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Abstract. Recent studies revealed that convolutional neural networks 

do not generalize well to small image transformations, e.g. rotations by 

a few degrees or translations of a few pixels. To improve the robustness 

to such transformations, we propose to introduce data augmentation at 

intermediate layers of the neural architecture, in addition to the com- 

mon data augmentation applied on the input images. By introducing 

small perturbations to activation maps (features) at various levels, we 

develop the capacity of the neural network to cope with such transfor- 

mations. We conduct experiments on three image classification bench- 

marks (Tiny ImageNet, Caltech-256 and Food-101), considering two dif- 

ferent convolutional architectures (ResNet-18 and DenseNet-121). When 

compared with two state-of-the-art stabilization methods, the empirical 

results show that our approach consistently attains the best trade-off 

between accuracy and mean flip rate. 

Keywords: deep learning, data augmentation, convolutional neural net- 

works, robustness to affine transformations. 

1 Introduction 

A series of recent studies [1,3,5,14,15,18,21,22] showed that convolutional neural 

networks (CNNs) are not properly equipped to deal with small image perturba- 

tions. Indeed, it appears that a subtle affine transformation, e.g. a rotation by a 

few degrees or a translation of a few pixels, can alter the model’s decision towards 

making a wrong prediction. The problem is illustrated by the example shown in 

Figure 1, where a deep neural model is no longer able to predict the correct class 

upon downscaling the input image by a factor of 0 . 9 . To increase the robustness 

to such small perturbations, researchers [1,3,21,22] proposed various approaches 

ranging from architectural changes [3,21] and training strategy updates [22] to 

input data augmentations [13,19]. However, to the best of our knowledge, none 

of the previous works tried to apply augmentations at the intermediate layers of
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original image image scaled by 0.9

hummingbird (0.78) grasshopper (0.22)

 

Fig. 1. An image of a humming bird from Caltech-256 that is wrongly classified as 

grasshopper (with a probability of 0 . 22 ) by a ResNet-18 model, after downscaling it by 

a factor of 0 . 9 . Best viewed in color. 

the neural network. We conjecture that introducing feature-level augmentations 

improves the robustness of deep CNNs to affine transformations. To this end, we 

present an augmentation technique that randomly selects a convolutional layer 

at each mini-batch and applies independent affine transformations (translation, 

rotation, scaling) on each activation map from the selected layer. 

To demonstrate the practical utility of our approach, we conduct experiments 

with ResNet-18 [7] and DenseNet-121 [9] on three benchmark data sets, namely 

Tiny ImageNet [17], Caltech-256 [6] and Food-101 [2]. Importantly, we show that 

feature-level augmentation helps even when the models are trained with standard 

data augmentation. When compared with two state-of-the-art methods [3,21], 

the empirical results show that our approach attains the best trade-off between 

accuracy and mean flip rate. To the best of our knowledge, this is the first time 

such a comparison is made. 

Contribution. In summary, our contribution is twofold: 

– We introduce a novel method based on feature-level augmentation to increase 

the robustness of deep neural networks to affine transformations. 

– We conduct an empirical evaluation study to compare state-of-the-art meth- 

ods addressing the robustness problem among themselves as well as with our 

approach. 

2 Related work 

In literature, there are several approaches towards improving the robustness of 

deep neural networks to image perturbations. A popular and natural strategy, 

that proved to work sufficiently well, is to train the network using augmented 

images, as suggested in [1,13,19]. The intuition behind this approach is to train 

the model on a wider domain, which can become more similar to the test data. 

The experiments conducted by the authors suggest that the robustness and 

performance improve on all scenarios. Due to its popularity, we apply image
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augmentation to the baseline models employed in our experiments. An extended 

solution of using augmented images is mentioned in [22], where the authors 

employed an additional loss function in order to stabilize the output features of 

the network in such a manner that a strongly perturbed image should have a 

similar outcome to the original one. Data augmentation methods are considered 

to be constrained by the photographers’ bias [1]. Thus, the model may only learn 

to generalize to images from a certain (biased) distribution. 

