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Abstract. Reflectance Transformation Imaging (RTI) is a popular tech-
nique that allows the recovery of per-pixel reflectance information by
capturing an object under different light conditions. This can be later
used to reveal surface details and interactively relight the subject. Such
process, however, typically requires dedicated hardware setups to recover
the light direction from multiple locations, making the process tedious
when performed outside the lab.
We propose a novel RTI method that can be carried out by record-
ing videos with two ordinary smartphones. The flash led-light of one
device is used to illuminate the subject while the other captures the re-
flectance. Since the led is mounted close to the camera lenses, we can
infer the light direction for thousands of images by freely moving the
illuminating device while observing a fiducial marker surrounding the
subject. To deal with such amount of data, we propose a neural relight-
ing model that reconstructs object appearance for arbitrary light direc-
tions from extremely compact reflectance distribution data compressed
via Principal Components Analysis (PCA). Experiments shows that the
proposed technique can be easily performed on the field with a result-
ing RTI model that can outperform state-of-the-art approaches involving
dedicated hardware setups.

Keywords: Reflectance Transformation Imaging; Neural Network; Cam-
era Pose Estimation; Interactive Relighting

1 Introduction

In Reflectance Transformation Imaging (RTI) an object is acquired with dif-
ferent known light conditions to approximate the per-pixel Bi-directional Re-
flectance Distribution Function (BRDF) from a static viewpoint. Such process
is commonly used to produce relightable images for Cultural Heritage applica-
tions [19,6] or perform material quality analysis [4] and surface normal recon-
struction. The flexibility of such method makes it suitable for several materials,
and the resulting images can unravel novel information about the object un-
der study such as manufacturing techniques, surface conditions or conservation
treatments. Among the variety of practical applications in Cultural Heritage
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field, we can mention enhanced visualisation [6,21], documentation and preser-
vation [16,13,15] as well as surface analysis [3]. Moreover, RTI techniques can
be effectively paired with other tools as 3D reconstruction [36,23,24,25] or mul-
tispectral imaging [8] to further improve the results.

In the majority of the cases, the acquisition of RTI data is carried out with
specialised hardware involving a light dome and other custom devices that need
complex initial calibration. Since the amount of processed data is significant,
several compression methods have been proposed for RTI data representation
to obtain efficient storage and interactive rendering [27,9]. In addition to that,
part of the proposals focus on the need of low-cost portable solutions [12,38,28],
including mobile devices [31] to perform the computation on the field.

In this paper we first propose a low-cost acquisition pipeline that requires a
couple of ordinary smartphones and a simple marker printed on a flat surface.
During the process, both smartphones acquire two videos simultaneously: one
device acting as a static camera observing the object from a fixed viewpoint,
while the other provides a trackable moving light source. The two videos are
synchronised and then the marker is used to recover the light position with
respect to a common reference frame, originating a sequence of intensity images
paired with light directions. The second contribution of our work is an efficient
and accurate neural-network model to describe per-pixel reflectance based on
PCA-compressed intensity data. We tested the proposed relighting approach
both on a synthetic RTI dataset, involving different surfaces and materials, and
on several real-world objects acquired on the field.

2 Related Work

The literature counts a huge number of different methods for both acquisition
and processing of RTI data for relighting. In [22] the authors give a compre-
hensive survey on Multi-Light Image Collections (MLICs) for surface analysis.
Many approaches employ the classical polynomial texture maps [14] to (i) define
the per-pixel light function, (ii) store a representation of the acquire data, and
(iii) dynamically render the image under new lights. Similar techniques are the
so-called Hemispherical Harmonics coefficients [17] and Discrete Modal Decom-
position [26]. In [9] the authors propose a new method based on Radial Basis
Function (RBF) interpolation, while in [27] a compact representation for web
visualisation employing PCA is presented. The authors in [18] present the High-
light Reflectance Transformation Imaging (H-RTI) framework, where the light
direction is estimated by detecting its specular reflection on one or more spherical
objects captured in the scene. However, such setup involves several assumptions
such as constant light intensity and orthographic camera model, that in practice
make the model unstable. Other techniques that have been proposed to estimate
light directly from some scene features are [1,2], while in the authors [9] propose
a novel framework to expand the H-RTI technique.

