
Learning 3D Semantics from Pose-Noisy 2D
Images with Hierarchical Full Attention Network

Yuhang He
Department of Computer Science

University of Oxford
Oxford, UK

Email: yuhang.he@cs.ox.ac.uk

Lin Chen
Institute of Photogrammetry and

GeoInformation, Leibniz University Hannover
Hannover, Germany

Email: chen@ipi.uni-hannover.de

Junkun Xie and Long Chen
School of Computer Science and Engineering

Sun Yat-Sen University, China.
xiejk3@mail2.sysu.edu.cn

long.chen@ia.ac.cn

Abstract—We propose a novel framework to learn 3D point
cloud semantics from 2D multi-view image observations con-
taining pose error. On the one hand, directly learning from
the massive, unstructured and unordered 3D point cloud is
computationally and algorithmically more difficult than learning
from compactly-organized and context-rich 2D RGB images. On
the other hand, both LiDAR point cloud and RGB images are
captured in standard automated-driving datasets. This motivates
us to conduct a “task transfer” paradigm so that 3D semantic
segmentation benefits from aggregating 2D semantic cues, albeit
pose noises are contained in 2D image observations. Among
all difficulties, pose noise and erroneous prediction from 2D
semantic segmentation approaches are the main challenges for
the “task transfer”. To alleviate the influence of those factor, we
perceive each 3D point using multi-view images and for each
single image a patch observation is associated. Moreover, the
semantic labels of a block of neighboring 3D points are predicted
simultaneously, enabling us to exploit the point structure prior
to further improve the performance. A hierarchical full attention
network (HiFANet) is designed to sequentially aggregates patch,
bag-of-frames and inter-point semantic cues, with hierarchical
attention mechanism tailored for different level of semantic cues.
Also, each preceding attention block largely reduces the feature
size before feeding to the next attention block, making our
framework slim. Experiment results on Semantic-KITTI show
that the proposed framework outperforms existing 3D point
cloud based methods significantly, it requires much less training
data and exhibits tolerance to pose noise. The code is available
at https://github.com/yuhanghe01/HiFANet.

I. INTRODUCTION

Directly learning from 3D point cloud is difficult. Chal-
lenges derive from four main aspects: First, 3D point cloud is
massive and a typical Velodyne HDL-64E scan leads to mil-
lions of points. Processing such large data is prohibitively ex-
pensive for many algorithms and computation sources. Second,
3D point cloud is unstructured and unordered as well. It record
neither the physical 3D world texture nor object topology
information, which have often been used as important priors
by image based environment perception methods [28, 35, 15].
Third, data imbalance issue. Due to the 3D physical world
layout that particular categories conquer most of the space,
captured 3D point cloud is often dominated by classes such as
road, building and sidewalk. Other categories (i.e. traffic sign,
poles, pedestrian) with minor point cloud presence but vital
importance for self-driving driving scenario understanding
and high-quality map construction are often overwhelmed by

dominating classes. Lastly, capturing 3D point cloud is a
dynamic process, resulting in inconsistent and nonuniform data
sampling. Distant objects are much more sparsely sampled
than close objects.

The aforementioned difficulties largely restricted 3D point
cloud segmentation progress. 3D point cloud processing with
deep neural network [33, 34, 18, 45, 22] has thus emerged
much later than counterpart task in 2D images [7, 11, 35, 27,
9, 15]. Meanwhile, most self-driving data collection platforms
collect 3D point cloud and RGB images simultaneously, with
the LiDAR scanner and camera being pre-calibrated and
synchronized to perceive the scene. Therefore, we are naturally
motivated to transfer 3D point cloud segmentation to its 2D
image based counterpart (we call “task transfer”) so that the
segmentation of point cloud can largely benefit from various
matured 2D image semantic segmentation networks. Specif-
ically, we exploit features arising from 2D image semantic
segmentation result to predict 3D point cloud semantics.

The feasibility of such “task transfer” basically lies in the
fact that, given the LiDAR-Camera pose, we can project a 3D
point to the 2D image plane to get its 2D pixel correspondence.
However, such seemly-fascinating “task transfer” comes with
a price: In real-scenario, LiDAR-Camera pose is often noisy
so accurate 3D-2D correspondences are non-guaranteed. In
addition, view-angle change easily results in distorted image
observation. Moreover, 2D semantic segmentation method
may also give erroneous predictions.