One of the recent architectural changes leading to improvements in the sta- 

bility of CNNs was introduced by Zhang [21]. The observations of the author 

centered on the fact that modern CNNs are not shift invariant. Thus, small lin- 

ear changes applied on the input image may have a negative impact on the final 

result. The source of this issue is considered to be represented by the down- 

sampling process that usually occurs inside neural networks through pooling 

operations, which breaks the shift-equivariance. A straightforward solution to 

solve this issue is to avoid subsampling [1], but this comes with a great com- 

putational burden. Therefore, Zhang [21] provides adjustments to conventional 

operations by including a blur kernel in order to reduce the judder caused by 

downsampling. We conduct experiments showing that this method can deterio- 

rate the quality of the features and negatively impact the final accuracy of the 

model, despite improving its stability. 

Another new architectural design was proposed in [3], where the authors 

addressed the downsampling issue by proposing a pooling operation that con- 

siders all possible grids and selects the component with the highest norm. Their 

approach was benchmarked against circular shifts of the input, which do not nat- 

urally occur in practical scenarios. Hence, we extend their evaluation to generic 

(non-circular) affine transformations and compare their approach to our own 

procedure, showcasing the superiority of our method. 

Although researchers explored multiple methods to improve the stability of 

neural models to image perturbations, it seems that there is no technique that 

can guarantee a never-failing solution. Hence, we consider that addressing the 

stability problem with better solutions is of great interest to the computer vision 

community. To the best of our knowledge, we are the first to propose feature-level 

augmentation as an enhancement to the stability of neural networks. 

3 Method 

The proposed method consists of extending the conventional input augmentation 

procedure by applying it at the feature level. In all our experiments, we include 

the conventional input augmentation, which is based on randomly shifting the 

images on both axes with values between − 15 and +15 pixels, rotating them 

by − 15 to +15 degrees, or rescaling them with a factor between 0 . 4 and 1 . 15 , 

following [8]. On top of this, we introduce feature-level augmentation (FLA). 

We underline that CNNs are usually composed of multiple blocks interca- 

lated with downscaling (pooling) operations. Starting from this observation, we 

capture the features between two randomly selected consecutive blocks, augment
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Fig. 2. Our feature-level augmentation module is inserted at different levels in the neu- 

ral architecture. The proposed feature-level augmentation module individually applies 

the translation, rotation and scaling operations on each activation (feature) map, with 

a given probability. Best viewed in color. 

the activation maps provided by the first selected block, and train the network 

from the second block to the output using an augmented version of the activation 

maps, as shown in Figure 2. 

The augmentation that we propose to employ on the features is based on 

shifting, rotating and rescaling the activation maps. Due to the fact that one 

element of a feature map, somewhere deep in the network, is actually the result 

of processing multiple pixels from the corresponding location in the input, our 

augmentation procedure should take into account the depth where it is applied, 

so that the receptive field is not severely affected. Thus, the maximum translation 

value is scaled accordingly, starting from 15 pixels near the input, gradually going 

down to 1 pixel for the high-level layers. For rotations, we consider a random 

value between − 15 and +15 degrees, while for the scaling operation, we employ 

a random resize factor between 0 . 85 and 1 . 15 . In order to avoid noisy features at 

the beginning, we activate our augmentation procedure only after two training 

epochs. Afterwards, we apply feature-level augmentation with a probability of 0 . 5 

on each mini-batch. To increase variety, a feature map has an equal probability of 

being transformed with any FLA operation. Hence, combining FLA operations 

is possible. 

4 Experiments 

4.1 Data Sets 

Tiny ImageNet. The Tiny ImageNet data set is a subset of ImageNet [17] 

containing 120 , 000 natural images belonging to 200 classes. The resolution of 

each image is 64 × 64 pixels. The training set contains 100 , 000 images, while the 

validation and test sets contain 10 , 000 samples each.
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Caltech-256. The Caltech-256 [6] data set contains 30 , 607 images of 256 cat- 

egories. For each object category, we divide the images into 40 for training, 20 

for validation, leaving the remainder (at least 20 samples from each category) 

for the testing stage. 

Food-101. The Food-101 [2] data set is formed of 101 , 000 images of 101 food 

types. The original split contains 750 training images and 250 test images for 

each category. We keep 250 training samples per category to validate the models, 

leaving us with 500 samples per category for training. 