Recently, neural networks have been employed successfully in several Com-
puter Vision tasks, including RTI. In particular, the encoder-decoder architec-
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Fig. 1. Complete mobile-based RTI acquisition and relighting pipeline.

ture is used in several applications for effective data compression [33]. The work
in [30] presents a NN-based method to model light transport as a non-linear func-
tion of light position and pixel coordinates to perform image relighting. Other
related work using neural networks are [39], in which a subset of optimal light di-
rections is selected, and [29] where a convolutional approach is adopted. Authors
in [5] propose an autoencoder architecture to perform relighting of RTI data: the
architecture is composed by an encoder part where pixel-wise acquired values
are compressed, then the decoder part uses the light information to output the
expected pixel value. They also propose two benchmark datasets for evaluation.

3 Proposed Method

Our method follows the classical procedure employed in the vast majority of ex-
isting RTI applications: the whole pipeline is presented in Figure 1. First, several
images of the object under study are acquired varying the lighting conditions.
In our case, the operation uses the on-board cameras and flash light of a pair
of ordinary smartphones while taking two videos. The two videos are then syn-
chronised and the smartphones positions with respect to the scene are recovered
using a fiducial marker: in this way we obtain light position and reflectance im-
age for each frame. Such data is processed to create a model that maps each
pair (pixel, light direction) to an observed reflectance value. Section 3.1 gives
a detailed description of this process. This results in a Multi-Light Image Col-
lection (MLIC), that is efficiently compressed by projecting light vectors to a
lower-dimensional space via PCA. Then, we designed a neural model defined as
a small Multi-Layer Perceptron (MLP) to decode the compressed light vectors
and extrapolate the expected intensity of a pixel given a light direction. In Sec-
tion 3.2 the neural reflectance model and data compression are illustrated in
detail. Finally, the trained model is used to dynamically relight the object by
setting the light direction to any (possibly unseen) value.

3.1 Data Acquisition

Data acquisition is performed using two smartphones and a custom fiducial
marker as shown in Figure 2 (left). The object to acquire is placed at the centre
of a marker composed by a thick black square with a white dot at one corner.
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Fig. 2. Left: Proposed RTI acquisition setup. Right: Example frames acquired by the
static and moving devices.

One device is located above the object, with the camera facing it frontally so
that it produces images as depicted in Figure 2 (top-right). This device, called
static, must not move throughout the acquisition, so we suggest to attach it to a
tripod. The second device, called moving, is manually moved around the object
with an orbiting trajectory. The flash led-light located close to the backward-
facing camera must be kept on all the time to illuminate the object from different
locations. This will allow the static device to observe how the reflectance of each
pixel changes while moving the light source.

Both the devices record a video during the acquisition. For now, let’s con-
sider those videos as just sequences of images perfectly synchronised in time. In
other words, the acquisition consists in a sequence of M images (Is0 , I

s
1 , . . . , I

s
M )

acquired from the static device paired with a sequence (Im0 , I
m
1 , . . . , I

m
M ) acquired

from the moving device at times t0, t1, . . . , tM .

After video acquisition, each image is processed to detect the fiducial marker.
For the static camera, this operation is needed to locate the 4 corners (c0, c1, c2, c3)
of the inner white square (i.e. the internal part of the marker inside the thick
black border). This region is then cropped to create a sequence of (I0, . . . , IN )
images composed by W×H pixels commonly referred as Multi-light Image Col-
lection (MLIC). Note that N can be lower than M because the fiducial marker
must be detected in both Isi and Imi to be added to the MLIC.