To tackle the aforementioned challenges, we first propose
to perceive each 3D point from multi-view images so that
bag-of-frame observations for each single 3D point are ob-
tained. Multi-view image observation reduces the impact of
the unfavoured view-angle as it introduces extra semantic cues.
Moreover, instead of looking into single-pixel of an image,
we focus on a small patch-area around the pixel. The patch
observation strategy mitigates 3D-2D correspondence error led
by pose noise and further enables neural network to learn pose
noise tolerant representation in a data-driven way. Moreover,
we process a local group of spatially or temporally close 3D
points at the same time, so that we can exploit 3D points struc-
ture prior (i.e. two points’ spatial location). Actually, the local
3D point group and the corresponding 2D observation can be
treated as seq2seq learning problem [37], where one sequence
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is 2D image and the other is 3D point cloud. To accommodate
these different data representation properties, we propose a
hierarchical fully attention network (HiFANet) to sequentially
and hierarchically aggregate the patch observation, bag-of-
frame observation and inter-point structural prior to infer
the 3D semantics. Such hierarchical attention blocks design
enables the neural network to learn to efficiently aggregate
semantics at different levels. Moreover, the preceding attention
block naturally reduces the feature representation size before
feeding it to the next attention block, so the whole framework
is slim by design.

In sum, our contribution is three fold: first, we propose
to transfer 3D point semantic segmentation problem to its
counterpart in 2D images. Second, to counteract the pose noise
impact, we propose to associate each single 3D point with
multi-view patch observation so that the neural network can
learn to tolerate pose inaccuracy. Third, we formulate it as a
seq2seq problem so that we can best exploit the structural prior
arising from both 3D point cloud and 2D images to improve
the performance.

II. RELATED WORK

3D semantic segmentation can be divided into three main
categories: point-based, voxel-based and 2D projection based
methods [16, 43].

Point based methods compute the features from points and
can be categorized into three sub-classes [16]: Multi Layer
Perceptron (MLP), point convolution and graph convolution
based methods. MLP based method apply MLP directly on
points to learn features, such as PointNet [33], HRNN [46],
PointNet++ [34], PointWeb [50]. In comparison, point covo-
lution based methods apply convolution on individual point.
Representative works in this group are PointwiseCNN [20],
PCNN [40], PointConv [42], RandLA-Net [19] and Polar-
Net [48]. In the third class, the points are connected with
graph structure, graph convolution is further applied to capture
more meaningful local information. Example works include
DeepGCNs [25], AGCN [44], HDGCN [26] and 3DCon-
textNet [47].

In voxel based methods, voxels divide 3D space into vol-
umetric grids, which are used as input for 3D convolutional
neural networks. The voxel used is either uniform [21, 8, 30]
or non-uniform [36, 13]. Methods in this group are restricted
by the fact that the computation burden fast grows with the
scale of scene. Consequently, the usage of those methods in
large scale becomes impractical.

In projection based methods, point cloud is projected into
synthetic but multi-view image planes and then 2D CNNs are
used by each view, finally semantic results from mutliple views
are aggregated [23, 14, 6, 17], However, this idea is restricted
by misinterpretation stem from sparse sampling of 3D points.
Our work shares the similar idea to convert 3D point cloud to
2D plane, but we exploit 2D RGB images to assist 3D semantic
segmentation and we rely on 2D semantic segmentation to
predict 3D semantics.

In 2D semantic segmentation, FCN [29] is one of the first
works using deep neural network for semantic segmentation
by replacing the fully connected layer with fully convolution
layers. The following works, e.g., SegNet [1] and [32], use
more sophisticated way to encode the input image and decode
the latent representation so that images are better segmented.
Obtaining features at multiple scale is manipulated either at
convolution kernel level or through pyramid structure. The
former leads to the method of using dilated convolution and
representative works are DeepLabV2 [4] and DeepLabV3[5].
The latter is implemented in PSPN [49] and [12]. Also,
attention mechanisms are used to weight features softy for
semantic segmentation task in [3]. In this paper, we make use
of the network proposed in [51] as our base feature extractor,
since it uses synthetic predicting to scale up training data and
the trained label is also robust, benefiting from the usage of
the boundary relaxation strategy proposed in that paper.

