc.

Denote by ξi the parameter of phase i (i = 1, 2, . . . ,m), by q̄i the probability
of moving from phase i− 1 to phase i, and by r̄i = q̄1q̄2 · · · q̄i−1 the probability
of reaching phase i.

It is reasonable to assume that the parameters ξi are small compared to
the other parameters (i.e. the average lengths of all phases are large). In that
case, the queueing process can be assumed to be stable and reach steady state
during each phase. The approximate solution of the generalized model would
then consist of the following steps.

1. Compute the steady-state probabilities, γi, that an operative server is in
phase i of its breakdown interval. These probabilities satisfy the balance
equations

γiξi = γi−1ξi−1q̄i−1 ; i > 1 . (28)

They can therefore be expressed, after normalization, as

γi =
ξ1r̄i
ξi

 m∑
j=1

ξ1r̄j
ξj

−1 ; i = 1, 2, . . . ,m . (29)



2. Apply the existing exact solution to phase i, using ξ = (1 − q̄i)ξi as the
breakdown rate, and compute the average number of jobs present, Li.

3. Compute the overall average number of jobs present, L, as a weighted average
over all phases:

L =

m∑
i=1

γiLi . (30)

Remark. The above approximation, known as ‘decomposition’, has been
used in a variety of other contexts. A quantitative evaluation of its accuracy
for our system may be provided by simulations. However, as the breakdowns
are rare events, that would be a non-trivial exercise, possibly requiring special
techniques. Such an undertaking is outside the scope of the present work.

5 Numerical results

The exact solutions of Sections 3 and 4 were applied to several example sys-
tems, with the aim of examining the trade-offs between the costs and benefits of
checkpointing. In order to reduce the parameter space to be explored, some of
the parameters are kept fixed. The required service times are assumed to have a
two-phase Hyperexponential distribution with quite a large coefficient of varia-
tion: 1/µ1 = 40; 1/µ2 = 400; q = 0.2. In other words, the average requirement of
80% of the incoming jobs is 40, and for the other 20% it is 400. These parameters
are chosen to conform, as far as it was possible to extract average values from
the reported statistics, with the data collected in [5]. The average repair period
is assumed to be relatively short, 1/η = 15. The arrival rate λ, the checkpointing
rate, α, the average back-up interval. 1/β and the breakdown rate, ξ, are varied.
The performance measure in all cases is the average number of jobs present, L.
If we wished to evaluate the the average response tme, W , we would use Little’s
result to compute W = L/λ.

In the first example, the arrival rate is set to λ = 0.0065, and L is plotted
against α, for three different values of the breakdown rate: ξ = 10−4.5, ξ = 10−4

and ξ = 10−3.5. These rates are comparable to the ones reported in Garraghan
et al. [14].

With these parameters, the system load, as measured by λE(T ), is on the
order of 75% or higher.

The results are shown in Figure 2. All three plots exhibit a steep initial decline
in occupancy, followed by a slow increase. As the breakdown rate increases, the
optimal α also increases slightly; it is about 0.1 when ξ = 10−4.5, between 0.1
and 0.2 when ξ = 10−4 and close to 0.3 when ξ = 10−3.5. Such an increase
could have been expected, since a more likely breakdown during service makes
the backing-up of the current state more advantageous. The low gradient of the
plateau following the optimal point is explained by the low cost of the back-
up operation. Of course, if α carries on increasing, so that the ‘non-productive’
back-up operations push the queue closer to saturation, the increase in occupancy
would accelerate without bound.
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This phenomenon is illustrated in the second experiment, where the break-
down rate is kept fixed at ξ = 10−4, while the arrival rate takes three different
values: λ = 0.0065, λ = 0.007 and λ = 0.0075. The results are shown in Figure
3. Again, the plots of L against α display a steeply decreasing portion, followed
by an increasing one.

For all three values of λ, the optimal checkpointing rate is between α = 0.1
and α = 0.2. However, having extended the range of α considerably beyond
the optimum, we observe the non-linear increase in L caused by the back-up
operations. This is particularly noticeable in the case of λ = 0.0075, where the
system was quite heavily loaded to start with.