Each Ii is a single-channel grayscale image containing only the luminance
of the original Isi image. We decided to model only the reflectance intensity
(and not the wavelength) as a function of the light’s angle of incidence for two
reasons. First, we cannot change the colour of the light source and, second, it
is uncommon to have iridescent materials where the incindent angle affects the
reflectance spectrum [11]. Therefore, we convert all the images to the YUV colour
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space to store only the Y channel in the MLIC. To deal with the colour, we store
the pixel-wise averages Ū = 1

N

∑
N Ui and V̄ = 1

N

∑
N Vi for further processing.

The marker is also detected in the moving camera image sequence, but for a
different purpose. We assume that the flash light is so close to the camera optical
centre that can be considered almost at the same point. So, by finding the pose
of the camera (R, t) in the marker reference frame, we can estimate the location
of the light source (i.e. the moving camera optical center) with respect to the
object. This operation is simply performed by computing the Homography H

mapping c0 . . . c3 to the marker model points
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then factorising it as:

K−1H = α
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 (1)

where K is the intrinsic camera matrix, r1, r2 are the first two columns of the
rotation matrix R, and α is a non-zero unknown scale factor [10]. Since R must
be orthonormal, α can be approximated as 2/(‖r1‖ + ‖r2‖) and r3 as r1 × r2.
Since (R, t) maps points from the camera reference frame to the marker (i.e.
object) reference frame, the vector t represents the light position and L = t/‖t‖
the light direction. Since the light is not at the infinity, each object point actually
observes a slightly different light direction vector L. However, as usually done in
other RTI applications, we consider this difference negligible so that we collect
a single light direction vector for each image.

After the data acquisition process, we end up with the MLIC (I0 . . . IN ) and
(L0, . . . ,LN ) vectors together with Ū , V̄ . This is all the data we need to generate
our reflectance model and proceed with dynamic relighting. At this point, we
need to do some considerations regarding the acquisition procedure:

– Pixel reflectance data is collected only from the static camera, while the
moving camera is used just to estimate the light direction. This implies that
the final result quality is directly affected by the quality of the static camera
(i.e. resolution, noise, etc.). Therefore, we suggest to use a good smartphone
for that. Conversely, the moving device can be cheap as long as images are
sufficiently well exposed to reliably detect the marker.

– The moving camera must be calibrated a-priori to factorise H. In practice,
the calibration is not critical and can simply be inferred from the lens infor-
mation provided in the EXIF metadata. We also used this approach in all
our experiments.

– The ambient should be illuminated uniformly and constantly over time. Ide-
ally, the moving device flash light should be the only one observed by the
object. Since that is typically impractical, it is at least sufficient that the
contribution from ambient illumination is negligible with respect to the pro-
vided moving light.
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– The orbital motion should uniformly span the top hemisphere above the
object with a certain constant radius. Indeed, we only consider light direction
so changes in the reflectance due to light proximity with respect to the object
will not be properly accounted by the model.

Video Synchronisation Video recording is manually started (roughly at the
same time) in the two devices. So, it is clear that the two frame sequences are
not synchronised out of the box (i.e. the ith frame of the static device will not
be taken at the same time as the ith frame of the moving one). That will never
be the case without an external electronic triggering but we can still obtain a
reasonable synchronisation exploiting the audio signal of the two videos [37].

We first extract the two audio tracks and then compute the time offset in
seconds that maximises the Time-lagged Cross-correlation [32]. Once the offset
is known, initial frames from the video starting first are dropped to match the
two sequences. Note also that, if the framerates are different, frames must be
dropped from time to time from the fastest video to keep it in sync with the
other. In the worst case, the time skewness is 1/FPS where FPS is the framerate
of the slowest video. Nevertheless, since the moving device is orbited around
the object very slowly, such time skewness will have a negligible effect in the
estimation of (L0, . . . ,LN ).