This paper utilizes features from multi-view patches sam-
pled from camera images, which are not accurately aligned
with 3D point cloud, to benefit the semantic segmentation of
3D point cloud. In this context, the central issue is how to
aggregate multi view image features in a sophisticated way
so that 3D points can be better separated in the feature space
spanned by those aggregated features.

III. PROBLEM FORMULATION

We have a sequence of N 3D point cloud frames P =
{P1, P2, · · · , PN}, and framewise associated 3D point se-
mantic label C and RGB image I. Such data is collected
by platform where LiDAR scanner and camera are carefully
synchronized and pre-calibrated with noisy pose information
Po = [R|t] (rotation matrix R and translation t). Moreover,
the relative pose between any two neighboring point cloud
frames can be obtained via IMU system. With the noisy
pose, we can theoretically project any 3D point to any image
plane. Off-the-shelf image semantic segmentation method [51]
is adopted to get semantic result S for each image, each
pixel of which consists of categorical semantic label and
semantic-aware representation r. Our goal is to train a model
F parameterized by θ to predict point cloud semantics from
images C = F(I,S|Po, θ).

IV. HIERARCHICAL FULL ATTENTION NETWORK

The fundamental idea of designing our framework is two-
fold: “task transfer” which learns 3D point cloud semantics
from 2D images; further address accompanying challenges
brought by the “task transfer” through a “learning” perspective
by fully exploiting the potential of deep neural networks in
a hierarchical way. Specifically, given the pose information
between any 3D point cloud frame and any 2D image, we can
obtain N patch observations {P1, · · · ,PN} for each 3D point
by projecting it to its neighboring image frames (we call bag-
of-frames), where a patch observation Pi indicates a k × k
squared patch centered at the pixel [ux, uy] of the 3D point’s
i-th observation image frame. [ux, uy] corresponds to the
3D point projection location with noisy pose information. In
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Fig. 1. HiFANet pipeline: Given the pose, we project M 3D points to their nearest top-N RGB images to get k × k patch observations. Off-the-shelf
2D image segmentation model is trained to get each patch’s semantic feature representation as well as categorical semantic labels. HiFANet is a three-stage
hierarchical fully attentive network. It first learns to aggregate patch representation into an instance representation (left image), then aggregates multiple image
instances into one point-wise representation (middle image), and finally an inter-point attention module to attend structural and feature interaction among 3D
points to output per-point elegant semantic feature representation, which is then used to predict the ultimate semantic label.

the meantime, a pre-trained 2D image semantic segmentation
model is available, so we can get both the categorical semantic
label sj and the semantic-guided feature representation rj for
the j-th pixel in the patch. The feature representation rj can
be easily obtained by taking the penultimate layer activation
of the model trained on 2D images. So the patch observation
can be expressed as,

P = {(s1, r1)i, · · · , (sk2 , rk2)i}Ni=1 (1)

Introducing patch observation instead of single-pixel obser-
vation in 2D image is to address pose noise challenge, which
we will give detailed discussion in next section. Instead of
learning 3D semantic for each 3D point separately, we model
M neighboring 3D points simultaneously, which benefits us
to use 3D points structure prior to escalate the performance.
For example, an intuitive spatial prior is that two spatially-
close 3D points are much more likely to share the same
semantic label than those lie far apart. In sum, our model
takes M 3D points’ Cartesian coordinates as well as each
3D point’s N patch observations as input and outputs each
3D point’s semantic label. It is worth noting that M 3D
points forms a point sequence and M ×N image observation
forms another image sequence, the whole framework can be
treated as a seq2seq task, either spatially or temporally. The
framework input simply consists of image-learned semantic
information (categorical label or feature presentation), no extra
constraint is involved and we do not directly process 3D point
cloud.

With “task transfer”, the main task of our framework is
to efficiently aggregate semantic clues arising from bag of
2D image frames. To this end, we propose a hierarchical
full attention three-stage aggregation mechanism, in which
we first learn to aggregate patch observation into an instance

observation (i.e., single pixel observation in an image), and
then learn to aggregate multiple instances in the bag-of-
frames for each 3D point into 3D point wise observation, and
finally attend all the structure prior and interaction between
3D points to output the target semantic label for each single
3D point. Our framework is fully attentive and invariant
to images observation order permutation. The hierarchical
attention mechanism design has two advantages: it first enables
the neural network to fully learn specified attention tailed
for different semantic representation, second it aggressively
reduces the feature size so that we keep the whole framework
slim.