4.2 Evaluation Setup 

Evaluation measures. For the evaluation, we first employ the accuracy be- 

tween the ground-truth labels and the predictions of the neural models. Follow- 

ing [21], we also use the mean flip rate (mFR) to measure the stability of the 

models to affine transformations (scaling, rotation and translation). The mFR is 

measured by how often the predicted label changes, on average, in images with 

consecutive perturbations. We run each neural model for 5 times, reporting the 

average scores and the corresponding standard deviations. 

Following [8], we create the perturbed version of each test set. We perturb the 

original test data with rotation, scaling and translation operations. We perform 

each operation individually on each sample. We rotate the images with angles 

starting from − 15 to +15 degrees, using a step of 1 degree. We translate the 

images by up to 20 pixels in each direction, using a step of 1 pixel. We scale the 

samples by a scaling factor between 0 . 4 and 1 . 15 , using a step of 0 . 025 . 

In order to quantify the trade-off between the accuracy level of a model and 

its stability to affine transformations, we define the trade-off T as:

 \label {eq_total_loss} T = \mbox {accuracy} - \mbox {average}_{op}(\mbox {mFR}_{op}), 

   

 

(1) 

where op ∈ [ rotate , scale , translate ] . A higher value for T represents a better 

trade-off. 

Baselines. As neural models, we choose two very widely used architectures, 

namely ResNet-18 [7] and DenseNet-121 [9]. We train the models using common 

augmentations applied on the input images, such as random shift, scaling and 

rotation. This represents our first baseline. In addition, we consider two state-of- 

the-art methods as baselines for improving the stability of these models, namely 

anti-aliasing (BlurPool) [21] and adaptive polyphase sampling (APS) [3]. For 

the BlurPool [21] method, we used the Triangle-3 filter, which obtains the best 

trade-off between accuracy and stability to affine transformations. We apply the 

same input augmentations for all baseline models, as well as for our own models 

based on feature-level augmentation (FLA).
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Table 1. Accuracy scores and mFR values (in % ) for translation, rotation and scaling 

operations on the Tiny ImageNet [17], Caltech-256 [6] and Food-101 [2] data sets. Re- 

ported results represent the average and the standard deviation over 5 runs. ↑ indicates 

higher values are better. ↓ indicates lower values are better. Best scores on each data 

set are highlighted in bold.

 

Data

 

Model

 

Method

 

Accuracy ↑

 

mFR ↓

 

Trade-Off ↑

 

Set

 

Translate

 

Rotate

 

Scale

 

T
in

y 
Im

ag
eN

et

 

baseline

 

71 . 50 ± 0 . 20

 

12 . 94 ± 0 . 14

 

15 . 71 ± 0 . 40

 

22 . 29 ± 0 . 21

 

54 . 52

 

ResNet

 

BP-3 [21]

 

71 . 16 ± 0 . 26

 

10 . 61 ± 0 . 33

 

14 . 98 ± 0 . 20

 

21 . 28 ± 0 . 25

 

55 . 53

 

18

 

APS [3]

 

70 . 30 ± 0 . 22

 

15 . 32 ± 0 . 38

 

22 . 91 ± 0 . 23

 

27 . 86 ± 0 . 35

 

48 . 27

 

FLA (ours)

 

71 . 76 ± 0 . 16

 

12 . 00 ± 0 . 14

 

14 . 42 ± 0 . 15

 

21 . 11 ± 0 . 15

 

55 . 91

 

baseline

 

76 . 50 ± 0 . 37

 

9 . 11 ± 0 . 08

 

14 . 19 ± 0 . 33

 

18 . 62 ± 0 . 19

 

62 . 52

 

DenseNet

 

BP-3 [21]

 

76 . 57 ± 0 . 24

 

7 . 70 ± 0 . 28

 

13 . 07 ± 0 . 39

 

17 . 68 ± 0 . 30

 

63 . 75

 

121

 

APS [3]

 

76 . 00 ± 0 . 21

 

10 . 03 ± 0 . 09

 

17 . 77 ± 1 . 01

 

21 . 29 ± 0 . 26

 

59 . 63

 

FLA (ours)

 

76 . 60 ± 0 . 44

 

8 . 54 ± 0 . 18

 

12 . 59 ± 0 . 20

 

17 . 27 ± 0 . 25

 

63 . 80

 

C
al

te
ch

-2
56

 

baseline

 

78 . 96 ± 0 . 30

 