Fiducial Marker Detection Detecting the four internal corners of the pro-
posed fiducial marker can be simply performed with classical image processing.
We start with Otsu’s image thresholding [20] followed by hierarchical closed con-
tour extraction [34]. Each contour is then simplified with the Ramer-Douglas-
Peucker algorithm and filtered out if resulting in a number of points different
than 4. All the black-to-white 4-sides polygons contained into a white-to-black
4-side polygon are good candidates for a marker. So, we check the midpoint of
each closest corresponding vertex pairs searching for the white dot. If exactly
one white dot is found among corresponding pairs, than the four vertexes of the
internal polygon can be arranged in clockwise order starting from the one closest
to the dot. This results in the four corners c0, . . . , c3.

Since we expect to see exactly one instance of the marker in every frame, this
simple approach is sufficient in practice. We decided not use popular alternative
markers (see for instance [7]) because they typically reserve the internal payload
area to encode the marker id. Of course, any method will work as long as it
results in a reasonably accurate localisation of the camera while providing free
space to place the object under study.

3.2 The Reflectance Model

To perform interactive relighting, we need first to model how the reflectance
changes when varying the light direction. Our goal is to define a function:

f
(
p,~l
)
→ (y, u, v) (2)
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producing the intensity y and colour u, v (in the YUV space) of a pixel p =

(x, y) ∈ N×N when illuminated from a light source with direction ~l = (lu, lv)1.

Once the model is known, relighting can be done by choosing a light ~l and
evaluating f for every pixel p of the target image.

The data acquisition process described before produces a sampling of f for
some discrete values of p and ~l. This sampling is dense on the pixels, since we
acquire an entire image for every light, but typically sparse in in the amount of
the observed light directions, especially if using a light dome where this number
is limited to a few dozens. In our case, the sampling of ~l is a lot denser since we
acquire an entire video composed by thousands of frames. However, directions
are highly correlated in space as we follow a continuous circular trajectory (See
Figure 3, Left).

The challenge is to: (i) provide a realistic approximation of f for previously
unseen light directions while (ii) using a very compact representation so that
it can be easily transferred, stored and evaluated even on a mobile phone. The
two problems are related because the selection of what family of functions to
use for f affects how many parameters are needed to describe the chosen one.
For example, in [14] each pixel is independently modelled as a 6-coefficients
biquadratic function of the light direction, requiring the storage of 6×M×N
values.

Inspired by NeuralRTI proposed by Dulecha et. al. [5], we also represent f as
a Multi-Layer Perceptron trained from the data acquired with the smartphones.
However, we have two substantial differences with respect to their approach.
First, we avoid the auto-encoder architecture for data compression. Since we do
not use a light dome, the number of light samples changes in each acquisition
and is at least an order of magnitude greater. NeuralRTI would not be feasible
in our case, as it results in a network taking in input vectors of thousands of ele-
ments. Also, the network architecture itself depends on N (variable in our case)
producing a different layout for each acquired object. Instead, we compress such
vectors with classical PCA to feed the MLP acting as a decoder. Interestingly,
this tend to produce better results not only on our data but also on images ac-
quired with a classical light dome. Second, the light vector ~l is not concatenated
as-is to the network input but projected to a higher-dimensional Fourier space
with random frequencies as discussed in [35]. This has a positive effect on the
ability of the network to reconstruct the correct pixel intensity.

3.3 Neural Model

Our proposed neural model Z(kp,~l) → y works independently for each pixel
(i.e. it does not consider the spatial relationship among those) and recovers the
intensity information y without the colour. It takes as input a compressed light
vector kp = (k0, k1, . . . , kB) ∈ RB of any pixel p and a light direction ~l to produce
the intensity for pixel p.