A. Patch Attention for Patch Aggregation

Patch attention tends to aggregate the patch observation
into a single-pixel observation. Within each k × k patch, we
call the centered point the principle point and the remaining
points are neighboring points. The basic idea behind the patch
attention is to attend all points in the patch with a trainable
weight before weighted-adding them together to generate one
feature. Since the principle point records the most-confident
3D point semantic related feature representation, we add a
short-cut connection between the principle point feature and
the attended to feature representation. Specifically, given the
feature representation ri ∈ Rk×k×d, the principle points lies
in [k2 ,

k
2 ] and has feature representation fp of length d, the

output feature fpa after patch attention can be expressed as,

fpa =

k×k∑
j=1

wj · Vj + fp (2)

where wj is the learned weight for the j-th point in the
patch. To learn the attention weight w, we draw inspiration



from self-attention module [39] to learn a patch Key K =
Rk×k×d1 and patch Query Q = Rk×k×d1 and a patch Value
V = Rk×k×d. The three parts can be efficiently learned via
1× 1 2D convolution on the patch observation. To reduce the
computation cost (usually d1 � d), we set d1 = 64 and d =
256. With K and Q we can further compute the scaled dot-
product attention where the attended weight w can be obtained
by,

w = softmax(
QpK√
d1

) (3)

Qp is the principle point query. With Eqn. (3), we can
get the weight of each point to the principle point. The
patch attention is a self-attention module, it requires no extra
supervision and can efficiently attend the final single-pixel
observation in with paralleling computation.

B. Instance Attention for Image Aggregation

Instance attention module takes RM×N×d semantic fea-
ture as input, and aims to aggregate bag-of-frames features
to get 3D point wise feature. We call the aforementioned
patch-attention aggregated pixel-wise semantic representation
in each image frame as an instance, because it represents
an independent observation towards a 3D point. The mul-
tiple instances arising from bag-of-frames form an Instance
Set [41, 24], which means these instances are orderless, the
final accurate semantic label may derive from an individual
instance or multiple instances combination. To satisfy the
instance set property, the instance attention module has to
be order-permutation invariant. Commonly seen set-operators
include max-pooling and average-pooling. In HiFANet, we
first apply a self-attention layer like the patch attention block
does to attend each instance by all the remaining instances.
Finally, we apply average pooling to merge multiple instances
into one instance representation.

C. Inter-point Attention for 3D Points Aggregation

Inter-point attention take RM×d semantic feature learned
by instance attention module as input. Unlike the previous
two attention modules that just focus on per-point semantic
feature learning, inter-point attention module fully considers
the interaction between 3D points, including the spatial struc-
ture interaction and semantic feature interaction. We adopt
a Transformer [39] multi-head self-attention like network to
construct the inter-point attention module. Specifically, the
input feature is fed to learn per-point Key K = RM×d2

and per-point Query Q = RM×d2 as well as per-point Value
V = RM×d. To involve structural prior, we encode the
relative Cartesian position difference between any two 3D
points pi−pj . The Cartesian position difference is further fed
to two consecutive fully connection layers to get the structural
prior encoding Kpe, which is the same size of K. The original
Key K is then updated by adding Kpe,

K = K +Kpe (4)

The updated K in Eqn.(4) naturally contains the structural
prior. With the Q and updated K, we can compute the
attention weight for each single 3D point w.r.t the remaining
3D points, as is shown in Eqn. (3). The attention weight is
further applied to combine value V to get the final per-point
semantic representation, which is further concatenated with a
classification layer for semantic classification.

In sum, HiFANet sequentially and hierarchically aggregates
patch semantics, instance semantics and inter-point semantics
to learn semantic representation for each 3D point. It is fully
attentive and learns compartmentalized and certain attention
blocks w.r.t. different aggregation granularity separately. The
preceding attention layer largely reduce the feature size before
feeding it to the next layer, so the whole neural network is
slim. Detailed HiFANet pipeline is shown in Fig. 1.

V. DISCUSSION ON HIFANET DESIGN MOTIVATION

The feasibility of such “task transfer” lies in the availability
of the pose information between LiDAR scanner and the
camera, which enables us to project 3D point cloud onto the
image plane to get each 3D point’s correspondence in the
image plane. We hereafter call such correspondence as a 2D
observation. The “task transfer” poses three main challenges
that may jeopardize the performance.