It is intuitively clear that the more reliable the server, the less frequent need
be the checkpoints. On the other hand, the less time it takes to perform a
back-up operation, the more checkpoints can be afforded. In order to quantify
these observations, we have evaluated the optimal checkpointing rate, α∗, as a
function of the average interval between breakdowns, 1/ξ. This was done for
three different values of the back-up rate, β = 100, β = 200 and β = 400. The
results are presented in Figure 4, where 1/ξ is scaled exponentially. At each
point, the optimal α∗ was found by carrying out a search.

As expected, the optimal checkpointing rate eventually becomes zero when
the server becomes sufficiently reliable. However, that point is not reached quickly:
when β = 100 or β = 200, the mean time between failures needs to be about
107 before checkpoints become counterproductive. That interval increases to 108

for β = 400. At the other end of the range, when breakdowns are relatively
frequent, the optimal checkpointing rate is higher and increases with the speed
of the back-up operations.

In order to examine the effect that a change of distributions has on perfor-
mance, we have repeated the experiment of Figure 4, under the assumptions that
the repair, back-up and checkpoint intervals are constant, keeping the means,
E(R), E(B) and E(A), as before. Clearly, such a change would reduce the vari-
ance of the effective service time and hence would reduce the average number L.
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However, it is not obvious whether the optimal value of the checkpoint frequency,
α = 1/E(A), is affected and if so, to what extent.

We observed a similar behaviour to the one exhibited in Figure 4: as the
server becomes more reliable, the optimal checkpoint frequency decreases and
eventually becomes 0 (i.e. checkpoints are no longer needed).

The notable difference in these observations is that the values of α∗ were in all
cases significantly lower than before. That outcome can be explained intuitively
by arguing that a deterministic checkpointing policy is more effective than a
random one with the same averages. Hence, one can achieve the desired result
with fewer checkpoints.

Because of the similarity of behaviours, it was not deemed necessary to in-
clude another version of the figure.

The final experiment aims to quantify the gains achievable by a checkpointing
policy. This is done by comparing the average number of jobs present, L, when
no checkpoints are used (i.e. α = 0 or a =∞), with the number present when the
policy uses the optimal checkpoint frequency α∗. The latter value is determined
by a search. The other parameters are as before, with ξ = 10−4. The repair,
back-up and checkpoint intervals are constant.

In Figure 5, the unoptimized and optimized values of L are plotted against
the arrival rate, which varies from λ = 0.005 to λ = 0.008. On that range, the
offered load, λT , varies from about 55% to about 90%.

As might have been expected, when the system is lightly loaded, the gains
of checkpointing are slight. Jobs affected by breakdowns do not tend to delay
other jobs at light loads, because the queue is short. Hence, any savings in their
effective service times show limited benefits. As the load increases, the queue gets
longer and the savings are noticed by more waiting jobs. At the 90% load, the
difference between no checkpointing and optimal checkpointing is about 25%.

We carried out the same comparison under the assumption that the A, B and
R random variables are distributed exponentially. The results were very similar
to the ones presented in Figure 5 and are therefore omitted.



6 Conclusions

We have examined the effects of checkpointing on performance by analysing a
rather general queueing model involving breakdowns, repairs and back-up oper-
ations. A major objective of the study was to handle a job population with a
large variability of required service times. Exact solutions were obtained under
both Markovian and non-Markovian assumptions. These were used in order to
determine the optimal checkpoint frequency for different parameter settings, and
to quantify the benefits of checkpointing.

One of the proposed generalizations, to non-exponential intervals between
breakdowns, involves an approximate solution. As indicated in the Remark at
the end of subsection 4.2, assessing the accuracy of that approximations is outside
the scope of the present paper but would be a worthy topic for future research.

Another interesting generalization that would be worth studying is to divide
the mixed job population into several classes, with a separate queue for each
class. A non-preemptive priority scheduling policy could be in operation among
the classes. For example, short jobs might be given higher priority than long
ones. It may be possible to generalize existing results on multi-class M/G/1
queues to such a system. To obtain an exact solution, it would be necessary to
analyse the effect that breakdowns during idle periods have on the behaviour of
queues. That too would be a worthy topic for future research.
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