1 lu and lv range between [−1 . . . 1] respectively as they are the first two components
of a (unitary-norm) 3D light direction vector pointing toward the light source.
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Fig. 3. Left: 2D plot of the first two components of the light direction vectors
(L0 . . .Ln). Each point is associated to an image in the MLIC. Note the circular tra-
jectory. Right: Network architecture composed by 5 fully-connected layers with ELU
activation.

The model Z is composed by an initial (non-trainable) projection of the
light vector followed by a MLP arranged in 5 layers consisting in 16 neurons
each, all using the ELU activation function except for the output realised with
a single neuron with linear activation (Fig. 3, right). The network input I is a
(B + 2H)-dimensional vector created by concatenating the B values of kp with

the projection of ~l to an H-dimensional Fourier space with random frequencies.
Specifically, let B be a H×2 matrix where each element is sampled from a

Gaussian distribution N (0, σ2). This matrix is generated once for each acquired
object, it is not trained, and is common to all the pixels. The network input is
then obtained as:

I =
(
k0, . . . kB , cos(s0), . . . cos(sH), sin(s0) . . . sin(sH)

)
(3)

where
(
s0 . . . sH

)T
= B

(
lu
lv

)
. (4)

Once Z is trained, it can be used for relighting as follows:

f
(
p,~l) =

(
Z(kp,~l), Ū(p), V̄ (p)

)
. (5)

Creating the compressed light vectors kp The size of the neural model Z
depends by the 2H values of the matrix B, its internal weights, and the light
vectors kp (one for each pixel, for a total of W ·H·B values). It is obvious that
most of the storage is spent for the light vectors since the number of image pixels
is far greater than the other variables. Considering that we acquire roughly 1
minute of video at 30 FPS, our MLIC is composed by ≈2000 images cropped to a
size of 400×400 pixels for a total of 320 MB. So, using all the acquired data as-is
to define f jeopardises the idea of doing interactive relighting directly on a mobile
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app or in a web browser. Since we assume that all the pixels observe the same
light vector, the acquired MLIC (I0 . . . IN ) can be represented as a W×H×N
N -channel image in which, for each pixel, a vector of N values (corresponding
to light directions L0 . . .LN ) have been observed. In [5] the authors use an auto-
encoder to produce an intermediate encoded representation of the observed light
vectors of each pixel, and then just the decoder for relighting. This works well
for the light dome in which N is typically less than 50. We tried their approach
with N = 1500 lights and realised that the network struggles to converge to an
effective encoded representation.

We propose a more classical approach in which the encoding of the light
vectors is not based on Deep Learning. Let Kp be the N -dimensional light vector
of the pixel p. We propose to use Principal Component Analysis on all the
light vectors acquired Kp0

. . .KpW×H
to find a lower-dimensional space of B

orthogonal bases. Then, the encoded kp is obtained by projecting Kp into that
space. In the experimental section we show how the number of bases B can be
very small compared to N while still producing high-quality results.

Network training and implementation details The network model Z
is trained by associating each input I with the expected reflectance intensity.
Specifically, we combined the encoded vector kp of each pixel, with all the pos-
sible light directions L0 . . .LN to produce the input Ix,y,n ( 0≤y<H, 0≤x<W ,
0≤n<N). The output associated to Ix,y,n is simply the value of In(x, y), that is
the intensity value observed for light n at pixel (x, y). This results in a total of
W ·H·N data samples to be used for training. Note that, regardless the amount
of pixels (i.e. the image resolution) and light directions involved (i.e. number of
frames in the video), the network architecture remains unchanged. Therefore, it
is easy to compute how much storage is needed for the model, depending only
on the number of PCA bases B and image resolution. Considering the acquired
data size discussed before, and supposing to use B = 8 bases and H = 10 fre-
quencies, we have to store 400×400×8 compressed light vectors (≈5 MB with
single precision), and 1252 values for network weights and B.