1) Pose noise. Sensor calibration often suffers from internal
and external noise. Noisy pose information leads to
inaccurate 2D observations. This stays as the most
prominent challenge.

2) View-angle. Projecting a cluster of point cloud belong-
ing to a specific category (i.e. car) to an image plane
often leads to distorted 2D observation. In severe cases,
it leads to wrong observation due to the occlusion caused
by view-angle difference.

3) Void projection. While LiDAR scanner scans in 360◦,
pinhole camera simply captures the forward-facing view.
This mismatch of perception field inevitably leads to
void projection in which point cloud cannot find obser-
vation in one image.

Addressing the above three challenges leads to our proposed
framework. To mitigate the pose noise impact, we propose
to use patch observation to replace pixel observation. Pixel-
wise observation is fragile and sensitive to pose noise, a
small change leads to totally different observation. Patch-wise,
on the contrary, becomes much more resilient to pose noise
because it covers possible observations potentially led by noisy
pose. Moreover, introducing patch-wise observation avoids us
directly optimizing [R|t] in an iterative way. To address the
view-angle and void projection issue, we propose to involve
multiple observation arising from different view-angles. With
the multi-view observations, we naturally obtain multiple clues
for each 3D point.

A. Pose Noise and Patch Observation

The pose between LiDAR scanner coordinate system and
camera coordinate system can be formulated as a rotation
matrix R and translation T . A 3D point [x, y, z] projects onto



Fig. 2. The influences of pose noise to the projected point coordinates
on image plane (in pixel) for 3D world points that are various distant from
the camera plane (green: 5m; yellow: 10m; blue:20m). The simulated noises
of rotation angles are 1◦ (for each rotation angle) for both cases and the
translation noise are 0.05m (left), 0.1m (right) for each of the three axes in
world coordinate system.

an image plane, the corresponding observation location [u, v]
in the 2D image plane is computed by,

[u, v, 1] = K[R|T ] · [x, y, z, 1]T (5)

Please note that the projected pixel location is normalized
by its 3rd dimension. The pose noise of sensor calibration
(between laser scanner and camera) renders the location of
true projected point uncertain. However, in our approach, a
patch is extracted and then the attention is learned to focus on
the pixel closest to the true projected points.

In order to investigate the influence of the pose noise on
the location of projected points, a toy simulation experiment
is provided and illustrated in Fig. 2. As can be observed in
Fig. 2, given the translation noise for the calibration between
the LiDAR scanner and camera as 10cm and the rotation angle
noise as 1◦, the projection error on the image plane (1024 ×
512 pixels) is around 40 pixels for near camera object points.
Since the patch extracted on each camera view is within a k×k
patch in the downsized feature maps (normally at 1/16 or 1/32
resolution), the information encoded in the image is then well
preserved for the attention module to discover, although the
pose noise exist.

B. View-angle and Void Projection

View-angle easily leads to titled, occluded and even er-
roneous observation. A 3D point that is observed in one
viewpoint (an RGB image) can be obstructed in another neigh-
boring viewpoint. Traditional 3D reconstruction framework
like structure-from-motion (SfM [10]) suffer from the same
dilemma. The void projection jeopardizes the “task transfer”
proposal because it causes large number of 3D points being
2D image unobserved.

To mitigate the two challenges, we propose to observe a
single 3D point from multiple view-angles. On the one hand,
it reduces the risk of one 3D point being observed at an
unfavored view angle. On the other hand, it maximally ensures
each 3D point cloud to be observed by at least one 2D image.
Moreover, this strategy brings us the advantage of aggregating
semantic clues arising from multiple images to better estimate
semantics. Multiple view-angles observation can be efficiently
aggregated in parallel in HiFANet.

VI. EXPERIMENTS AND RESULTS

We conduct experiment on the Semantic-KITTI dataset [2].
Since we need the inter-frame odometry information to project
each 3D point to multiple RGB frames but the official pro-
vided test dataset (sequence 11-20) does not provide such
information, so we do not follow the official split but instead
create the train/test/val split by ourselves and further train
the comparing methods with the split dataset from scratch.
The same problem applies to other relevant datasets such as
Waymo and CityScapes [7], so we just run experiment on
Semantic-KITTI dataset in this paper.