5 . 82 ± 0 . 15

 

6 . 16 ± 0 . 13

 

10 . 07 ± 0 . 09

 

71 . 61

 

ResNet

 

BP-3 [21]

 

76 . 92 ± 0 . 26

 

4 . 61 ± 0 . 14

 

4 . 83 ± 0 . 16

 

8 . 40 ± 0 . 19

 

70 . 97

 

18

 

APS [3]

 

78 . 12 ± 0 . 40

 

8 . 79 ± 0 . 15

 

9 . 86 ± 0 . 11

 

13 . 87 ± 0 . 10

 

67 . 28

 

FLA (ours)

 

78 . 91 ± 0 . 06

 

4 . 99 ± 0 . 12

 

5 . 45 ± 0 . 07

 

9 . 24 ± 0 . 05

 

72 . 35

 

baseline

 

83 . 98 ± 0 . 14

 

4 . 00 ± 0 . 13

 

4 . 28 ± 0 . 04

 

7 . 11 ± 0 . 03

 

78 . 85

 

DenseNet

 

BP-3 [21]

 

82 . 91 ± 0 . 32

 

3 . 26 ± 0 . 32

 

3 . 52 ± 0 . 07

 

6 . 17 ± 0 . 05

 

78 . 59

 

121

 

APS [3]

 

83 . 53 ± 0 . 11

 

4 . 57 ± 0 . 08

 

5 . 57 ± 0 . 05

 

8 . 63 ± 0 . 09

 

77 . 27

 

FLA (ours)

 

83 . 54 ± 0 . 27

 

3 . 32 ± 0 . 11

 

3 . 67 ± 0 . 08

 

6 . 31 ± 0 . 13

 

79 . 10

 

F
oo

d-
10

1

 

baseline

 

76 . 29 ± 0 . 41

 

6 . 41 ± 0 . 03

 

7 . 36 ± 0 . 06

 

12 . 39 ± 0 . 05

 

67 . 57

 

ResNet

 

BP-3 [21]

 

74 . 38 ± 0 . 24

 

4 . 77 ± 0 . 11

 

5 . 71 ± 0 . 09

 

9 . 90 ± 0 . 09

 

67 . 58

 

18

 

APS [3]

 

76 . 03 ± 0 . 20

 

8 . 77 ± 0 . 21

 

11 . 41 ± 0 . 21

 

16 . 29 ± 0 . 08

 

63 . 87

 

FLA (ours)

 

76 . 28 ± 0 . 33

 

5 . 69 ± 0 . 02

 

6 . 63 ± 0 . 02

 

11 . 41 ± 0 . 04

 

68.37

 

baseline

 

83 . 26 ± 0 . 20

 

4 . 08 ± 0 . 07

 

4 . 85 ± 0 . 08

 

8 . 31 ± 0 . 08

 

77 . 51

 

DenseNet

 

BP-3 [21]

 

81 . 94 ± 0 . 26

 

3 . 26 ± 0 . 05

 

4 . 00 ± 0 . 03

 

7 . 05 ± 0 . 09

 

77 . 17

 

121

 

APS [3]

 

82 . 77 ± 0 . 16

 

4 . 69 ± 0 . 04

 

6 . 19 ± 0 . 08

 

10 . 20 ± 0 . 06

 

75 . 74

 

FLA (ours)

 

82 . 86 ± 0 . 20

 

3 . 46 ± 0 . 07

 

4 . 21 ± 0 . 10

 

7 . 58 ± 0 . 09

 

77 . 78

 

Hyperparameter tuning. We train each model for a maximum of 100 epochs, 

halting the training when the value of the validation loss does not decrease for 

10 consecutive epochs. We set the batch size to 16 samples and the learning rate 

to 5 · 10− 4. We optimize the models using Adam [11], keeping the default values 

for the parameters of Adam. 

4.3 Results 

We present the results on the Tiny ImageNet [17], Caltech-256 [6] and Food- 

101 [2] data sets in Table 1. As mentioned earlier, we compare our approach 

with a baseline based on standard data augmentation as well as two state-of- 

the-art methods, namely APS [3] and BlurPool [21]. 