Finally, we adopted a classical Mean Absolute Error (MAE) loss function:

MAE =
1

W ·H·N
∑

x,y,n

|Z(kp=(x,y),~ln)− In(x, y)|. (6)

4 Experimental Results

We started by analysing the behaviour of our proposed MLP model with re-
spect to two relevant parameters, namely the number of PCA bases B and the
parameter σ used to sample the frequencies of the light projection matrix B.
Then, we quantitatively and qualitatively validated our method with respect to
fully-synthetic data as well as with real-world smartphones acquisition.

In all our tests we fixed H = 10 so that the matrix B has size 10× 2 always
projecting the input light vector ~l into a 20-dimensional space. Note that the
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Fig. 4. First row: SSIM and PSNR values increasing the number of PCA bases for data
compression. Second row: SSIM and PSNR values increasing the sigma.

values of the matrix B are randomly sampled before starting the training and
never optimised. During the training we used Adam optimiser with a learning
rate of 10−3 for the first 20 epochs and then reduced to 10−4 for another 20.

Real-world datasets For the real data we used some coins as test objects,
acquired using an Apple iPhone 11 acting as static device and a Samsung Galaxy
A40 as the moving one. Videos have been processed as described in Section 3.1
resulting in a MLIC with roughly 2K images for each coin. Then, for each MLIC
we randomly selected 25 lights for the test set and discarded the closest light
directions (within a radius) so that the learning process is not trained on similar
conditions. An example of acquired light directions for the dataset Coin1 is
shown in Figure 3 (left), where the blue dots are the ∼1920 lights used for
training and the red crosses the ones extracted for test.

4.1 Parameter Study

We first studied the effect of the number B (i.e. PCA bases) on the final relight-
ing quality. Therefore, in the first test we projected the acquired MLIC data into
an increasing number of PCA bases, and proceeded with the training process
as described. The plots in Figure 4 (first row) show the resulting PSNR (Peak
Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) for the test set
while raising the number of bases B, from 2 to 32. Note that such results have
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Fig. 5. Average SSIM and PSNR on test set increasing the number of lights used during
training procedure for our method.

been computed by taking the average among all the acquired datasets and re-
peating the training 10 times due to the random nature of the process. The error
bars denote the standard error. We can notice that with B = 2 the relighting
quality is quite low, and increasing the number of bases from 3 to 8 corresponds
to an increasing reconstruction quality. Both PSNR and SSIM value stabilise
for B > 8, meaning that a higher number of bases would not further improve
the output quality. In all our tests we observed that a PCA projection with 8
bases offers a good compression for our smartphone-acquired data. Moreover,
we tested the same 8-bases compression for classical RTI datasets where a dome
with equispaced lights is used: interestingly, results are numerically and quali-
tatively better with respect to the autoencoder compression technique as shown
in the first row of Table 1.

The next experiment results are shown in the second row of Figure 4: we
analysed the relighting quality against the value of σ (on x-axis) used to generate
the random values in the matrix B. The test was repeated 50 times for each
different dataset. We can observe that values around σ = 0.3 offer good results
in terms of average PSNR and SSIM on the test set, exhibiting also a smaller
standard error. As stated in[35], σ is a free parameter that has to be tuned for a
particular problem. However, our light directions have unitary norm so, once the
optimal σ is defined, it will remain the same regardless the object to reconstruct.
Therefore, we used 0.3 in all our real-world tests.

We also tested the effect of the number of acquired light directions (the
size of N) against the final reconstruction accuracy while keeping the same
network layout (Fig.5). This increases the size of the training set but not the
storage space required for the model. Both SSIM and PSNR increase with N ,
probably because the network can be trained better if a large variety of light
conditions can be used. Nevertheless, this increase is almost negligible when the
number of light samples exceeds 700−800. So, assuming an acquisition in which
a carefully planned circular motion around the object is performed, an average
video duration of 40 seconds at 25 FPS would be sufficient.
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Table 1. Relight comparison for different methods.