Data Preparation We run experiment on sequence 00-10
because the inter-frame odometry information is available for
the 11 sequences, with which we can register all point cloud
frames from a sequence to a uniform 3D coordinate so that
each 3D point can be freely projected to any image plane.
There are 13 semantic categories in total: road, side-walk,
building, fence, pole, traffic sign, vegetation, terrain, person,
bicyclist, car, motorcycle and bicycle. Some categories like
road, building, vegetation and terrain dominate most of the
points, whereas the others’ portion is very small. An extra
unlabelled background category is added. Sequence 06 is
selected as test set as it contains all semantic categories and
account for 20% data of the whole dataset. Sequence 08 is
selected for validation and the remaining 9 sequences serve
as training set. To get each 3D point’s N neighboring image
observations, we project it to its closest N image planes. N
is set as 5 because it then covers 64% of the whole point
cloud dataset with patch size k = 5 and 3D points number
size M = 10. Those 3D points that fail to find N image
observations are discarded during test but left for training point
cloud based models. The image based semantic representation
and semantic label are obtained from VideoProp [51] model
pre-trained on KITTI dataset [11]. The semantic representation
is a 256-d feature. Therefore, the size of patch semantics
representation feeds to HiFANet is 5 × 5 × 256. For the
evaluation metric, we adopt the standard mIoU and average
accuracy [2].

Methods to Compare The first method category we tend to
compare is pure 3D point cloud based semantic segmentation
method. It helps us to gain an understanding of how far our
proposed “task transfer” strategy goes, comparing with directly
learning from 3D points. The second method category we
compare with is the semantic result giving by deterministically
aggregating the category semantic labels predicted by 2D
image aggregation method, it gives us an understanding of how
good image based semantic prediction methods can perform,
by varying the observation number like image number and
patch size. The third category is multi-view learning method
which means designing neural network to learn from image
semantic representations, as our proposed HiFANet does.

Ablation Study we want to figure out the impact of the
involvement of patch feature representation, structural prior
on the performance. We thus test two HiFANet variants:
reduce the patch size to 1 so no patch attention module is



TABLE I
QUANTITATIVE RESULT ON SEMANTIC-KITTI[2] DATASET. B, K AND M MEAN BILLION, THOUSAND AND MILLION, RESPECTIVELY.

Method Category Method Train Dataset Param Num mIoU (↑) Average Accuracy (↑)

Point Based Methods

PointNet [33] 2.8 B 3.53 M 0.036 0.105
PointNet++ [34] 2.8 B 0.97 M 0.055 0.156

RangeNet++(CRF) [31] 2.8 B 50.38 M 0.500 0.878
RangeNet++(KNN) [31] 2.8 B 50.38 M 0.512 0.899

KPConv[38] 2.8 B 18.34 M 0.466 0.868
RandLANet [18] 2.8 B 1.24 M 0.578 0.913

Image Aggregation Methods

BoF Num = 1 23 K 137 M 0.422 0.845
BoF Num = 3 23 K 137 M 0.437 0.852
BoF Num = 5 23 K 137 M 0.436 0.852
Patch Size = 1 23 K 137 M 0.436 0.850
Patch Size = 3 23 K 137 M 0.436 0.851
Patch Size = 5 23 K 137 M 0.436 0.852

Multi-View Learning Methods AvgPool FC 0.5 M 0.04 M 0.451 0.872
HiFANet noPA 0.5 M 2.5 M 0.537 0.891
HiFANet noSP 0.5 M 2.7 M 0.561 0.920

HiFANet 0.5 M 2.7 M 0.620 0.933

Fig. 3. Close-up visualization of various methods on unlabelled tree stake. While point based method erroneously classifies them as pole and image based
method as terrain, HiFANet accurately recognizes it by fully combing 2D image based semantics and 3D structural priors.

applied (HiFANet noPA), no structural prior involvement in
inter-point attention module (HiFANet noSP). Moreover, to
test the effectiveness of our proposed full attention network,
we train another simple semantic aggregation network, in
which we simply average-pool all the input feature (patch
and instance feature) to get per-point feature, and further
concatenate two full connection layer (of size 256, 128) to
directly predict the semantic label (AvgPool FC). Please note
that AvgPool FC is a simple neural network and it is order-
permutation invariant.

Five most recent 3D point cloud based methods: Point-
Net [33], PointNet++ [34], RangeNet [31] (two variants, with
KNN and CRF), KPConv [38] and RandLANet [18] are
selected for comparison study. For image aggregation meth-
ods, we simply deterministically choose the semantic label

with maximum occurrence times. Within multi-view learning
methods, all HiFANet variants are trained with the same hyper-
parameter setting as HiFANet.