First, we observe that the APS [3] method does not surpass the accuracy level 

obtained by the baseline, regardless of the architecture or the data set. It also 

does not increase the models’ stability to affine transformations, even obtaining
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Fig. 3. The number of times the labels predicted by a ResNet-18 model having aug- 

mented images as input are different from the labels predicted for the original images 

(translated with 0 pixels) from Caltech-256. The images are translated from − 20 pixels 

to +20 pixels. The ResNet-18 model is trained using various methods addressing the 

stability problem: input data augmentation (baseline), APS [3], BlurPool [21] and FLA 

(ours). Best viewed in color. 

worse results than the baseline in terms of mFR. The results of APS demonstrate 

that the 100% stability to circular shift claimed by Chaman et al. [3] does not 

increase the network’s stability to generic affine transformations. 

The BlurPool [21] method increases the models’ stability to affine transfor- 

mations, performing better than the baseline in terms of mFR. However, it also 

decreases the accuracy of the model in most cases. The only case when BlurPool 

increases the accuracy level is on Tiny ImageNet for the DenseNet-121 archi- 

tecture (the baseline reaches an accuracy of 76 . 50% , while BlurPool reaches a 

higher accuracy of 76 . 57% ). With one exception (the Tiny ImageNet data set), 

the models trained with the BlurPool method obtain lower trade-off indices com- 

pared to the baseline models. 

Different from APS [3] and BlurPool [21], our method consistently attains 

the best trade-off between accuracy and stability to affine transformations across 

all models and data sets, as shown in Table 1. On Tiny ImageNet, we obtain 

the highest accuracy score and the lowest mFR for rotation and scaling, re- 

gardless of the network architecture. On Caltech-256, our method obtains the 

closest accuracy scores to the baselines, while also increasing the models’ sta- 

bility in terms of all mFR scores. Since our method increases the stability of 

ResNet-18 during multiple runs on Caltech-256, it seems to have an interesting 

effect on the standard deviation of the reported accuracy, reducing it from 0 . 30 

to 0 . 06 . On the Food-101 benchmark, our approach applied on the ResNet-18 

architecture attains an accuracy level on par with the baseline ( 76 . 28% ± 0 . 33 

vs. 76 . 29% ± 0 . 41 ), but the stability of our approach to affine transformations is 

significantly higher compared to the stability of the baseline ( 5 . 69% vs. 6 . 41% ,
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Fig. 4. Images perturbed with various translations with ground-truth and predicted 

labels (by the baseline, BlurPool, APS and FLA methods). Best viewed in color. 

6 . 63% vs. 7 . 36% , 11 . 41% vs. 12 . 39% in terms of the mFR for the translation, 

rotation and scaling operations, respectively). 

In Figure 3, we illustrate how many times the labels predicted by a ResNet-18 

model having translated images as input are different from the labels predicted 

for the original images (translated with 0 pixels). We observe that our method 

has a significantly smaller number of instabilities (different predictions) than the 

baseline and APS [3] methods, while the BlurPool [21] method attains similar 

results to our method. We also observe that the number of label differences 

increases with the magnitude of the translation operation for all methods, but 

the pace seems comparatively slower for our method. 

In Figure 4, we show a couple of images from Caltech-256 that are misclas- 

sified by the baseline. We observe that BlurPool and APS induce correct labels 

for two out of three samples, while FLA is able to correct all labels. 

5 Conclusion 

In this paper, we have proposed a novel method to address the stability of CNNs 

against affine perturbations applied on the input images. To improve stability, 

our method relies on feature-level augmentation. In addition, we are the first who 

have conducted comparative experiments to assess the performance of state-of- 

the-art methods [3,21] addressing the stability problem. 

Although there is a recent trend towards focusing on vision transformers 

[4,10,16,20], our study involves only convolutional architectures. However, the 

recent work of Liu et al. [12] shows that, upon making proper adjustments, 

CNNs can obtain comparable results to vision transformers. We thus believe 

that research related to CNN architectures, such as our own, is still valuable to 

the computer vision community. 

In future work, we aim to study the effect of applying our approach at in- 

ference time. This might further improve the stability of neural models, but the
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stability gains have to be put in balance with the inevitable slowdown in terms of 

computational time. At the moment, our technique does not affect the inference 

time at all. 
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nian Young Academy, which is funded by Stiftung Mercator and the Alexander 

von Humboldt Foundation for the period 2020-2022. 
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