Polynomial RBF NeuralRTI Our

Dataset PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SynthRTI 22.7451 0.7932 22.6828 0.8353 26.3658 0.8540 26.4075 0.8553

Coin1 24.0562 0.8643 25.6791 0.9152 25.6846 0.8940 27.0019 0.9118

Coin2 25.8627 0.8798 26.8939 0.9197 26.9147 0.8937 28.0361 0.9105

Coin3 24.2319 0.8642 25.4360 0.9009 25.0304 0.8808 25.7479 0.8975

Coin4 27.6388 0.9155 28.1845 0.9369 27.8950 0.9176 29.6954 0.9398

4.2 Comparisons

We compared our relighting approach with two classical light interpolation meth-
ods, namely polynomial texture maps [14] (from now on, identified as polyno-
mial) and RBF. Moreover, we tested against the already discussed learning-
based method NeuralRTI [5]. We recall that NeuralRTI architecture changes
with the number of input lights (the length of the encoder input is 3N because
the network works in the RGB space), so we trained it on our acquired data by
randomly selecting 100 lights among the training set, since the training process
becomes unfeasible for highest input dimensions.

In addition to our data acquired with smartphones, we also validated the
method on classical RTI configurations represented by the synthetic dataset pre-
sented in [5]. Such data is generated simulating a dome with 69 lights, divided
into separate train and test sets of 49 and 20 lights respectively. In all compar-
isons we set B = 8 (PCA bases), σ = 0.3 and H = 10. Table 1 shows the compar-
ison results. The values in the first row represent the average SSIM and PSNR
for the whole SynthRTI dataset. To better evaluate our method comprising not
only the reflectance model but also the smartphone-based data acquisition, we
show the results for all the objects of the real-world dataset acquired as pro-
posed. Overall, our method exhibits the higher PSNR value, while in some cases
relighted data interpolated with RBF give a slightly higher SSIM, but with a
significantly smaller PSNR with respect to our method. Note however that RBF
is significantly slower in the relighting phase. Also, our values are slightly better
with respect to NeuralRTI for the synthetic dataset, where the training lights
are sampled uniformly on a dome setup. This indicates that our proposed PCA
compression and decoder network still improves the encoder-decoder architec-
ture of [5]. Note that we did not tune any parameter for our results, concluding
that the number of PCA bases does not depend on the specific dataset.

Qualitative examples for our acquired dataset are shown in Figure 6, where
we display the relighting of three coins with two different test lights (last column
shows the ground truth, GT). We can notice that our method is able to recover
the object reflectance with high accuracy, especially for the shadows projected
near the coins, while the other methods tend to generate light blooms or blurry
shadows. Moreover, we notice that NeuralRTI slightly alters the output tint
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Polynomial RBF NeuralRTI Our GT

Fig. 6. Relighting comparison of real-world data acquired with two smartphones. The
last column (ground truth, GT) shows the actual pictures from the test set.
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Polynomial RBF NeuralRTI Our GT

Fig. 7. Qualitative comparison on synthetic data generated with a dome configuration.

with respect to the original: this can be seen in particular in the first two rows.
Probably, directly modelling each pixel intensity and colour is more difficult to
handle for the network than just the intensity. Using the average UV-value is
easier and produces more stable results for non-iridescent objects. Finally, in
Figure 7 we show a couple of outputs for the synthetic dataset. Our results are
quite similar with respect to NeuralRTI but also in this case our shadow areas
are sharper and the images exhibit a higher contrast.

5 Conclusions

In this paper we proposed a low-cost technique to perform image relighting on
the go using two smartphones for data acquisition. A practical video process-
ing pipeline extracts the MLIC that is compressed and used to train a neural
relighting model. Extensive tests in both synthetic and real-world settings show
that our network effectively hallucinates images from unseen light directions
with high quality. The presented setup can be easily operated directly on the
field, with no need of expensive and specialised hardware, allowing researchers
to carry out part of their work in an effective and fast way.
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