Quantitative Result is shown in Table I. We can observe
that point cloud based methods training requires much larger
number of training dataset than both image aggregation meth-
ods and our proposed multi-view learning methods. This
shows the advantage of learning semantics from 2D images.
The compactly-organized and topology-preserving RGB im-
ages enables neural network to learn meaningful semantic
representations with much fewer training samples. Within
image aggregation methods, involving extra bag-of-frame ob-
servations increases the performance, but the performance
gain is not prominent due to the view-angle and occlusion
challenges. Moreover, expanding the patch size also improves



Fig. 4. Global visualization of various methods comparison. While point based method fails to classify traffic sign and image based method generates
spatially distributed prediction, HiFANet successfully avoids these dilemmas and gives the right semantics.

the performance, which shows capability of introducing patch-
wise observation in mitigating the dilemma caused by obser-
vation uncertainty. In sum, aggregating image-predicted se-
mantics can achieve comparable performance than point based
methods. It further shows the potential of designing neural
network to learn from image learned semantic representations,
instead of simply voting them.

Within multi-view learning methods, we can observe that
all methods outperform image aggregation methods, showing
the advantage of neural network learning over deterministic
semantic aggregation. Simply adding several fully connection
layers (AvgPool FC) generates inferior performance than the
other three HiFANet variants. This result shows that more
advanced semantic aggregation strategy is needed to better
aggregate semantic cues arising from multiple image observa-
tions. At the same time, either removing the patch attention
module or the structural prior module inevitably reduces the
performance. Patch observation introduces extra semantic cues
in a pose noise sensitive way and structural prior regularizes
the whole network training. Finally, HiFANet generates the
best performance over all methods, far outweighing other
methods by a large margin.

Qualitative Result is shown in Fig. 3 and Fig. 4. In the
close-up comparison of tree stakes in Fig. 3, as it is a cat-
egory falls out of our consideration, it should be regarded
as unlabelled category. However, 3D point based method
RandLANet [18] (sub-figure B.) mixes it with pole due to
their point cloud representation similarity. Image aggregation
method (sub-figure D.) directly predicts it as terrain because
of its color similarity and connection with the tree leaves.
HiFANet (sub-figure E.), however, fully exploits 3D point
structural prior information to predict the correct semantics.
For example, the tilted angle of tree stakes over the ground

makes it unlikely to be a pole (which is usually vertical to
ground), nor terrain (no angle information).

Fig. 5. Pose noise test: performance variation trend under various Gaussian
pose noise level.

The global comparison of various methods is shown in
Fig. 4. We can observe that point based method (C. RandLA-
Net) failed to predict the large traffic sign (red box in the
RGB image) because such samples are rarely seen in training
dataset. At the same time, due to the pose noise, image
based method distributes car 3D points to large area (see
the largely distributed red points in sub-figure D., near the
light blue). Our proposed HiFANet can maximally avoid
these dilemmas. It obtains semantic representation from RGB
images, so it does not require massive training dataset and
large presence of all classes. The hierarchical attention design
and the involvement of 3D structural prior equip HiFANet with
capability to dynamically alleviate the erroneous prediction
led by pose noise. In sum, our proposed HiFANet achieves
promising performance with relatively small training dataset.
It also exhibits pose noise tolerance capability, which is a



TABLE II
DETAILED IOU SCORE FOR EACH CATEGORY ON SEMANTIC-KITTI[2] DATASET

Method road side-
walk

build-
ing

fence pole traffic-
sign

veget-
ation

terrain person rider car motor-
cycle

bicycle

PointNet [33] 0.031 0.069 0.113 0.043 0.036 0.022 0.041 0.054 0.000 0.000 0.052 0.002 0.003
PointNet++ [34] 0.066 0.023 0.079 0.042 0.112 0.014 0.036 0.183 0.000 0.002 0.133 0.010 0.000

RangeNet++(CRF) [31] 0.878 0.745 0.742 0.232 0.252 0.313 0.612 0.875 0.088 0.356 0.853 0.375 0.176
RangeNet++(KNN) [31] 0.895 0.769 0.819 0.258 0.333 0.291 0.648 0.896 0.114 0.414 0.856 0.178 0.183

KPConv [38] 0.738 0.574 0.653 0.244 0.469 0.400 0.533 0.767 0.249 0.696 0.739 0.360 0.000
RandLANet [18] 0.883 0.760 0.883 0.323 0.537 0.319 0.731 0.910 0.216 0.572 0.909 0.470 0.003

Image Based BoF=5 0.888 0.710 0.378 0.154 0.189 0.362 0.598 0.889 0.210 0.055 0.563 0.533 0.146
HiFANet 0.910 0.790 0.903 0.349 0.540 0.374 0.755 0.912 0.247 0.577 0.933 0.547 0.169

TABLE III
HIFANET NETWORK ARCHITECTURE. FC INDICATES

FULLY-CONNECTION LAYER, K,Q INDICATES THE KEY AND QUERY IN THE
SELF-ATTENTION MODULE.

layer filter num output size
Input: [B, 10, 5, 5, 5, 256]

Patch Attention Module
K,Q 64, head num = 4 [B, 10, 5, 256]

FeedForward Net 256 [B, 10, 5, 256]
Instance Attention Module

K,Q 64, head num = 4 [B, 10, 256]
FeedForward Net 256 [B, 10, 256]

InterPoint Attention Module
K,Q 64, head num = 4 [B, 10, 256]

FeedForward Net 256 [B, 10, 256]
InterPoint Attention: Structural Prior

FC 128 [B, 10, 128]
FC 256 [B, 10, 256]

Classification Head
FC 512 [B, 10, 512]
FC 512 [B, 10, 512]
FC class num [B, 10, class num]

common challenge in real scenario.

A. More Experimental Result

We report the detailed mIoU and mAP score for each
individual class in Table II. We can see from the table that
our proposed HiFANet achieves the best performance on most
categories. Image based method (with BoF=5) obtains inferior
performance on some categories such as car, rider and traffic
sign, due to the pose noise. Our proposed HiFANet maximally
resists the negative impact of pose noise and thus is capable
of obtaining promising performance.

B. Discussion on Pose Noise

We further want to test our proposed HiFANet performance
under various pose noise level. To this end, we add Gaussian
pose noise to the point-to-image projection matrix in Eqn.5.
The Gaussian noise level is controlled by the Gaussian devi-
ation σ (the mean value is set 0). We compare HiFANet with
two image aggregation variants: with patch size 1 and 5. Since
the introduction of patch observation is to handle pose noise,
it helps us to understand patch observation (patch size = 5)
resistance to pose noise against the original observation (patch
size = 1), and against HiFANet.

The Gaussian pose noise σ is linearly spaced from 0 to
0.3. The result is shown in Fig. 5, from which we can observe
that adding more pose noise reduces the performance of all
methods. The variant with patch size 1 suffers most while
HiFANet maximally mitigates the pose noise impact. It thus
shows the advantage of involving patch observation in tackling
pose noise and our carefully designed HiFANet is capable of
learning pose noise tolerant feature representation.

C. Implementation Detail and Source Code

In HiFANet, we set image observation number as 5, the
number of 3D points as 10 and the patch size as 5, so the
input size is [10, 5, 5, 5, 256]. The multi-head attention module
head number is 4. The total training dataset is more than
100 million, we randomly subsample 0.5 million points. We
implement in PyTorch and train with SGD optimizer, the
initial learning rate is 0.1 and decays with factor 0.5 every 30
epochs. Batchsize is 64. The network is trained 100 epochs in
total. The network architecture is shown in Table III. We use
the same hyper-parameter setting to train all other HiFANet
variants in our ablation study. For comparing methods, we
use their released source code with default or recommended
training strategy.

VII. CONCLUSION AND LIMITATION DISCUSSION

We propose a three-stage hierarchical fully attentive net-
work, HiFANet, to label the point cloud semantically. The
patch observation strategy and bag-of-frames multi-view ob-
servation enable HiFANet to handle point-image projection
pose noise. Compared to point cloud based methods, HiFANet
requires significantly less amount of data and outperforms
point based methods by a large margin. The downside our
method is that HiFANet’s good performance still depends
relatively on the LiDAR-camera pose accuracy. If the pose
accuracy drops significantly, HiFANet’s performance reduces
accordingly. Designing more pose-noise tolerant method thus
forms a potential future research direction. Another point is
that HiFANet only builds on 2D image observations, a joint
learning from both the image and point cloud may further
improve the performance.
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